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Abstract

In this article, applying moment inequality of negatively dependent (ND) random
variables which obtained by Asadian et al., the complete convergence theorem for
weighted sums of arrays of rowwise ND random variables is discussed. As a result,
the complete convergence theorem for ND arrays of random variables is extended.
Our results generalize and improve those on complete convergence theorem
previously obtained by Hu et al., Ahmed et al, Volodin, and Sung from the
independent and identically distributed case to ND sequences.
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1 Introduction
Random variables X and Y are said to be negatively dependent (ND) if

P(X ≤ x,Y ≤ y) ≤ P(X ≤ x)P(Y ≤ y) (1:1)

for all x, y Î R. A collection of random variables is said to be pairwise negatively

dependent (PND) if every pair of random variables in the collection satisfies (1.1).

It is important to note that (1.1) implies

P(X > x,Y > y) ≤ P(X > x)P(Y > y) (1:2)

for all x, y Î R. Moreover, it follows that (1.2) implies (1.1), and hence, (1.1) and

(1.2) are equivalent. However, (1.1) and (1.2) are not equivalent for a collection of

three or more random variables. Consequently, the following definition is needed to

define sequences of ND random variables.

Definition 1. Random variables X1, ..., Xn are said to be ND if for all real x1, ..., xn,

P

⎛
⎝ n⋂

j=1

(Xj ≤ xj)

⎞
⎠ ≤

n∏
j=1

P(Xj ≤ xj),

P

⎛
⎝ n⋂

j=1

(Xj > xj)

⎞
⎠ ≤

n∏
j=1

P(Xj > xj).
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An infinite sequence of random variables {Xn; n ≥ 1} is said to be ND if every finite

subset X1, ..., Xn is ND.

Definition 2. Random variables X1, X2, ..., Xn, n ≥ 2 are said to be negatively asso-

ciated (NA) if for every pair of disjoint subsets A1 and A2 of {1, 2, ..., n},

cov (f1(Xi; i ∈ A1), f2(Xj; j ∈ A2)) ≤ 0,

where f1 and f2 are increasing for every variable (or decreasing for every variable),

such that this covariance exists. An infinite sequence of random variables {Xn; n ≥ 1} is

said to be NA if every finite subfamily is NA.

The definition of PND was given by Lehmann [1], the concept of ND and NA was

introduced by Joag-Dev and Proschan [2]. These concepts of dependence random vari-

ables are very useful to reliability theory and applications.

Obviously, NA implies ND from the definition of NA and ND. But ND does not

imply NA, so ND is much weaker than NA. Because of the wide applications of ND

random variables, the notions of ND random variables have received more and more

attention recently. A series of useful results have been established [3-12]. Hence, the

extending the limit properties of independent variables to the case of ND variables is

highly desirable and of considerably significance in the theory and application.

The concept of complete convergence of a sequence of random variables was introduced

by Hsu and Robbins [13] as follows. A sequence {Xn; n ≥ 1} of random variables converges

completely to the constant a if
∑∞

n=1 P(|Xn − a| > ε) < ∞ for all � > 0. In view of the

Borel-Cantelli lemma, this implies that Xn ® a almost surely. The converse is true if {Xn;

n ≥ 1} are independent random variables. Thus, complete convergence is one of the most

important problems in probability theory. Hsu and Robbins [13] proved that the sequence

of arithmetic means of independent and identically distributed (i.i.d.) random variables

converges completely to the expected value if the variance of the summands is finite.

Baum and Katz [14] proved that if {X, Xn; n ≥ 1} is a sequence of i.i.d. random variables

with mean zero, then E|X|p(t+2) < ∞ (1 ≤ p < 2, t ≥ 1) is equivalent to the condition that∑∞
n=1 n

tP(
∣∣∑n

i=1 Xi
∣∣ /n1/p > ε) < ∞ for all � > 0. Some recent results can be found in

[12,15-17].

In this article we study the complete convergence for ND random variables. Our

results generalize and improve those on complete convergence theorem previously

obtained by Hu et al. [16], Ahmed et al. [15], Volodin [17] and Sung [18] from the i.i.d.

case to ND sequences.

2 Main results
Theorem 1. Let {Xnk; k, n ≥ 1} be an array of rowwise ND random variables, there

exist a r.v. X and a positive constant c satisfying

P(|Xnk| ≥ x) ≤ cP(|X| ≥ x) for all n, k ≥ 1, x > 0. (2:1)

Suppose that b > -1, and that {ank; k, n ≥ 1} is an array of constants such that

sup
k≥1

|ank| = O(n−γ ) for some γ > 0, (2:2)

and ∑∞
k=1

|ank|θ = O(nα), for some α < 2γ and some 0 < θ < min(2, 2 − α/γ ). (2:3)
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(i) If 1 + a + b > 0 and

E|X|v < ∞, v = θ +
1 + α + β

γ
. (2:4)

When v ≥ 1, further assume that EXnk = 0 for any n, k ≥ 1. Then

∞∑
n=1

nβP

(∣∣∣∣∣
∞∑
k=1

ankXnk

∣∣∣∣∣ > ε

)
< ∞, ∀ε > 0. (2:5)

(ii) If 1 + a + b = 0 and

E(|X|θ ln(1 + |X|)) < ∞. (2:6)

When v = θ ≥ 1, further assume that EXnk = 0 for any n, k ≥ 1. Then (2.5) holds.

Remark 2. Theorem 1 generalize and improve those on complete convergence theo-

rem previously obtained by Hu et al. [16], Ahmed et al. [15], Volodin [17], and Sung

[18] from the i.i.d. case to ND arrays.

By using Theorrem 1, we can extend the well-known Baum and Katz [14] complete

convergence theorem from the i.i.d. case to ND random variables.

Corollary 3. Let {Xn, n Î N} be a sequence of ND random variables, there exist a r.v.

X and a constant c satisfying P(|Xn| ≥ x) ≤ cP(|X| ≥ x) for all n ≥ 1, x > 0. Suppose g >
1/2 and gp > 1; and if p ≥ 1 then assume also that EXn = 0 for any n ≥ 1. If E|X|p < ∞,

then

∞∑
n=1

nγ p−2P(|Sn| > εnγ ) < ∞, ∀ε > 0,

where Sn =
∑n

k=1 Xk.

3 Proofs
In the following, let an ≪ bn denote that there exists a constant c > 0 such that an ≤

cbn for sufficiently large n. The symbol c stands for a generic positive constant which

may differ from one place to another.

Lemma 1. [3] Let X1, ..., Xn be ND random variables and let {fn; n ≥ 1} be a sequence

of Borel functions all of which are monotone increasing (or all are monotone decreas-

ing). Then {fn(Xn); n ≥ 1} is still a sequence of ND r.v.’s.

Lemma 2. [9] Let {Xn; n ≥ 1} be an ND sequence with EXn = 0 and E|Xn|
p < ∞, p ≥ 2.

Then

E|Sn|p ≤ cp

⎧⎨
⎩

n∑
i=1

E|Xi|p +
(

n∑
i=1

EX2
i

)p/2
⎫⎬
⎭ ,

where cp > 0 depends only on p.

Lemma 3. [19] Let {Xn; n ≥ 1} be an arbitrary sequence of random variables. If there

exist a r.v. X and a positive constant c such that P(|Xn| ≥ x) ≤ cP(|X| ≥ x) for and n ≥ 1

and x > 0. Then for any u > 0, t > 0, and n ≥ 1,

E|Xn|uI(|Xn|≤t) ≤ c
(
E|X|uI(|X|≤t) + tuP(|X| > t)

)
,
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and

E|Xn|uI(|Xn|>t) ≤ cE|X|uI(|X|>t).

Proof of Theorem 1. Let a+nk = max(ank, 0) ≥ 0 and a−
nk = max(−ank, 0) ≥ 0. From

(2.2), (2.5) and

∞∑
n=1

nβP

(∣∣∣∣∣
∞∑
k=1

ankXnk

∣∣∣∣∣ > ε

)
≤

∞∑
n=1

nβP

(∣∣∣∣∣
∞∑
k=1

a+nkXnk

∣∣∣∣∣ > ε/2

)
+

∞∑
n=1

nβP

(∣∣∣∣∣
∞∑
k=1

a−
nkXnk

∣∣∣∣∣ > ε/2

)
,

without loss of generality, for all i, n ≥ 1, we can assume that ani > 0 and

sup
k≥1

ank = n−γ . (3:1)

For any k, n ≥ 1, let

Ynk = −a−1
nk I(ankXnk<−1) + XnkI(ank|Xnk|≤1) + a−1

nk I(ankXnk>1).

Then for any n ≥ 1,{∣∣∣∣∣
∞∑
k=1

ankXnk

∣∣∣∣∣ > ε

}
=

{
∀k ≥ 1, |ankXnk| ≤ 1,

∣∣∣∣∣
∞∑
k=1

ankYnk

∣∣∣∣∣ > ε

}
∪{∃k ≥ 1, |ankXnk| > 1}.

Hence

∞∑
n=1

nβP

( ∞∑
k=1

|ankXnk| > ε

)
≤

∞∑
n=1

nβ

∞∑
k=1

P(|ankXnk| > 1) +
∞∑
n=1

nβP

(∣∣∣∣∣
∞∑
k=1

ankYnk

∣∣∣∣∣ > ε

)

∧= J1 + J2.

(3:2)

Therefore, in order to prove (2.5), it suffices to prove that J1 < ∞ and J2 < ∞.

(i) If 1 + a + b > 0, by Lemma 3, (2.1), (2.3), (2.4), (3.1), and the Markov inequality, we

have

J1 

∞∑
n=1

nβ

∞∑
k=1

P(|ankX| > 1)

≤
∞∑
n=1

nβ

∞∑
k=1

E|ankX|θ I(|X|>a−1
nk )

≤
∞∑
n=1

nβE|X|θ I(|X|>nγ )

∞∑
k=1

aθ
nk



∞∑
n=1

nβ+αE|X|θ I(|X|>nγ )

=
∞∑
n=1

nβ+α

∞∑
j=n

E|X|θ I(jγ <|X|≤(j+1)γ )

=
∞∑
j=1

E|X|θ I(jγ <|X|≤(j+1)γ )

j∑
n=1

nβ+α

≤
∞∑
j=1

j1+α+βE|X|θ I(jγ <|X|≤(j+1)γ )



∞∑
j=1

E|X|θ+(1+α+β)/γ I(jγ <|X|≤(j+1)γ )

< ∞.

(3:3)
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Next we prove that J2 < ∞ for v < 1 and v ≥ 1, respectively. Put

N(nk) = �{i; (nk)γ ≤ a−1
ni < (n(k + 1))γ }, k, n ≥ 1.

(a) If v < 1. Choose t such that v <t < 1. By the Markov inequality, the cg inequality,

Lemma 3 and the process of proof of (3.3), we have

J2 

∞∑
n=1

nβE

∣∣∣∣∣
∞∑
k=1

ankYnk

∣∣∣∣∣
t

≤
∞∑
n=1

nβ

∞∑
k=1

E|ankYnk|t



∞∑
n=1

nβ

∞∑
k=1

{
E|ankXnk|tI(ank|Xnk|≤1) + P (|ankXnk| > 1)

}



∞∑
n=1

nβ

∞∑
k=1

{
E|ankX|tI(ank|X|≤1) + P (|ankX| > 1)

}

=
∞∑
n=1

nβ

∞∑
j=1

∑
(nj)γ≤a−1

nk <(n(j+1))γ

{
atnkE|X|tI(|X|≤a−1

nk )
+ P (|ankX| > 1)

}



∞∑
n=1

nβ

∞∑
j=1

N(nj)(nj)−γ tE|X|tI(|X|<(n(j+1)γ )

=
∞∑
n=1

nβ

∞∑
j=1

N(nj)(nj)−γ t
n(j+1)∑
i=1

E|X|tI((i−1)γ ≤|X|<iγ )

≤
∞∑
n=1

nβ

∞∑
j=1

N(nj)(nj)−γ t
2n∑
i=1

E|X|tI((i−1)γ≤|X|<iγ )

+
∞∑
n=1

nβ

∞∑
j=1

N(nj)(nj)−γ t
n(j+1)∑
i=2n+1

E|X|tI((i−1)γ≤|X|<iγ )

∧= J21 + J22.

(3:4)

Since t >v and g > 0, so t >θ, (1 + 1/k)-gθ ≥ 2-gθ and (nk)g(t-θ) ≥ (nj)g(t-θ), ∀k ≥ j.

Therefore, by (2.3) we have

nα �
∞∑
i=1

aθ
ni =

∞∑
k=1

∑
(nk)γ ≤a−1

ni <(n(k+1))γ

aθ
ni

≥
∞∑
k=1

N(nk)
(
n(k + 1)

)−γ θ

≥
∞∑
k=1

N(nk)2−γ θ (nk)−γ θ

�
∞∑
k=j

N(nk)(nk)−γ t(nk)γ (t−θ)

≥
∞∑
k=j

N(nk)(nk)−γ t(nj)γ (t−θ).

Hence,

∞∑
k=j

N(nk)(nk)−γ t 
 nα−γ (t−θ)j−γ (t−θ), ∀j ∈ N. (3:5)
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Combining with (2.4) and t > v = θ +
1 + α + β

γ
, i.e. a + b - g(t - θ) < -1, we can get that

J21 

∞∑
n=1

nβnα−γ (t−θ)
2n∑
i=1

E|X|tI((i−1)γ ≤|X|<iγ )



∞∑
i=2

E|X|tI((i−1)γ ≤|X|<iγ )

∞∑
n=[i/2]

nβ+α−γ (t−θ)



∞∑
i=2

iβ+α−γ (t−θ)+1E|X|tI((i−1)γ ≤|X|<iγ )



∞∑
i=2

E|X|θ+(1+α+β)/γ I((i−1)γ ≤|X|<iγ )

< ∞.

(3:6)

By (3.5),

J22 =
∞∑
n=1

nβ

∞∑
i=2n+1

E|X|tI((i−1)γ ≤|X|<iγ )

∞∑
j=

⎡
⎣ i
n

−1

⎤
⎦
N(nj)(nj)−γ t



∞∑
n=1

nβ

∞∑
i=2n+1

nα−γ (t−θ)
(
i
n

)−γ (t−θ)

E|X|tI((i−1)γ ≤|X|<iγ )



∞∑
i=2

i−γ (t−θ)E|X|tI((i−1)γ ≤|X|<iγ )

[i/2]∑
n=1

nα+β



∞∑
i=2

i1+α+β−γ (t−θ)E|X|tI((i−1)γ ≤|X|<iγ )



∞∑
i=2

E|X|θ+(1+α+β)/γ I((i−1)γ ≤|X|<iγ )

< ∞.

(3:7)

By (3.2), (3.3), (3.4), (3.6), and (3.7), (2.5) holds.

(b) If v ≥ 1. Since EXnk = 0, E|X|v < ∞, and v ≥ 1, v >θ, b + 1 > 0, g > 0, by (2.3),

(2.4), (3.1), and Lemma 3, we have∣∣∣∣∣
∞∑
k=1

EankYnk

∣∣∣∣∣ ≤
∣∣∣∣∣

∞∑
k=1

EankXnkI(|ankXnk|≤1)

∣∣∣∣∣ +
∞∑
k=1

P (|ankXnk| > 1)

=

∣∣∣∣∣
∞∑
k=1

EankXnkI(|ankXnk|>1)

∣∣∣∣∣ +
∞∑
k=1

EI (|ankXnk| > 1)



∞∑
k=1

E|ankXnk|vI(|ankXnk|>1)

≤ sup
k≥1

av−θ
nk

∞∑
k=1

aθ
nkE|X|vI(|X|>a−1

nk )


 n−γ (v−θ)+αE|X|vI(|X|>nγ ) = n−(1+β)E|X|vI(|X|>nγ )

→ 0, n → ∞.

(3:8)
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Thus, in order to prove J2 < ∞, we only need to prove that for all � > 0,

J∗2 =
∞∑
n=1

nβP

(∣∣∣∣∣
∞∑
k=1

(ankYnk − EankYnk)

∣∣∣∣∣ > ε

)
< ∞. (3:9)

Obviously, Ynk is monotonic on Xnk. By Lemma 1, {ank Ynk - Eank Ynk; k, n ≥ 1} is

also an array of rowwise ND random variables with E(ank Ynk - Eank Ynk) = 0. And

note that g(2 - θ) - a = g(2 - a/g - θ) > 0 from θ < 2 - a/g and 1 + b > 0 from b > -1,

let t > max
(
2,

2(1 + β)
γ (2 − θ) − α

)
in Lemma 2, by the Markov inequality, the cr inequal-

ity, we have

J∗2 

∞∑
n=1

nβE

∣∣∣∣∣
∞∑
k=1

(ankYnk − EankYnk)

∣∣∣∣∣
t



∞∑
n=1

nβ

⎧⎨
⎩

∞∑
k=1

E|ankYnk|t +
( ∞∑

k=1

E|ankYnk|2
)t/2

⎫⎬
⎭

∧= J∗21 + J∗22.

(3:10)

From the process of the proof of (3.4)-(3.7), we know that

J∗21 < ∞. (3:11)

Since θ < min(2, v) and E|X|v < ∞, by Lemma 3, (2.1), (2.3), and (3.1), we have

∞∑
k=1

E|ankYnk|2 

∞∑
k=1

E

(
|ankX|2I(|ankX|≤1) +

∞∑
k=1

P (|ankX| > 1)




⎧⎪⎪⎨
⎪⎪⎩

∞∑
k=1

E|ankX|2 

∞∑
k=1

|ank|θ sup
k≥1

|ank|2−θ 
 nα−γ (2−θ), v ≥ 2,

∞∑
k=1

E|ankX|v 

∞∑
k=1

|ank|θ sup
k≥1

|ank|v−θ 
 nα−γ (v−θ), v = 2.

By the definition of t, t(g(2 - θ) - a)/2 - b > 1 and t(1 + b)/2 - b > 1, hence

J∗22 


⎧⎪⎪⎨
⎪⎪⎩

∞∑
n=1

1
nt(γ (2−θ)−α)/2−β , v ≥ 2,

∞∑
n=1

1
nt(1+β)/2−β , v < 2

< ∞. (3:12)

By (3.10)-(3.12), we have (3.9), therefore, (2.5) holds.

(ii) If 1 + a + b = 0, then
∑j

n=1 n
α+β 
 lnj, similar to proof of (3.3), we have

J1 =
∞∑
n=1

nβ

∞∑
k=1

P (|ankXnk| > 1) 
 E
(|X|θ ln (1 + |X|)) < ∞

from (2.6).

(a) When v = θ < 1, similar to the corresponding part of the proof of (3.6) and (3.7),

we get that

J21 
 E
(|X|θ) < ∞,

Wu Journal of Inequalities and Applications 2012, 2012:50
http://www.journalofinequalitiesandapplications.com/content/2012/1/50

Page 7 of 10



and

J22 
 E
(|X|θ ln (1 + |X|)) < ∞,

from (2.6). Therefore, (2.5) holds.

(b) When v = θ ≥ 1. Since EXnk = 0, E|X|v < ∞, 1 + a + b = 0, θ < 2, and b > -1, v =

θ, (3.8) remains true. Therefore, we only need to prove (3.9). By Lemmas 2 and 3, J1 <

∞, noting that v = θ and a + b = -1, we have

J∗2 

∞∑
n=1

nβE

( ∞∑
k=1

(ankYnk − EankYnk)

)2



∞∑
n=1

nβ

∞∑
k=1

E|ankYnk|2



∞∑
n=1

nβ

∞∑
k=1

P (|ankXnk| > 1) +
∞∑
n=1

nβ

∞∑
k=1

E|ankX|2I(|ankX|≤1)

= J1 +
∞∑
n=1

nβ

∞∑
k=1

a2nkEX
2I(|X|≤a−1

nk )



∞∑
n=1

nβ

∞∑
j=1

∑
(nj)γ ≤a−1

nk <(n(j+1))γ

a2nkEX
2I(|X|≤a−1

nk )



∞∑
n=1

nβ

∞∑
j=1

N(nj)(nj)−2γ EX2I(|X|<(n(j+1))γ )

=
∞∑
n=1

nβ

∞∑
j=1

N(nj)(nj)−2γ

n(j+1)∑
i=1

EX2I((i−1)γ ≤|X|<iγ )

≤
∞∑
n=1

nβ

∞∑
j=1

N(nj)(nj)−2γ

2n∑
i=1

EX2I((i−1)γ ≤|X|<iγ )

+
∞∑
n=1

nβ

∞∑
j=1

N(nj)(nj)−2γ

n(j+1)∑
i=2n+1

EX2I((i−1)γ ≤|X|<iγ )

∧= J∗21 + J∗22.

(3:13)

Since v = θ < 2, hence (3.5) also holds for t = 2. Combining with (2.6) and a+b = -1,

we can get that

J∗21 

∞∑
n=1

nβnα−γ (2−θ)
2n∑
i=1

EX2I((i−1)γ ≤|X|<iγ )



∞∑
n=1

EX2I((i−1)γ ≤|X|<iγ )

∞∑
n=[i/2]

n−1−γ (2−θ)



∞∑
i=2

i−γ (2−θ)EX2I((i−1)γ ≤|X|<iγ )



∞∑
i=2

E|X|θ I((i−1)γ ≤|X|<iγ )

< ∞.

(3:14)
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By (3.5),

J∗22 =
∞∑
n=1

nβ

∞∑
i=2n+1

EX2I((i−1)γ ≤|X|<iγ )

∞∑
j=
[ i
n−1

]N(nj)(nj)−2γ



∞∑
n=1

nβ

∞∑
i=2n+1

nα−γ (2−θ)
(
i
n

)−γ (2−θ)

E|X|2I((i−1)γ ≤|X|<iγ )



∞∑
i=2

i−γ (2−θ)EX2I((i−1)γ ≤|X|<iγ )

[i/2]∑
n=1

n−1



∞∑
i=2

i−γ (2−θ) ln iEX2I((i−1)γ ≤|X|<iγ )



∞∑
i=2

E|X|θ ln (1 + |X|) I((i−1)γ ≤|X|<iγ )

< ∞.

(3:15)

By (3.13)-(3.15), (3.9) holds.

Proof of Corollary 3. Let

ank =
{
n−γ , k ≤ n,
0, k > n,

0 ≤ α < 2γ , θ = 1−α
γ

, β = γ p − 2. Then b > -1, 0 <θ < 2 -

a/g, 1 + a + b > 0, θ + (1 + a + b)/g = p, and
∑∞

k=1 |ank|θ = nα. Thus, the conditions of

Theorem 1 hold, by Theorem 1,

∞∑
n=1

nγ p−2P
(|Sn| > εnγ

)
< ∞, ∀ε > 0.

Acknowledgements
The author is very grateful to the referees and the editors for their valuable comments and some helpful suggestions
that improved the clarity and readability of the paper. Supported by the National Natural Science Foundation of
China (11061012), and project supported by Program to Sponsor Teams for Innovation in the Construction of Talent
Highlands in the Guangxi Institutions of Higher Learning ([2011] 47).

Author details
1College of Science, Guilin University of Technology, Guilin 541004, P. R. China 2Guangxi Key Laboratory of Spatial
Information and Geomatics, Guilin 541004, P. R. China

Competing interests
The author declares that she has no competing interests.

Received: 27 July 2011 Accepted: 1 March 2012 Published: 1 March 2012

References
1. Lehmann, EL: Some concepts of dependence. Ann Math Stat. 43, 1137–1153 (1966)
2. Joag-Dev, K, Proschan, F: Negative association of random variables with applications. Ann Stat. 11(1):286–295 (1983).

doi:10.1214/aos/1176346079
3. Bozorgnia, A, Patterson, RF, Taylor, RL: Limit theorems for ND r.v.’s. University of Georgia, Atlanta (1993) Technical

Report;
4. Bozorgnia, A, Patterson, RF, Taylor, RL: Weak laws of large numbers for negatively dependent random variables in

Banach spaces. In: E, Denker, M (eds.) Madan Puri Festschrift Brunner. pp. 11–22. VSP International Science Publishers,
Vilnius (1996)

5. Amini, M: Some contribution to limit theorems for negatively dependent random variable. Ph.D. thesis. (2000)
6. Fakoor, V, Azarnoosh, HA: Probability inequalities for sums of negatively dependent random variables. Pak J Stat.

21(3):257–264 (2005)
7. Sani Nili, HR, Amini, M, Bozorgnia, A: Strong laws for weighted sums of negative dependent random variables. J Sci

Islam Repub Iran. 16(3):261–265 (2005)
8. Klesov, O, Rosalsky, A, Volodin, A: On the almost sure growth rate of sums of lower negatively dependent nonnegative

random variables. Stat Probab Lett. 71, 193–202 (2005). doi:10.1016/j.spl.2004.10.027

Wu Journal of Inequalities and Applications 2012, 2012:50
http://www.journalofinequalitiesandapplications.com/content/2012/1/50

Page 9 of 10



9. Asadian, N, Fakoor, V, Bozorgnia, A: Rosen-thal’s type inequalities for negatively orthant dependent random variables. J
Iran Stat Soc. 5(1-2):66–75 (2006)

10. Wu, QY, Jiang, YY: Strong consistency of M estimator in linear model for negatively dependent random samples.
Commun Stat Theory Methods. 40(3):467–491 (2011). doi:10.1080/03610920903427792

11. Wu, QY: A strong limit theorem for weighted sums of sequences of negatively dependent random variables. J Inequal
Appl. 383805, 8 (2010)

12. Wu, QY: Complete convergence for negatively dependent sequences of random variables. J Inequal Appl. 507293, 10
(2010)

13. Hsu, PL, Robbins, H: Complete convergence and the law of large numbers. Proc Nat Acad Sci USA. 33, 25–31 (1947).
doi:10.1073/pnas.33.2.25

14. Baum, LE, Katz, M: Convergence rates in the law of large numbers. Trans Am Math Soc. 120, 108–123 (1965).
doi:10.1090/S0002-9947-1965-0198524-1

15. Ahmed, SE, Antonini Giuliano, R, Volodin, A: On the rate of complete convergence for weighted sums of arrays of
Banach space valued random elements with application to moving average processes. Stat Probab Lett. 58, 185–194
(2002). doi:10.1016/S0167-7152(02)00126-8

16. Hu, TC, Li, D, Rosalsky, A, Volodin, AI: On the rate of complete convergence for weighted sums of arrays of Banach
space valued random elements. Theory Probab Appl. 47(3):455–468 (2002)

17. Volodin, A, Antonini Giuliano, R, Hu, TC: A note on the rate of complete convergence for weighted sums of arrays of
Banach space valued random elements. Lobachevskiŏ J Math (Electronic). 15, 21–33 (2004)

18. Sung, SH: Complete convergence for weighted sums of random variables. Stat Probab Lett. 77, 303–311 (2007).
doi:10.1016/j.spl.2006.07.010

19. Wu, QY: Probability Limit Theory for Mixed Sequence. (2006) Science Press, Beijing (in Chinese)

doi:10.1186/1029-242X-2012-50
Cite this article as: Wu: A complete convergence theorem for weighted sums of arrays of rowwise negatively
dependent random variables. Journal of Inequalities and Applications 2012 2012:50.

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

Wu Journal of Inequalities and Applications 2012, 2012:50
http://www.journalofinequalitiesandapplications.com/content/2012/1/50

Page 10 of 10

http://www.ncbi.nlm.nih.gov/pubmed/16578237?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21039964?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21039964?dopt=Abstract
http://www.springeropen.com/
http://www.springeropen.com/

	Abstract
	1 Introduction
	2 Main results
	3 Proofs
	Acknowledgements
	Author details
	Competing interests
	References

