# Some new fractional $q$-integral Grüss-type inequalities and other inequalities 

## Chaowu Zhu, Wengui Yang* and Qingbo Zhao

"Correspondence:
wgyang0617@yahoo.com
Ministry of Public Education, Sanmenxia Polytechnic, Sanmenxia, 472000, China


#### Abstract

In this paper, we employ a fractional $q$-integral on the specific time scale, $\mathbb{T}_{t_{0}}=\left\{t: t=t_{0} q^{n}, n\right.$ a nonnegative integer $\} \cup\{0\}$, where $t_{0} \in \mathbb{R}$ and $0<q<1$, to establish some new fractional $q$-integral Grüss-type inequalities by using one or two fractional parameters. Furthermore, other fractional $q$-integral inequalities are also obtained.


MSC: 26D10; 26A33
Keywords: fractional q-integral; integral inequalities; Grüss-type inequalities

## 1 Introduction

In the past several years, by using the Riemann-Liouville fractional integrals, the fractional integral inequalities and applications have been addressed extensively by several researchers. For example, we refer the reader to $[1-6]$ and the references cited therein. Dahmani et al. [7] gave the following fractional integral inequalities by using the RiemannLiouville fractional integrals. Let $f$ and $g$ be two integrable functions on $[0, \infty)$ satisfying the following conditions:

$$
\varphi_{1} \leq f(x) \leq \varphi_{2}, \quad \psi_{1} \leq g(x) \leq \psi_{2}, \quad \varphi_{1}, \varphi_{2}, \psi_{1}, \psi_{2} \in \mathbb{R}, \quad x \in[0, \infty)
$$

For all $t>0, \alpha>0$ and $\beta>0$, then

$$
\left|\frac{t^{\alpha}}{\Gamma(\alpha+1)} J^{\alpha}(f g)(t)-J^{\alpha} f(t) J^{\alpha} g(t)\right| \leq\left(\frac{t^{\alpha}}{\Gamma(\alpha+1)}\right)^{2}\left(\varphi_{2}-\varphi_{1}\right)\left(\psi_{2}-\psi_{1}\right)
$$

and

$$
\begin{aligned}
& \left(\frac{t^{\alpha}}{\Gamma(\alpha+1)} J^{\beta}(f g)(t)+\frac{t^{\beta}}{\Gamma(\beta+1)} J^{\alpha}(f g)(t)-J^{\alpha} f(t) J^{\beta} g(t)-J^{\beta} f(t) J^{\alpha} g(t)\right)^{2} \\
& \quad \leq\left(\left(\varphi_{2} \frac{t^{\alpha}}{\Gamma(\alpha+1)}-J^{\alpha} f(t)\right)\left(J^{\beta} f(t)-\varphi_{1} \frac{t^{\beta}}{\Gamma(\beta+1)}\right)+\left(J^{\alpha} f(t)-\varphi_{1} \frac{t^{\alpha}}{\Gamma(\alpha+1)}\right)\right. \\
& \left.\quad \times\left(\psi_{2} \frac{t^{\beta}}{\Gamma(\beta+1)}-J^{\beta} f(t)\right)\right)\left(\left(\psi_{2} \frac{t^{\alpha}}{\Gamma(\alpha+1)}-J^{\alpha} g(t)\right)\left(J^{\beta} g(t)-\psi_{1} \frac{t^{\beta}}{\Gamma(\beta+1)}\right)\right. \\
& \left.\quad+\left(J^{\alpha} g(t)-\psi_{1} \frac{t^{\alpha}}{\Gamma(\alpha+1)}\right)\left(\psi_{2} \frac{t^{\beta}}{\Gamma(\beta+1)}-J^{\beta} g(t)\right)\right) .
\end{aligned}
$$

To the best of authors' knowledge, only some fractional $q$-integral inequalities have been established in recent years. That is, only Öğünmez and Özkan [8], Bohner and Ferreira [9] and Yang [10] obtained some fractional $q$-integral inequalities. With motivation from the papers [7, 11, 12], the main purpose of this article is to establish some new fractional $q$ integral inequalities. First of all, by using one or two fractional parameters, we establish some new fractional $q$-integral Grüss-type inequalities on the specific time scale $\mathbb{T}_{t_{0}}=\{t$ : $t=t_{0} q^{n}, n$ a nonnegative integer $\} \cup\{0\}$, where $t_{0} \in \mathbb{R}$ and $0<q<1$. In general, a time scale is an arbitrary nonempty closed subset of real numbers [13]. Furthermore, other fractional $q$-integral inequalities are also obtained.

## 2 Description of fractional $q$-calculus

In this section, we introduce the basic definitions on fractional $q$-calculus. More results concerning fractional $q$-calculus can be found in [14-17].
Let $t_{0} \in \mathbb{R}$ and define $\mathbb{T}_{t_{0}}=\left\{t: t=t_{0} q^{n}, n\right.$ a nonnegative integer $\} \cup\{0\}, 0<q<1$. For a function $f: \mathbb{T}_{t_{0}} \rightarrow \mathbb{R}$, the nabla $q$-derivative of $f$

$$
\nabla_{q} f(t)=\frac{f(q t)-f(t)}{(q-1) t}
$$

for all $t \in \mathbb{T}_{t_{0}} \backslash\{0\}$. The $q$-integral of $f$ is

$$
\int_{0}^{t} f(s) \nabla s=(1-q) t \sum_{i=0}^{\infty} q^{i} f\left(t q^{i}\right)
$$

The $q$-factorial function is defined in the following way: if $n$ is a positive integer, then

$$
(t-s)^{(n)}=(t-s)(t-q s)\left(t-q^{2} s\right) \cdots\left(t-q^{n-1} s\right)
$$

If $n$ is not a positive integer, then

$$
(t-s)^{(n)}=t^{n} \prod_{k=0}^{\infty} \frac{1-(s / t) q^{k}}{1-(s / t) q^{n+k}} .
$$

The $q$-derivative of the $q$-factorial function with respect to $t$ is

$$
\nabla_{q}(t-s)^{(n)}=\frac{1-q^{n}}{1-q}(t-s)^{(n-1)},
$$

and the $q$-derivative of the $q$-factorial function with respect to $s$ is

$$
\nabla_{q}(t-s)^{(n)}=-\frac{1-q^{n}}{1-q}(t-q s) \underline{(n-1)} .
$$

The $q$-exponential function is defined as

$$
e_{q}(t)=\prod_{k=0}^{\infty}\left(1-q^{k} t\right), \quad e_{q}(0)=1 .
$$

Define the $q$-gamma function by

$$
\Gamma_{q}(\nu)=\frac{1}{1-q} \int_{0}^{1}\left(\frac{t}{1-q}\right)^{\nu-1} e_{q}(q t) \nabla t, \quad v \in \mathbb{R}^{+} .
$$

Note that

$$
\Gamma_{q}(v+1)=[\nu]_{q} \Gamma_{q}(v), \quad v \in \mathbb{R}^{+}
$$

where $[\nu]_{q}:=\left(1-q^{\nu}\right) /(1-q)$. The fractional $q$-integral is defined as

$$
\nabla_{q}^{-v} f(t)=\frac{1}{\Gamma_{q}(v)} \int_{0}^{t}(t-q s)^{(\nu-1)} f(s) \nabla s
$$

Note that

$$
\nabla_{q}^{-v}(1)=\frac{1}{\Gamma_{q}(v)} \frac{q-1}{q^{v}-1} t \frac{(\nu)}{}=\frac{1}{\Gamma_{q}(v+1)} t^{(\nu)} .
$$

## 3 Fractional q-integral Grüss-type inequalities

To state the main results in this paper, we employ the following lemmas. For the sake of convenience, we use the following assumption (A) in this section:

$$
\varphi_{1} \leq f(x) \leq \varphi_{2}, \quad \psi_{1} \leq g(x) \leq \psi_{2}, \quad \varphi_{1}, \varphi_{2}, \psi_{1}, \psi_{2} \in \mathbb{R}, \quad x \in \mathbb{T}_{t_{0}}
$$

Lemma 1 Let $\varphi_{1}, \varphi_{2} \in \mathbb{R}$ and $f$ be a function defined on $\mathbb{T}_{t_{0}}$. Then, for all $t>0$ and $v>0$, we have

$$
\begin{align*}
\frac{t^{(v)}}{\Gamma_{q}(v+1)} \nabla_{q}^{-v} f^{2}(t)-\left(\nabla_{q}^{-v} f(t)\right)^{2}= & \left(\varphi_{2} \frac{t^{(v)}}{\Gamma_{q}(v+1)}-\nabla_{q}^{-v} f(t)\right)\left(\nabla_{q}^{-v} f(t)-\varphi_{1} \frac{t^{(v)}}{\Gamma_{q}(v+1)}\right) \\
& -\frac{t^{(v)}}{\Gamma_{q}(v+1)} \nabla_{q}^{-v}\left(\varphi_{2}-f(t)\right)\left(f(t)-\varphi_{1}\right) . \tag{1}
\end{align*}
$$

Proof Let $\varphi_{1}, \varphi_{2} \in \mathbb{R}$ and $f$ be a function defined on $\mathbb{T}_{t_{0}}$. For any $\tau>0$ and $\rho>0$, we have

$$
\begin{align*}
\left(\varphi_{2}-\right. & f(\rho))\left(f(\tau)-\varphi_{1}\right)+\left(\varphi_{2}-f(\tau)\right)\left(f(\rho)-\varphi_{1}\right)-\left(\varphi_{2}-f(\tau)\right)\left(f(\tau)-\varphi_{1}\right) \\
& -\left(\varphi_{2}-f(\rho)\right)\left(f(\rho)-\varphi_{1}\right)=f^{2}(\tau)+f^{2}(\rho)-2 f(\tau) f(\rho) . \tag{2}
\end{align*}
$$

Multiplying both sides of (2) by $(t-q \tau) \stackrel{(\nu-1)}{ } / \Gamma_{q}(v)$ and integrating the resulting identity with respect to $\tau$ from 0 to $t$, we get

$$
\begin{align*}
\left(\varphi_{2}-\right. & f(\rho))\left(\nabla_{q}^{-v} f(t)-\varphi_{1} \frac{t^{(v)}}{\Gamma_{q}(v+1)}\right)+\left(\varphi_{2} \frac{t^{(\nu)}}{\Gamma_{q}(v+1)}-\nabla_{q}^{-v} f(t)\right)\left(f(\rho)-\varphi_{1}\right) \\
& -\nabla_{q}^{-v}\left(\varphi_{2}-f(t)\right)\left(f(t)-\varphi_{1}\right)-\left(\varphi_{2}-f(\rho)\right)\left(f(\rho)-\varphi_{1}\right) \frac{t^{(v)}}{\Gamma_{q}(v+1)} \\
= & \nabla_{q}^{-v} f^{2}(t)+f^{2}(\rho) \frac{t^{(\nu)}}{\Gamma_{q}(v+1)}-2 f(\rho) \nabla_{q}^{-v} f(t) . \tag{3}
\end{align*}
$$

Multiplying both sides of (3) by $(t-q \rho)^{(v-1)} / \Gamma_{q}(v)$ and integrating the resulting identity with respect to $\rho$ from 0 to $t$, we obtain

$$
\begin{aligned}
& \left(\varphi_{2} \frac{t \underline{\underline{(v)}}}{\Gamma_{q}(v+1)}-\nabla_{q}^{-v} f(t)\right)\left(\nabla_{q}^{-v} f(t)-\varphi_{1} \frac{t \underline{(v)}}{\Gamma_{q}(v+1)}\right) \\
& \quad+\left(\varphi_{2} \frac{t \underline{\underline{(v)}}}{\Gamma_{q}(v+1)}-\nabla_{q}^{-v} f(t)\right)\left(\nabla_{q}^{-v} f(t)-\varphi_{1} \frac{t \underline{\underline{(v)}}}{\Gamma_{q}(v+1)}\right) \\
& \quad-\nabla_{q}^{-v}\left(\varphi_{2}-f(t)\right)\left(f(t)-\varphi_{1}\right) \frac{t^{(v)}}{\Gamma_{q}(v+1)}-\nabla_{q}^{-v}\left(\varphi_{2}-f(t)\right)\left(f(t)-\varphi_{1}\right) \frac{t^{(v)}}{\Gamma_{q}(v+1)} \\
& =\nabla_{q}^{-v} f^{2}(t) \frac{t^{(\nu)}}{\Gamma_{q}(v+1)}+\nabla_{q}^{-v} f^{2}(t) \frac{t^{(\nu)}}{\Gamma_{q}(v+1)}-2 \nabla_{q}^{-v} f(t) \nabla_{q}^{-v} f(t),
\end{aligned}
$$

which implies (1).

Lemma 2 Letf and $g$ be two functions defined on $\mathbb{T}_{t_{0}}$. Then, for all $t>0, \mu>0$ and $\nu>0$, we have

$$
\begin{align*}
& \left(\frac{t^{(\nu)}}{\Gamma_{q}(v+1)} \nabla_{q}^{-\mu}(f g)(t)+\frac{t \underline{(\mu)}}{\Gamma_{q}(\mu+1)} \nabla_{q}^{-v}(f g)(t)-\nabla_{q}^{-v} f(t) \nabla_{q}^{-\mu} g(t)-\nabla_{q}^{-\mu} f(t) \nabla_{q}^{-v} g(t)\right)^{2} \\
& \leq\left(\frac{t \underline{\underline{\nu})}}{\Gamma_{q}(v+1)} \nabla_{q}^{-\mu} f^{2}(t)+\frac{t \underline{(\mu)}}{\Gamma_{q}(\mu+1)} \nabla_{q}^{-v} f^{2}(t)-2 \nabla_{q}^{-v} f(t) \nabla_{q}^{-\mu} f(t)\right) \\
& \quad \times\left(\frac{t \underline{\nu}}{\Gamma_{q}(v+1)} \nabla_{q}^{-\mu} g^{2}(t)+\frac{t \underline{\underline{(\mu)}}}{\Gamma_{q}(\mu+1)} \nabla_{q}^{-v} g^{2}(t)-2 \nabla_{q}^{-v} g(t) \nabla_{q}^{-\mu} g(t)\right) \tag{4}
\end{align*}
$$

Proof In order to prove Lemma 2, we firstly prove that the following inequality (i.e., Cauchy-Schwarz inequality for double $q$-integrals) holds. Let $f(x, y), g(x, y)$ and $h(x, y)$ be three functions defined on $\mathbb{T}_{t_{0}}^{2}$ with $h(x, y) \geq 0$. Then we have

$$
\begin{aligned}
& \left(\int_{0}^{t} \int_{0}^{t} h(x, y) f(x, y) g(x, y) d_{q} x d_{q} y\right)^{2} \\
& \quad \leq\left(\int_{0}^{t} \int_{0}^{t} h(x, y) f^{2}(x, y) d_{q} x d_{q} y\right)\left(\int_{0}^{t} \int_{0}^{t} h(x, y) g^{2}(x, y) d_{q} x d_{q} y\right)
\end{aligned}
$$

According to the definition of $q$-integral, it is easy to obtain that double $q$-integral is

$$
\begin{aligned}
& \int_{0}^{t} \int_{0}^{t} f(x, y) d_{q} x d_{q} y \\
& \quad=\int_{0}^{t}\left((1-q) t \sum_{i=0}^{\infty} q^{i} f\left(t q^{i}, y\right)\right) d_{q} y \\
& \quad=(1-q) t \sum_{j=0}^{\infty} q^{j}\left((1-q) t \sum_{i=0}^{\infty} q^{i} f\left(t q^{i}, t q^{j}\right)\right) \\
& \quad=(1-q)^{2} t^{2} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} q^{i+j} f\left(t q^{i}, t q^{j}\right) .
\end{aligned}
$$

Due to discrete Cauchy-Schwarz inequality with weight coefficient, we have

$$
\begin{aligned}
& \left(\int_{0}^{t} \int_{0}^{t} h(x, y) f(x, y) g(x, y) d_{q} x d_{q} y\right)^{2} \\
& =\left((1-q)^{2} t^{2} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} q^{i+j} h\left(t q^{i}, t q^{j}\right) f\left(t q^{i}, t q^{j}\right) g\left(t q^{i}, t q^{j}\right)\right)^{2} \\
& \leq\left((1-q)^{2} t^{2} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} q^{i+j} h\left(t q^{i}, t q^{j}\right) f^{2}\left(t q^{i}, t q^{j}\right)\right) \\
& \quad \times\left((1-q)^{2} t^{2} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} q^{i+j} h\left(t q^{i}, t q^{j}\right) g^{2}\left(t q^{i}, t q^{j}\right)\right) \\
& =\left(\int_{0}^{t} \int_{0}^{t} h(x, y) f^{2}(x, y) d_{q} x d_{q} y\right)\left(\int_{0}^{t} \int_{0}^{t} h(x, y) g^{2}(x, y) d_{q} x d_{q} y\right) .
\end{aligned}
$$

Next, we prove that Lemma 2 holds. Let $H(\tau, \rho)$ be defined by

$$
\begin{equation*}
H(\tau, \rho)=(f(\tau)-f(\rho))(g(\tau)-g(\rho)), \quad t>0, \tau>0, \rho>0 \tag{5}
\end{equation*}
$$

Multiplying both sides of (5) by $(t-q \tau)^{(\nu-1)}(t-q \rho)^{(\mu-1)} /\left(\Gamma_{q}(\nu) \Gamma_{q}(\mu)\right)$ and integrating the resulting identity with respect to $\tau$ and $\rho$ from 0 to $t$, then applying the Cauchy-Schwarz inequality for double $q$-integrals, we obtain (4).

Lemma 3 Let $\varphi_{1}, \varphi_{2} \in \mathbb{R}$ and $f$ be a function defined on $\mathbb{T}_{t_{0}}$. Then, for all $t>0$ and $\nu>0$, we have

$$
\begin{align*}
& \frac{t \underline{(\nu)}}{\Gamma_{q}(v+1)} \nabla_{q}^{-\mu} f^{2}(t)+\frac{t \underline{(\mu)}}{\Gamma_{q}(\mu+1)} \nabla_{q}^{-v} f^{2}(t)-2 \nabla_{q}^{-v} f(t) \nabla_{q}^{-\mu} f(t) \\
& =\left(\varphi_{2} \frac{t \underline{\nu}}{\Gamma_{q}(v+1)}-\nabla_{q}^{-v} f(t)\right)\left(\nabla_{q}^{-\mu} f(t)-\varphi_{1} \frac{t \underline{\mu}}{\Gamma_{q}(\mu+1)}\right) \\
& \quad+\left(\varphi_{2} \frac{t \underline{(\mu)}}{\Gamma_{q}(\mu+1)}-\nabla_{q}^{-\mu} f(t)\right)\left(\nabla_{q}^{-v} f(t)-\varphi_{1} \frac{t \underline{(\nu)}}{\Gamma_{q}(v+1)}\right) \\
& \quad-\frac{t \underline{\nu}}{\Gamma_{q}(v+1)} \nabla_{q}^{-\mu}\left(\varphi_{2}-f(t)\right)\left(f(t)-\varphi_{1}\right) \\
& \quad-\frac{t \underline{(\mu)}}{\Gamma_{q}(\mu+1)} \nabla_{q}^{-v}\left(\varphi_{2}-f(t)\right)\left(f(t)-\varphi_{1}\right) . \tag{6}
\end{align*}
$$

Proof Multiplying both sides of (3) by $(t-q \rho) \underline{(\mu-1)} / \Gamma_{q}(\mu)$ and integrating the resulting identity with respect to $\rho$ from 0 to $t$, we obtain

$$
\begin{aligned}
& \left(\varphi_{2} \frac{t \underline{(\mu)}}{\Gamma_{q}(\mu+1)}-\nabla_{q}^{-\mu} f(t)\right)\left(\nabla_{q}^{-v} f(t)-\varphi_{1} \frac{t \underline{\nu}}{\Gamma_{q}(\nu+1)}\right) \\
& \quad+\left(\varphi_{2} \frac{t \underline{(\nu)}}{\Gamma_{q}(\nu+1)}-\nabla_{q}^{-v} f(t)\right)\left(\nabla_{q}^{-\mu} f(t)-\varphi_{1} \frac{t \underline{(\mu)}}{\Gamma_{q}(\mu+1)}\right) \\
& \quad-\nabla_{q}^{-v}\left(\varphi_{2}-f(t)\right)\left(f(t)-\varphi_{1}\right) \frac{t \underline{(\mu)}}{\Gamma_{q}(\mu+1)}
\end{aligned}
$$

$$
\begin{aligned}
& -\nabla_{q}^{-\mu}\left(\varphi_{2}-f(t)\right)\left(f(t)-\varphi_{1}\right) \frac{t \underline{(v)}}{\Gamma_{q}(v+1)} \\
= & \nabla_{q}^{-v} f^{2}(t) \frac{t^{(\mu)}}{\Gamma_{q}(\mu+1)}+\nabla_{q}^{-\mu} f^{2}(t) \frac{t^{(\nu)}}{\Gamma_{q}(v+1)}-2 \nabla_{q}^{-v} f(t) \nabla_{q}^{-\mu} f(t),
\end{aligned}
$$

which implies (6).

Theorem 1 Let $f$ and $g$ be two functions defined on $\mathbb{T}_{t_{0}}$ satisfying (A). Then, for all $t>0$ and $v>0$, we have

$$
\begin{equation*}
\left|\frac{t^{(\nu)}}{\Gamma_{q}(v+1)} \nabla_{q}^{-v}(f g)(t)-\nabla_{q}^{-v} f(t) \nabla_{q}^{-v} g(t)\right| \leq\left(\frac{t^{(\nu)}}{2 \Gamma_{q}(v+1)}\right)^{2}\left(\varphi_{2}-\varphi_{1}\right)\left(\psi_{2}-\psi_{1}\right) \tag{7}
\end{equation*}
$$

Proof Let $f$ and $g$ be two functions defined on $\mathbb{T}_{t_{0}}$ satisfying (A). Multiplying both sides of (6) by $(t-q \tau)^{(\nu-1)}(t-q \rho)^{(\nu-1)} / \Gamma_{q}^{2}(\nu)$ and integrating the resulting identity with respect to $\tau$ and $\rho$ from 0 to $t$, we can state that

$$
\begin{align*}
& \frac{1}{\Gamma_{q}^{2}(\mu)} \int_{0}^{t} \int_{0}^{t}(t-q \tau)^{\underline{(v-1)}}(t-q \rho)^{(\nu-1)} H(\tau, \rho) \nabla_{q} \tau \nabla_{q} \rho \\
& \quad=2\left(\frac{t^{(\nu)}}{\Gamma_{q}(v+1)} \nabla_{q}^{-v}(f g)(t)-\nabla_{q}^{-v} f(t) \nabla_{q}^{-v} g(t)\right) . \tag{8}
\end{align*}
$$

Applying the Cauchy-Schwarz inequality for double $q$-integrals, we have

$$
\begin{align*}
& \left(\frac{t \underline{(v)}}{\Gamma_{q}(v+1)} \nabla_{q}^{-v}(f g)(t)-\nabla_{q}^{-v} f(t) \nabla_{q}^{-v} g(t)\right)^{2} \\
& \quad \leq\left(\frac{t^{(v)}}{\Gamma_{q}(v+1)} \nabla_{q}^{-v} f^{2}(t)-\left(\nabla_{q}^{-v} f(t)\right)^{2}\right)\left(\frac{t^{(\nu)}}{\Gamma_{q}(v+1)} \nabla_{q}^{-v} g^{2}(t)-\left(\nabla_{q}^{-v} g(t)\right)^{2}\right) \tag{9}
\end{align*}
$$

Since $\left(\varphi_{2}-f(x)\right)\left(f(x)-\varphi_{1}\right) \geq 0$ and $\left(\psi_{2}-g(x)\right)\left(g(x)-\psi_{1}\right) \geq 0$, we have

$$
\begin{aligned}
& \frac{t \stackrel{(v)}{\Gamma_{q}(v+1)} \nabla_{q}^{-v}\left(\varphi_{2}-f(x)\right)\left(f(x)-\varphi_{1}\right) \geq 0,}{} \begin{array}{l}
\frac{t(v)}{\Gamma_{q}(v+1)} \nabla_{q}^{-v}\left(\psi_{2}-g(x)\right)\left(g(x)-\psi_{1}\right) \geq 0 .
\end{array} .=\text {. }
\end{aligned}
$$

Thus,

$$
\begin{align*}
& \frac{t \underline{\underline{(v)}}}{\Gamma_{q}(v+1)} \nabla_{q}^{-v} f^{2}(t)-\left(\nabla_{q}^{-v} f(t)\right)^{2} \\
& \quad \leq\left(\varphi_{2} \frac{t^{(\nu)}}{\Gamma_{q}(v+1)}-\nabla_{q}^{-v} f(t)\right)\left(\nabla_{q}^{-v} f(t)-\varphi_{1} \frac{t^{(\nu)}}{\Gamma_{q}(v+1)}\right),  \tag{10}\\
& \frac{t \underline{(\nu)}}{\Gamma_{q}(v+1)} \nabla_{q}^{-v} g^{2}(t)-\left(\nabla_{q}^{-v} g(t)\right)^{2} \\
& \quad \leq\left(\psi_{2} \frac{t^{(\nu)}}{\Gamma_{q}(v+1)}-\nabla_{q}^{-v} g(t)\right)\left(\nabla_{q}^{-v} g(t)-\psi_{1} \frac{t \underline{\nu}}{\Gamma_{q}(v+1)}\right) .
\end{align*}
$$

Combining (9) and (10), from Lemma 1, we deduce that

$$
\begin{align*}
& \left(\frac{t \underline{(v)}}{\Gamma_{q}(v+1)} \nabla_{q}^{-v}(f g)(t)-\nabla_{q}^{-v} f(t) \nabla_{q}^{-v} g(t)\right)^{2} \\
& \leq\left(\varphi_{2} \frac{t \underline{\underline{(v)}}}{\Gamma_{q}(v+1)}-\nabla_{q}^{-v} f(t)\right)\left(\nabla_{q}^{-v} f(t)-\varphi_{1} \frac{t^{\underline{(v)}}}{\Gamma_{q}(v+1)}\right) \\
& \quad \times\left(\psi_{2} \frac{t^{(v)}}{\Gamma_{q}(v+1)}-\nabla_{q}^{-v} g(t)\right)\left(\nabla_{q}^{-v} g(t)-\psi_{1} \frac{t \underline{(v)}}{\Gamma_{q}(v+1)}\right) . \tag{11}
\end{align*}
$$

Now by using the elementary inequality $4 x y \leq(x+y)^{2}, x, y \in \mathbb{R}$, we can state that

$$
\begin{align*}
& 4\left(\varphi_{2} \frac{t^{(\nu)}}{\Gamma_{q}(v+1)}-\nabla_{q}^{-v} f(t)\right)\left(\nabla_{q}^{-v} f(t)-\varphi_{1} \frac{t^{(\nu)}}{\Gamma_{q}(v+1)}\right) \\
& \quad \leq\left(\frac{t \underline{\underline{(\nu)}}}{\Gamma_{q}(v+1)}\left(\varphi_{2}-\varphi_{1}\right)\right)^{2},  \tag{12}\\
& 4\left(\psi_{2} \frac{t^{(\nu)}}{\Gamma_{q}(v+1)}-\nabla_{q}^{-v} g(t)\right)\left(\nabla_{q}^{-v} g(t)-\psi_{1} \frac{t \underline{(\nu)}}{\Gamma_{q}(v+1)}\right) \\
& \quad \leq\left(\frac{t \underline{(\nu)}}{\Gamma_{q}(v+1)}\left(\psi_{2}-\psi_{1}\right)\right)^{2} .
\end{align*}
$$

From (11) and (12), we obtain (7).

Theorem 2 Letf and $g$ be two functions defined on $\mathbb{T}_{t_{0}}$ satisfying (A). Then, for all $t>0$, $\mu>0$ and $\nu>0$, we have

$$
\begin{aligned}
& \left(\frac{t^{(\nu)}}{\Gamma_{q}(\nu+1)} \nabla_{q}^{-\mu}(f g)(t)+\frac{t^{(\underline{\mu})}}{\Gamma_{q}(\mu+1)} \nabla_{q}^{-\nu}(f g)(t)-\nabla_{q}^{-v} f(t) \nabla_{q}^{-\mu} g(t)-\nabla_{q}^{-\mu} f(t) \nabla_{q}^{-v} g(t)\right)^{2} \\
& \leq\left(\left(\varphi_{2} \frac{t^{(\nu)}}{\Gamma_{q}(\nu+1)}-\nabla_{q}^{-v} f(t)\right)\left(\nabla_{q}^{-\mu} f(t)-\varphi_{1} \frac{t^{(\mu)}}{\Gamma_{q}(\mu+1)}\right)+\left(\nabla_{q}^{-\nu} f(t)-\varphi_{1} \frac{t^{(\nu)}}{\Gamma_{q}(\nu+1)}\right)\right. \\
& \left.\times\left(\varphi_{2} \frac{t^{(\underline{\mu})}}{\Gamma_{q}(\mu+1)}-\nabla_{q}^{-\mu} f(t)\right)\right)\left(\left(\psi_{2} \frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)}-\nabla_{q}^{-v} g(t)\right)\right. \\
& \times\left(\nabla_{q}^{-\mu} g(t)-\psi_{1} \frac{t^{(\mu)}}{\Gamma_{q}(\mu+1)}\right) \\
& \left.+\left(\nabla_{q}^{-v} g(t)-\psi_{1} \frac{t \underline{(\nu)}}{\Gamma_{q}(v+1)}\right)\left(\psi_{2} \frac{t \underline{(\mu)}}{\Gamma_{q}(\mu+1)}-\nabla_{q}^{-\mu} g(t)\right)\right) .
\end{aligned}
$$

Proof Since $\left(\varphi_{2}-f(x)\right)\left(f(x)-\varphi_{1}\right) \geq 0$ and $\left(\psi_{2}-g(x)\right)\left(g(x)-\psi_{1}\right) \geq 0$, then we can write

$$
\begin{align*}
& -\frac{t \underline{(\nu)}}{\Gamma_{q}(\nu+1)} \nabla_{q}^{-\mu}\left(\varphi_{2}-f(x)\right)\left(f(x)-\varphi_{1}\right)-\frac{t \underline{(\mu)}}{\Gamma_{q}(\mu+1)} \nabla_{q}^{-v}\left(\varphi_{2}-f(x)\right)\left(f(x)-\varphi_{1}\right) \\
& \quad \leq 0  \tag{13}\\
& -\frac{t \stackrel{(\nu)}{\Gamma_{q}(\nu+1)} \nabla_{q}^{-\mu}\left(\psi_{2}-g(x)\right)\left(g(x)-\psi_{1}\right)-\frac{t^{(\mu)}}{\Gamma_{q}(\mu+1)} \nabla_{q}^{-v}\left(\psi_{2}-g(x)\right)\left(g(x)-\psi_{1}\right)}{\quad \leq 0} .
\end{align*}
$$

Applying Lemma 3 to $f$ and $g$, then by using Lemma 2 and the formula (13), we obtain Theorem 2.

## 4 The other fractional $\boldsymbol{q}$-integral inequalities

For the sake of simplicity, we always assume that $\nabla_{q}^{v} \phi$ denotes $\nabla_{q}^{v} \phi(t)$ and all of fractional $q$-integrals are finite in this section.

Theorem 3 Letf and $g$ be two functions defined on $\mathbb{T}_{t_{0}}$ and $\alpha, \beta>1$ satisfying $1 / \alpha+1 / \beta=1$. Then the following inequalities hold:
(a) $\frac{1}{\alpha} \nabla_{q}^{-v}\left(|f|^{\alpha}\right)+\frac{1}{\beta} \nabla_{q}^{-\nu}\left(|g|^{\beta}\right) \geq \frac{\Gamma_{q}^{(v+1)}}{t^{(v)}} \nabla_{q}^{-v}(|f|) \nabla_{q}^{-\nu}(|g|)$.
(b) $\frac{1}{\alpha} \nabla_{q}^{-\nu}\left(|f|^{\alpha}\right) \nabla_{q}^{-\nu}\left(|g|^{\alpha}\right)+\frac{1}{\beta} \nabla_{q}^{-\nu}\left(|f|^{\beta}\right) \nabla_{q}^{-\nu}\left(|g|^{\beta}\right) \geq\left(\nabla_{q}^{-\nu}(|f g|)\right)^{2}$.
(c) $\frac{1}{\alpha} \nabla_{q}^{-\nu}\left(|f|^{\alpha}\right) \nabla_{q}^{-\nu}\left(|g|^{\beta}\right)+\frac{1}{\beta} \nabla_{q}^{-\nu}\left(|f|^{\beta}\right) \nabla_{q}^{-\nu}\left(|g|^{\alpha}\right) \geq \nabla_{q}^{-\nu}\left(|f||g|^{\alpha-1}\right) \nabla_{q}^{-\nu}\left(|f||g|^{\beta-1}\right)$.
(d) $\nabla_{q}^{-\nu}\left(|f|^{\alpha}\right) \nabla_{q}^{-\nu}\left(|g|^{\beta}\right) \geq \nabla_{q}^{-\nu}(|f g|) \nabla_{q}^{-\nu}\left(|f|^{\alpha-1}|g|^{\beta-1}\right)$.

Proof According to the well-known Young inequality,

$$
\frac{1}{\alpha} x^{\alpha}+\frac{1}{\beta} y^{\beta} \geq x y, \quad \forall x, y \geq 0, \alpha, \beta>1, \frac{1}{\alpha}+\frac{1}{\beta}=1 .
$$

Putting $x=f(\tau)$ and $y=g(\rho), \tau, \rho>0$, we have

$$
\begin{equation*}
\frac{1}{\alpha}|f(\tau)|^{\alpha}+\frac{1}{\beta}|g(\rho)|^{\beta} \geq|f(\tau)||g(\rho)|, \quad \forall \tau, \rho>0 \tag{14}
\end{equation*}
$$

Multiplying both sides of (6) by $(t-q \tau)^{(\nu-1)}(t-q \rho)^{(v-1)} / \Gamma_{q}^{2}(\nu)$, we obtain

$$
\begin{aligned}
& \frac{1}{\alpha} \frac{(t-q \rho) \frac{(v-1)}{\Gamma_{q}(v)}}{\frac{(t-q \tau)^{(v-1)}}{\Gamma_{q}(v)}|f(\tau)|^{\alpha}+\frac{1}{\beta} \frac{(t-q \tau)^{(v-1)}}{\Gamma_{q}(v)} \frac{(t-q \rho)^{(v-1)}}{\Gamma_{q}(v)}|g(\rho)|^{\beta}} \\
& \quad \geq \frac{(t-q \tau) \frac{(v-1)}{\Gamma_{q}(v)}}{}|f(\tau)| \frac{(t-q \rho) \frac{(v-1)}{\Gamma_{q}(v)}}{}|g(\rho)| .
\end{aligned}
$$

Integrating the preceding identity with respect to $\tau$ and $\rho$ from 0 to $t$, we can state that

$$
\frac{1}{\alpha} \frac{t^{(v)}}{\Gamma_{q}(v+1)} \nabla_{q}^{-v}\left(|f(t)|^{\alpha}\right)+\frac{1}{\beta} \frac{t^{(v)}}{\Gamma_{q}(v+1)} \nabla_{q}^{-v}\left(|g(t)|^{\beta}\right) \geq \nabla_{q}^{-v}(|f(t)|) \nabla_{q}^{-v}(|g(t)|)
$$

which implies (a). The rest of inequalities can be proved in the same manner by the next choice of the parameters in the Young inequality:
(b) $x=|f(\tau)||g(\rho)|, y=|f(\rho)||g(\tau)|$.
(c) $x=|f(\tau)| /|g(\tau)|, y=|f(\rho)| /|g(\rho)|,(g(\tau) g(\rho) \neq 0)$.
(d) $x=|f(\rho)| /|f(\tau)|, y=|g(\rho)| /|g(\tau)|,(f(\tau) g(\rho) \neq 0)$.

Repeating the foregoing arguments, we obtain (b)-(d).
Theorem 4 Letf and $g$ be two functions defined on $\mathbb{T}_{t_{0}}$ and $\alpha, \beta>1$ satisfying $1 / \alpha+1 / \beta=1$.
Then the following inequalities hold:
(a) $\frac{1}{\alpha} \nabla_{q}^{-\nu}\left(|f|^{\alpha}\right) \nabla_{q}^{-\nu}\left(|g|^{2}\right)+\frac{1}{\beta} \nabla_{q}^{-\nu}\left(|f|^{2}\right) \nabla_{q}^{-\nu}\left(|g|^{\beta}\right) \geq \nabla_{q}^{-\nu}(|f g|) \nabla_{q}^{-\nu}\left(|f|^{2 / \beta}|g|^{2 / \alpha}\right)$.
(b) $\frac{1}{\alpha} \nabla_{q}^{-\nu}\left(|f|^{2}\right) \nabla_{q}^{-\nu}\left(|g|^{\beta}\right)+\frac{1}{\beta} \nabla_{q}^{-\nu}\left(|f|^{\beta}\right) \nabla_{q}^{-\nu}\left(|g|^{2}\right) \geq \nabla_{q}^{-\nu}\left(|f|^{2 / \alpha}|g|^{2 / \beta}\right) \nabla_{q}^{-\nu}\left(|f|^{\alpha-1}|g|^{\beta-1}\right)$.
(c) $\nabla_{q}^{-\nu}\left(|f|^{2}\right) \nabla_{q}^{-\nu}\left(\frac{1}{\alpha}|g|^{\alpha}+\frac{1}{\beta}|g|^{\beta}\right) \geq \nabla_{q}^{-\nu}\left(|f|^{2 / \alpha}|g|\right) \nabla_{q}^{-\nu}\left(|f|^{2 / \beta}|g|\right)$.

Proof As a previous one, the proof is based on the Young inequality with the following appropriate choice of parameters:
(a) $x=|f(\tau)||g(\rho)|^{2 / \alpha}, y=|f(\rho)|^{2 / \beta}|g(\tau)|$.
(b) $x=|f(\tau)|^{2 / \alpha} /|f(\rho)|, y=|g(\tau)|^{2 / \beta} /|g(\rho)|,(f(\rho) g(\rho) \neq 0)$.
(c) $x=|f(\tau)|^{2 / \alpha} /|g(\rho)|, y=|f(\rho)|^{2 / \beta} /|g(\tau)|,(g(\tau) g(\rho) \neq 0)$.

Theorem 5 Letf and $g$ be two positive functions defined on $\mathbb{T}_{t_{0}}$ such that for all $t>0$,

$$
\begin{equation*}
m=\min _{0 \leq \tau \leq t} \frac{f(\tau)}{g(\tau)}, \quad M=\max _{0 \leq \tau \leq t} \frac{f(\tau)}{g(\tau)} . \tag{15}
\end{equation*}
$$

Then the following inequalities hold:
(a) $0 \leq \nabla_{q}^{-\nu}\left(f^{2}\right) \nabla_{q}^{-\nu}\left(g^{2}\right) \leq \frac{(m+M)^{2}}{4 m M}\left(\nabla_{q}^{-\nu}(f g)\right)^{2}$.
(b) $0 \leq \sqrt{\nabla_{q}^{-\nu}\left(f^{2}\right) \nabla_{q}^{-\nu}\left(g^{2}\right)}-\nabla_{q}^{-v}(f g) \leq \frac{(\sqrt{M}-\sqrt{m})^{2}}{2 \sqrt{m M}} \nabla_{q}^{-v}(f g)$.
(c) $0 \leq \nabla_{q}^{-\nu}\left(f^{2}\right) \nabla_{q}^{-\nu}\left(g^{2}\right)-\left(\nabla_{q}^{-v}(f g)\right)^{2} \leq \frac{(M-m)^{2}}{4 m M}\left(\nabla_{q}^{-v}(f g)\right)^{2}$.

Proof It follows from (15) and

$$
\begin{equation*}
\left(\frac{f(\tau)}{g(\tau)}-m\right)\left(M-\frac{f(\tau)}{g(\tau)}\right) g^{2}(\tau) \geq 0, \quad 0 \leq \tau \leq t \tag{16}
\end{equation*}
$$

Multiplying both sides of (15) by $(t-q \tau)^{(\nu-1)} / \Gamma_{q}(\nu)$ and integrating the resulting identity with respect to $\tau$ from 0 to $t$, we can get

$$
\begin{equation*}
\nabla_{q}^{-v}\left(f^{2}\right)+m M \nabla_{q}^{-v}\left(g^{2}\right) \leq(m+M) \nabla_{q}^{-v}(f g) \tag{17}
\end{equation*}
$$

On the other hand, it follows from $m M>0$ and $\left(\sqrt{\nabla_{q}^{-\nu}\left(f^{2}\right)}-\sqrt{m M \nabla_{q}^{-\nu}\left(g^{2}\right)}\right)^{2} \geq 0$ that

$$
\begin{equation*}
2 \sqrt{\nabla_{q}^{-v}\left(f^{2}\right)} \sqrt{m M \nabla_{q}^{-v}\left(g^{2}\right)} \leq \nabla_{q}^{-v}\left(f^{2}\right)+m M \nabla_{q}^{-v}\left(g^{2}\right) . \tag{18}
\end{equation*}
$$

According to (17) and (18), we have

$$
4 m M \nabla_{q}^{-v}\left(f^{2}\right) \nabla_{q}^{-v}\left(g^{2}\right) \leq(m+M)^{2}\left(\nabla_{q}^{-v}(f g)\right)^{2},
$$

which implies (a). By a few transformations of (a), similarly, we obtain (b) and (c).

Corollary 1 Under the conditions of Theorem 5, if $\alpha, \beta \in(0,1), \alpha+\beta=1$, then it follows from the arithmetric-geometric mean inequality that

$$
\left(\frac{1}{\alpha} \nabla_{q}^{-v}\left(f^{2}\right)\right)^{\alpha}\left(\frac{m M}{\beta} \nabla_{q}^{-v}\left(g^{2}\right)\right)^{\beta} \leq \nabla_{q}^{-v}\left(f^{2}\right)+m M \nabla_{q}^{-v}\left(g^{2}\right) \leq(m+M) \nabla_{q}^{-v}(f g),
$$

which implies that

$$
\left(\nabla_{q}^{-v}\left(f^{2}\right)\right)^{\alpha}\left(\nabla_{q}^{-v}\left(g^{2}\right)\right)^{\beta} \leq \alpha^{\alpha} \beta^{\beta} \frac{m+M}{(m M)^{\beta}} \nabla_{q}^{-v}(f g)
$$

Theorem 6 Let $f$ and $g$ be two positive functions on $\mathbb{T}_{t_{0}}$ and

$$
\begin{equation*}
0<\Phi_{1} \leq f(\tau) \leq \Phi_{2}<\infty, \quad 0<\Psi_{1} \leq g(\tau) \leq \Psi_{2}<\infty . \tag{19}
\end{equation*}
$$

Then the following inequalities hold:
(a) $0 \leq \nabla_{q}^{-v}\left(f^{2}\right) \nabla_{q}^{-\nu}\left(g^{2}\right) \leq \frac{\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right)^{2}}{4 \Phi_{1} \Psi_{1} \Phi_{2} \Psi_{2}}\left(\nabla_{q}^{-v}(f g)\right)^{2}$.
(b) $0 \leq \sqrt{\nabla_{q}^{-v}\left(f^{2}\right) \nabla_{q}^{-v}\left(g^{2}\right)}-\nabla_{q}^{-v}(f g) \leq \frac{\left(\sqrt{\Phi_{2} \Psi_{2}}-\sqrt{\Phi_{1} \Psi_{1}}\right)^{2}}{2 \sqrt{\Phi_{1} \Psi_{1} \Phi_{2} \Psi_{2}}} \nabla_{q}^{-v}(f g)$.
(c) $0 \leq \nabla_{q}^{-v}\left(f^{2}\right) \nabla_{q}^{-v}\left(g^{2}\right)-\left(\nabla_{q}^{-v}(f g)\right)^{2} \leq \frac{\left(\Phi_{2} \Psi_{2}-\Phi_{1} \Psi_{1}\right)^{2}}{4 \Phi_{1} \Psi_{1} \Phi_{2} \Psi_{2}}\left(\nabla_{q}^{-\nu}(f g)\right)^{2}$.

Proof Under the conditions satisfied by the functions $f$ and $g$, we have

$$
\frac{\Phi_{1}}{\Psi_{2}} \leq \frac{f(\tau)}{g(\tau)} \leq \frac{\Phi_{2}}{\Psi_{1}}
$$

Applying Theorem 6, we get the inequality (a) and using it, we have (b) and (c).

Corollary 2 Letf be a positive function on $\mathbb{T}_{t_{0}}$ satisfying (19). Then the following inequality holds:

$$
\nabla_{q}^{-v}\left(f^{2}\right) \leq \frac{\Gamma_{q}(v+1)\left(\Phi_{1}+\Phi_{2}\right)^{2}}{4 t \underline{\underline{(v)}} \Phi_{1} \Phi_{2}}\left(\nabla_{q}^{-v}(f)\right)^{2}
$$

Theorem 7 Let $f$ and $g$ be two positive functions on $\mathbb{T}_{t_{0}}$ and

$$
\begin{equation*}
0<m \leq \frac{g(\tau)}{f(\tau)} \leq M<\infty \tag{20}
\end{equation*}
$$

and $p \neq 0$ be a real number, then the following inequality holds:

$$
\nabla_{q}^{-v}\left(f^{2-p} g^{p}\right)+\frac{m M\left(M^{p-1}-m^{p-1}\right)}{M-m} \nabla_{q}^{-v}\left(f^{p}\right) \leq \frac{M^{p}-m^{p}}{M-m} \nabla_{q}^{-v}(f g)
$$

for $p \notin(0,1)$, or reverse for $p \in(0,1)$. Especially, for $p=2$, we have

$$
\nabla_{q}^{-v}\left(g^{2}\right)+m M \nabla_{q}^{-v}\left(f^{2}\right) \leq(m+M) \nabla_{q}^{-v}(f g)
$$

Proof The inequality is based on the Lah-Ribaric inequality [18, p.9] and [19, p.123].

Theorem 8 Letf and $g$ be two positive functions on $\mathbb{T}_{t_{0}}$ and $p \neq 0$ be a real number. Then the following inequality holds:

$$
\left(\nabla_{q}^{-v}(f g)\right)^{p} \leq\left(\nabla_{q}^{-v}\left(f^{2}\right)\right)^{p-1} \nabla_{q}^{-v}\left(f^{2-p} g^{p}\right)
$$

for $p \notin(0,1)$, or reverse for $p \in(0,1)$.

Proof The above inequality is obtained via the Jensen inequality for the convex functions.

Corollary 3 Let $f$ be a positive function on $\mathbb{T}_{t_{0}}$ and $p \neq 0$ be a real number. Then the following inequality holds:

$$
\left(\nabla_{q}^{-\nu}(f)\right)^{p} \leq\left(\frac{t^{(\nu)}}{\Gamma_{q}(v+1)}\right)^{p-1} \nabla_{q}^{-\nu}\left(f^{p}\right)
$$

for $p \notin(0,1)$, or reverse for $p \in(0,1)$.

Theorem 9 Let $p, f$ and $g$ be three positive functions on $\mathbb{T}_{t_{0}}$ satisfying (19). If $0<\alpha \leq \beta<1$, $\alpha+\beta=1$, then the following inequalities hold:

$$
\begin{align*}
& \left(\nabla_{q}^{-v}(p f)\right)^{\beta}\left(\nabla_{q}^{-v}\left(\frac{p}{f}\right)\right)^{\alpha} \leq \frac{\alpha \Phi_{1}+\beta \Phi_{2}}{\left(\Phi_{1} \Phi_{2}\right)^{\alpha}} \nabla_{q}^{-v}(p)  \tag{21}\\
& \left(\nabla_{q}^{-v}\left(p f^{2}\right)\right)^{\beta}\left(\nabla_{q}^{-v}\left(p g^{2}\right)\right)^{\alpha} \leq \frac{\alpha \Phi_{1} \Psi_{1}+\beta \Phi_{2} \Psi_{2}}{\left(\Phi_{1} \Phi_{2}\right)^{\alpha}\left(\Psi_{1} \Psi_{2}\right)^{\beta}} \nabla_{q}^{-v}(p f g) \tag{22}
\end{align*}
$$

Proof Since $\left(\beta f(\tau)-\alpha \Phi_{1}\right)\left(f(\tau)-\Phi_{2}\right) \leq 0$ on $\mathbb{T}_{t_{0}}$, we have

$$
\begin{equation*}
\beta f^{2}(\tau)-\left(\alpha \Phi_{1}+\beta \Phi_{2}\right) f(\tau)+\alpha \Phi_{1} \Phi_{2} \leq 0 \tag{23}
\end{equation*}
$$

Multiplying both sides of (23) by $p(\tau) / f(\tau)$, we get

$$
\begin{equation*}
\beta p(\tau) f(\tau)+\alpha \Phi_{1} \Phi_{2} \frac{p(\tau)}{f(\tau)} \leq\left(\alpha \Phi_{1}+\beta \Phi_{2}\right) p(\tau) \tag{24}
\end{equation*}
$$

From (24) and arithmetric-geometric mean inequality, we obtain

$$
\begin{align*}
& \left(\frac{1}{\Gamma_{q}(\nu)} \int_{0}^{t}(t-q \tau) \stackrel{(v-1)}{ } p(\tau) f(\tau) \nabla \tau\right)^{\beta}\left(\frac{1}{\Gamma_{q}(\nu)} \int_{0}^{t}(t-q \tau) \frac{(\nu-1)}{} \frac{p(\tau)}{f(\tau)} \nabla \tau\right)^{\alpha} \\
& =\frac{1}{\left(\Phi_{1} \Phi_{2}\right)^{\alpha}}\left(\frac{1}{\Gamma_{q}(\nu)} \int_{0}^{t}(t-q \tau)^{(\nu-1)} p(\tau) f(\tau) \nabla \tau\right)^{\beta}\left(\frac{\Phi_{1} \Phi_{2}}{\Gamma_{q}(\nu)} \int_{0}^{t}(t-q \tau) \frac{(\nu-1)}{} \frac{p(\tau)}{f(\tau)} \nabla \tau\right)^{\alpha} \\
& \leq \frac{1}{\left(\Phi_{1} \Phi_{2}\right)^{\alpha}}\left(\frac{\beta}{\Gamma_{q}(\nu)} \int_{0}^{t}(t-q \tau)^{(\nu-1)} p(\tau) f(\tau) \nabla \tau+\frac{\alpha \Phi_{1} \Phi_{2}}{\Gamma_{q}(\nu)} \int_{0}^{t}(t-q \tau) \frac{(\nu-1)}{} \frac{p(\tau)}{f(\tau)} \nabla \tau\right) \\
& \leq \frac{\alpha \Phi_{1}+\beta \Phi_{2}}{\left(\Phi_{1} \Phi_{2}\right)^{\alpha}}\left(\frac{1}{\Gamma_{q}(\nu)} \int_{0}^{t}(t-q \tau) \stackrel{(\nu-1)}{ } p(\tau) \nabla \tau\right), \tag{25}
\end{align*}
$$

which implies (21).
Replacing $p$ and $f$ by $p f g$ and $f / g$ in (25), respectively, and $\Phi_{1} / \Psi_{2} \leq f(\tau) / g(\tau) \leq \Phi_{2} / \Psi_{1}$, we get

$$
\begin{aligned}
& \left(\frac{1}{\Gamma_{q}(\nu)} \int_{0}^{t}(t-q \tau)^{(\nu-1)} p(\tau) f(\tau) \nabla \tau\right)^{\beta}\left(\frac{1}{\Gamma_{q}(v)} \int_{0}^{t}(t-q \tau)^{(v-1)} p(\tau) g(\tau) \nabla \tau\right)^{\alpha} \\
& \quad \leq \frac{\alpha \Phi_{1} \Psi_{1}+\beta \Phi_{2} \Psi_{2}}{\left(\Phi_{1} \Phi_{2}\right)^{\alpha}\left(\Psi_{1} \Psi_{2}\right)^{\beta}}\left(\frac{1}{\Gamma_{q}(\nu)} \int_{0}^{t}(t-q \tau)^{\frac{(v-1)}{}} p(\tau) f(\tau) g(\tau) \nabla \tau\right)
\end{aligned}
$$

which implies (22).

Corollary 4 Let p,f and $g$ be three positive functions on $\mathbb{T}_{t_{0}}$ satisfying (20). If $0<\alpha \leq \beta<1$, $\alpha+\beta=1$, then the following inequality holds:

$$
\begin{equation*}
\alpha \nabla_{q}^{-v}\left(p g^{2}\right)+\beta m M \nabla_{q}^{-v}\left(p f^{2}\right) \leq(\alpha m+\beta M) \nabla_{q}^{-v}(p f g) \tag{26}
\end{equation*}
$$

Proof Replacing $\Phi_{1}, \Phi_{2}$ and $f(\tau)$ by $m, M$ and $g(\tau) / f(\tau)$ in (24), and multiplying both sides by $(t-q \tau)^{(v-1)} / \Gamma_{q}(\nu)$ and integrating the resulting identity with respect to $\tau$ from 0 to $t$, we get (25).

Theorem 10 Let $p, f$ and $g$ be three functions on $\mathbb{T}_{t_{0}}$ with $p(\tau) \geq 0$.
(a) If there exist four constants $\Phi_{1}, \Phi_{2}, \Psi_{1}, \Psi_{2} \in \mathbb{R}$ such that $\left(\Phi_{2} g(\tau)-\Psi_{1} f(\tau)\right)\left(\Psi_{2} f(\tau)-\right.$ $\left.\Phi_{1} g(\tau)\right) \geq 0$ for all $\tau>0$, then

$$
\begin{align*}
\Phi_{1} \Phi_{2} \nabla_{q}^{-v}\left(p g^{2}\right)+\Psi_{1} \Psi_{2} \nabla_{q}^{-v}\left(p f^{2}\right) & \leq\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right) \nabla_{q}^{-v}(p f g) \\
& \leq\left|\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right|\left(\nabla_{q}^{-v}\left(p f^{2}\right)+\nabla_{q}^{-v}\left(p g^{2}\right)\right) \tag{27}
\end{align*}
$$

Moreover, if $\Phi_{1} \Phi_{2} \Psi_{1} \Psi_{2}>0$, then

$$
\begin{align*}
& \sqrt{\frac{\Phi_{1} \Phi_{2}}{\Psi_{1} \Psi_{2}}} \nabla_{q}^{-v}\left(p g^{2}\right)+\sqrt{\frac{\Psi_{1} \Psi_{2}}{\Phi_{1} \Phi_{2}}} \nabla_{q}^{-v}\left(p f^{2}\right) \leq\left(\sqrt{\frac{\Phi_{2} \Psi_{2}}{\Phi_{1} \Psi_{1}}}+\sqrt{\frac{\Phi_{1} \Psi_{1}}{\Phi_{2} \Psi_{2}}}\right) \nabla_{q}^{-v}(p f g)  \tag{28}\\
& \nabla_{q}^{-v}\left(p g^{2}\right) \nabla_{q}^{-v}\left(p f^{2}\right) \leq\left(\frac{\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}}{2 \Phi_{1} \Psi_{1} \Phi_{2} \Psi_{2}}\right)^{2} \nabla_{q}^{-v}(p f g) \tag{29}
\end{align*}
$$

(b) If there exist four constants $\Phi_{1}, \Phi_{2}, \Psi_{1}, \Psi_{2} \in \mathbb{R}$ such that $\left(\Phi_{2} g(\tau)-\Psi_{1} f(\rho)\right)\left(\Psi_{2} f(\rho)-\right.$ $\left.\Phi_{1} g(\tau)\right) \geq 0$ for all $\tau, \rho>0$, then

$$
\begin{align*}
& \Phi_{1} \Phi_{2} \nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p g^{2}\right)+\Psi_{1} \Psi_{2} \nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p f^{2}\right) \\
& \quad \leq\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right) \nabla_{q}^{-v}(p f) \nabla_{q}^{-v}(p g) \tag{30}
\end{align*}
$$

(c) If $\Phi_{1} \Phi_{2}>0$ and $\Psi_{1} \Psi_{2}>0$, then

$$
\begin{equation*}
\Phi_{1} \Phi_{2}\left(\nabla_{q}^{-v}(p g)\right)^{2}+\Psi_{1} \Psi_{2}\left(\nabla_{q}^{-v}(p f)\right)^{2} \leq\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right) \nabla_{q}^{-v}(p) \nabla_{q}^{-v}(p f g) \tag{31}
\end{equation*}
$$

(d) If $\Phi_{1} \Phi_{2}>0$ and $\Psi_{1} \Psi_{2}>0$, then

$$
\begin{equation*}
\Phi_{1} \Phi_{2}\left(\nabla_{q}^{-v}(p g)\right)^{2}+\Psi_{1} \Psi_{2}\left(\nabla_{q}^{-v}(p f)\right)^{2} \leq\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right) \nabla_{q}^{-v}(p f) \nabla_{q}^{-v}(p g) \tag{32}
\end{equation*}
$$

Proof Case (a). It follows from the assumption that

$$
p(\tau)\left(\Phi_{2} g(\tau)-\Psi_{1} f(\tau)\right)\left(\Psi_{2} f(\tau)-\Phi_{1} g(\tau)\right) \geq 0
$$

for all $\tau \geq 0$, which implies that

$$
\begin{equation*}
\Phi_{1} \Phi_{2} p(\tau) g^{2}(\tau)+\Psi_{1} \Psi_{2} p(\tau) f^{2}(\tau) \leq\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right) p(\tau) f(\tau) g(\tau) \tag{33}
\end{equation*}
$$

Multiplying both sides of (33) by $(t-q \tau) \stackrel{(\nu-1)}{ } / \Gamma_{q}(\nu)$ and integrating the resulting identity with respect to $\tau$ from 0 to $t$, we obtain the left-hand side of (27). Furthermore, by Cauchy's inequality, we get the right-hand side of (27).

Multiplying both sides of the inequality

$$
\Phi_{1} \Phi_{2} \nabla_{q}^{-v}\left(p g^{2}\right)+\Psi_{1} \Psi_{2} \nabla_{q}^{-\nu}\left(p f^{2}\right) \leq\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right) \nabla_{q}^{-\nu}(p f g)
$$

by $1 / \sqrt{\Phi_{1} \Phi_{2} \Psi_{1} \Psi_{2}}$, we get (28).
On the other hand, it follows from $\Phi_{1} \Phi_{2} \Psi_{1} \Psi_{2}>0$ and $\left(\sqrt{\Phi_{1} \Phi_{2} \nabla_{q}^{-v}\left(p g^{2}\right)}-\right.$ $\sqrt{\left.\Psi_{1} \Psi_{2} \nabla_{q}^{-\nu}\left(p f^{2}\right)\right)^{2}} \geq 0$ that

$$
\begin{equation*}
2 \sqrt{\Phi_{1} \Phi_{2} \nabla_{q}^{-v}\left(p g^{2}\right)} \sqrt{\Psi_{1} \Psi_{2} \nabla_{q}^{-v}\left(p f^{2}\right)} \leq \Phi_{1} \Phi_{2} \nabla_{q}^{-v}\left(p g^{2}\right)+\Psi_{1} \Psi_{2} \nabla_{q}^{-v}\left(p f^{2}\right) \tag{34}
\end{equation*}
$$

According to (27) and (34), we have

$$
4 \Phi_{1} \Phi_{2} \Psi_{1} \Psi_{2} \nabla_{q}^{-v}\left(p g^{2}\right) \nabla_{q}^{-v}\left(p f^{2}\right) \leq\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right)^{2}\left(\nabla_{q}^{-v}(p f g)\right)^{2}
$$

which implies (29).
Case (b). It follows from the assumption that

$$
p(\tau) p(\rho)\left(\Phi_{2} g(\tau)-\Psi_{1} f(\rho)\right)\left(\Psi_{2} f(\rho)-\Phi_{1} g(\tau)\right) \geq 0
$$

for all $\tau, \rho>0$, which implies that

$$
\begin{align*}
& \Phi_{1} \Phi_{2} p(\tau) p(\rho) g^{2}(\tau)+\Psi_{1} \Psi_{2} p(\tau) p(\rho) f^{2}(\rho) \\
& \quad \leq \Phi_{1} \Psi_{1} p(\tau) p(\rho) f(\rho) g(\tau)+\Phi_{2} \Psi_{2} p(\tau) p(\rho) f(\rho) g(\tau) \tag{35}
\end{align*}
$$

Multiplying both sides of (35) by $(t-q \tau) \xrightarrow{(v-1)}(t-q \rho) \xrightarrow{(v-1)} / \Gamma_{q}^{2}(v)$ and integrating the resulting identity with respect to $\tau$ and $\rho$ from 0 to $t$, respectively, we obtain (30).
Case (c) and (d). It follows from Cauchy's inequality that

$$
\left(\nabla_{q}^{-v}(p f)\right)^{2} \leq \nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p f^{2}\right), \quad\left(\nabla_{q}^{-v}(p g)\right)^{2} \leq \nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p g^{2}\right) .
$$

Combining (a), (b) and the preceding two inequalities, we see that

$$
\begin{aligned}
\Phi_{1} \Phi_{2}\left(\nabla_{q}^{-v}(p g)\right)^{2}+\Psi_{1} \Psi_{2}\left(\nabla_{q}^{-v}(p f)\right)^{2} & \leq \Phi_{1} \Phi_{2} \nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p f^{2}\right)+\Psi_{1} \Psi_{2} \nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p g^{2}\right) \\
& \leq\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right) \nabla_{q}^{-v}(p) \nabla_{q}^{-v}(p f g)
\end{aligned}
$$

which implies (31). Furthermore,

$$
\begin{aligned}
\Phi_{1} \Phi_{2}\left(\nabla_{q}^{-\nu}(p g)\right)^{2}+\Psi_{1} \Psi_{2}\left(\nabla_{q}^{-\nu}(p f)\right)^{2} & \leq \Phi_{1} \Phi_{2} \nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}\left(p f^{2}\right)+\Psi_{1} \Psi_{2} \nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}\left(p g^{2}\right) \\
& \leq\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right) \nabla_{q}^{-\nu}(p f) \nabla_{q}^{-\nu}(p g)
\end{aligned}
$$

which implies (32).

Theorem 11 Let $p, f$ and $g$ be three positive functions on $\mathbb{T}_{t_{0}}$ with $p(\tau) \geq 0$. Then we have

$$
\begin{align*}
\left(\nabla_{q}^{-v}(p) \nabla_{q}^{-v}(p f g)+\nabla_{q}^{-v}(p f) \nabla_{q}^{-v}(p g)\right)^{2} \leq & \left(\nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p f^{2}\right)+\left(\nabla_{q}^{-v}(p f)\right)^{2}\right) \\
& \times\left(\nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p g^{2}\right)+\left(\nabla_{q}^{-v}(p g)\right)^{2}\right) \tag{36}
\end{align*}
$$

Moreover, under the assumptions of (a) and (b) in Theorem 10, the following inequality holds:

$$
\begin{align*}
& 4 \Phi_{1} \Psi_{1} \Phi_{2} \Psi_{2}\left(\nabla_{q}^{-v}(p) \nabla_{q}^{-\nu}\left(p f^{2}\right)+\left(\nabla_{q}^{-\nu}(p f)\right)^{2}\right)\left(\nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}\left(p g^{2}\right)+\left(\nabla_{q}^{-\nu}(p g)\right)^{2}\right) \\
& \quad \leq\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right)^{2}\left(\nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}(p f g)+\nabla_{q}^{-\nu}(p f) \nabla_{q}^{-\nu}(p g)\right)^{2} \tag{37}
\end{align*}
$$

Proof First of all, we give the proof of (36). By Cauchy's inequality and the element inequality $2 x y \sqrt{u v} \leq x^{2} u+y^{2} v$, for all $x, y, u, v \geq 0$, we have

$$
\begin{aligned}
& \left(\nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}(p f g)+\nabla_{q}^{-\nu}(p f) \nabla_{q}^{-\nu}(p g)\right)^{2} \\
& =\left(\nabla_{q}^{-\nu}(p)\right)^{2}\left(\nabla_{q}^{-\nu}(p f g)\right)^{2}+\left(\nabla_{q}^{-\nu}(p f)\right)^{2}\left(\nabla_{q}^{-\nu}(p f)\right)^{2} \\
& +2 \nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}(p f) \nabla_{q}^{-\nu}(p g) \nabla_{q}^{-\nu}(p f g) \\
& \leq\left(\nabla_{q}^{-\nu}(p)\right)^{2}\left(\nabla_{q}^{-\nu}(p f g)\right)^{2}+\left(\nabla_{q}^{-\nu}(p f)\right)^{2}\left(\nabla_{q}^{-\nu}(p f)\right)^{2} \\
& +2 \nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}(p f) \nabla_{q}^{-\nu}(p g) \sqrt{\nabla_{q}^{-v}\left(p f^{2}\right) \nabla_{q}^{-\nu}\left(p g^{2}\right)} \\
& \leq\left(\nabla_{q}^{-\nu}(p)\right)^{2} \nabla_{q}^{-\nu}\left(p f^{2}\right) \nabla_{q}^{-\nu}\left(p g^{2}\right)+\left(\nabla_{q}^{-\nu}(p f)\right)^{2}\left(\nabla_{q}^{-\nu}(p f)\right)^{2} \\
& +\nabla_{q}^{-\nu}(p)\left(\nabla_{q}^{-\nu}\left(p f^{2}\right)\left(\nabla_{q}^{-\nu}(p g)\right)^{2}+\nabla_{q}^{-\nu}\left(p g^{2}\right)\left(\nabla_{q}^{-\nu}(p f)\right)^{2}\right) \\
& =\left(\nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}\left(p f^{2}\right)+\left(\nabla_{q}^{-\nu}(p f)\right)^{2}\right)\left(\nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}\left(p g^{2}\right)+\left(\nabla_{q}^{-\nu}(p g)\right)^{2}\right),
\end{aligned}
$$

which implies (36).
Next, we prove that (37) holds. It follows from (a) and (b) in Theorem 10 that

$$
\begin{aligned}
\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right) \nabla_{q}^{-v}(p) \nabla_{q}^{-v}(p f g) & \geq \Phi_{1} \Phi_{2} \nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p g^{2}\right)+\Psi_{1} \Psi_{2} \nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p f^{2}\right) \\
& \geq \Phi_{1} \Phi_{2} \nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p g^{2}\right)+\Psi_{1} \Psi_{2}\left(\nabla_{q}^{-v}(p f)\right)^{2} \\
\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right) \nabla_{q}^{-v}(p f) \nabla_{q}^{-v}(p g) & \geq \Phi_{1} \Phi_{2} \nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p g^{2}\right)+\Psi_{1} \Psi_{2} \nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p f^{2}\right) \\
& \geq \Phi_{1} \Phi_{2}\left(\nabla_{q}^{-v}(p g)\right)^{2}+\Psi_{1} \Psi_{2} \nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p f^{2}\right)
\end{aligned}
$$

Combining the preceding two inequalities and the element inequality $(x+y)^{2} \geq 4 x y$, we see that

$$
\begin{aligned}
& \left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right)^{2}\left(\nabla_{q}^{-v}(p) \nabla_{q}^{-v}(p f g)+\nabla_{q}^{-v}(p f) \nabla_{q}^{-v}(p g)\right)^{2} \\
& \quad=\left(\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right) \nabla_{q}^{-v}(p) \nabla_{q}^{-v}(p f g)+\left(\Phi_{1} \Psi_{1}+\Phi_{2} \Psi_{2}\right) \nabla_{q}^{-v}(p f) \nabla_{q}^{-v}(p g)\right)^{2} \\
& \quad \geq\left(\Phi_{1} \Phi_{2} \nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p g^{2}\right)+\Psi_{1} \Psi_{2}\left(\nabla_{q}^{-v}(p f)\right)^{2}\right. \\
& \left.\quad+\Phi_{1} \Phi_{2}\left(\nabla_{q}^{-v}(p g)\right)^{2}+\Psi_{1} \Psi_{2} \nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p f^{2}\right)\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
= & \left(\Phi_{1} \Phi_{2}\left(\nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p g^{2}\right)+\left(\nabla_{q}^{-v}(p g)\right)^{2}\right)\right. \\
& \left.+\Psi_{1} \Psi_{2}\left(\nabla_{q}^{-\nu}(p) \nabla_{q}^{-v}\left(p f^{2}\right)+\left(\nabla_{q}^{-\nu}(p f)\right)^{2}\right)\right)^{2} \\
\geq & 4 \Phi_{1} \Psi_{1} \Phi_{2} \Psi_{2}\left(\nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p f^{2}\right)+\left(\nabla_{q}^{-v}(p f)\right)^{2}\right)\left(\nabla_{q}^{-v}(p) \nabla_{q}^{-v}\left(p g^{2}\right)+\left(\nabla_{q}^{-v}(p g)\right)^{2}\right),
\end{aligned}
$$

which implies (37).

## Competing interests

The authors declare that they have no competing interests.

## Authors' contributions

All authors read and approved the final manuscript.

## Acknowledgements

The authors sincerely thank the editor and reviewers for their valuable suggestions and useful comments that have led to the present improved version of the original manuscript.

Received: 2 May 2012 Accepted: 27 November 2012 Published: 17 December 2012

## References

1. Anastassiou, GA: Opial type inequalities involving fractional derivatives of two functions and applications. Comput. Math. Appl. 48, 1701-1731 (2004)
2. Anastassiou, GA: Multivariate fractional Ostrowski type inequalities. Comput. Math. Appl. 54, 434-447 (2007)
3. Anastassiou, GA: Hilbert-Pachpatte type fractional integral inequalities. Math. Comput. Model. 49, 1539-1550 (2009)
4. Anastassiou, GA: Opial type inequalities involving Riemann-Liouville fractional derivatives of two functions with applications. Math. Comput. Model. 48, 344-374 (2008)
5. Denton, Z, Vatsala, AS: Fractional integral inequalities and applications. Comput. Math. Appl. 59, 1087-1094 (2010)
6. Belarbi, S, Dahmani, Z: On some new fractional integral inequalities. J. Inequal. Pure Appl. Math. 10, Art. ID 86 (2009)
7. Dahmani, Z, Tabharit, L, Taf, S: New generalisations of Grüss inequality using Riemann-Liouville fractional integrals. Bull. Math. Anal. Appl. 2, 93-99 (2010)
8. Öğünmez, H, Özkan, U: Fractional quantum integral inequalities. J. Inequal. Appl. 2011, Art. ID 787939 (2011)
9. Bohner, M, Ferreira, RAC: Some discrete fractional inequalities of Chebyshev type. Afr. Diaspora J. Math. (N.S.) 11(2), 132-137 (2011)
10. Yang, W: Some new fractional quantum integral inequalities. Appl. Math. Lett. 25, 963-969 (2012)
11. Marinković, S, Rajković, P, Stanković, M: The inequalities for some types of $q$-integrals. Comput. Math. Appl. 56, 2490-2498 (2008)
12. Yeh, C, et al.: Some complements of Cauchy's inequality on time scales. J. Inequal. Appl. 2006, Art. ID 97430 (2006)
13. Bohner, M, Peterson, A: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001)
14. Atici, F, Eloe, P: Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14, 341-352 (2007)
15. Rajković, P, Marinković, S, Stanković, M: A generalization of the concept of $q$-fractional integrals. Acta Math. Sin. Engl. Ser. 25, 1635-1646 (2009)
16. Al-Salam, WA: Some fractional $q$-integrals and $q$-derivatives. Proc. Edinb. Math. Soc. 15(2), 135-140 (1966/1967)
17. Agarwal, RP: Certain fractional $q$-integrals and q-derivatives. Proc. Camb. Philos. Soc. 66, 365-370 (1969)
18. Mitrinović, DS, Pečarić, JE, Fink, AM: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993)
19. Dragomir, SS: A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities. J. Inequal. Pure Appl. Math. 4(3), Art. ID 63 (2003)

## doi:10.1186/1029-242X-2012-299

Cite this article as: Zhu et al.: Some new fractional q-integral Grüss-type inequalities and other inequalities. Journal of Inequalities and Applications 2012 2012:299.

