RESEARCH

Open Access

Some new fractional *q*-integral Grüss-type inequalities and other inequalities

Chaowu Zhu, Wengui Yang^{*} and Qingbo Zhao

*Correspondence: wgyang0617@yahoo.com Ministry of Public Education, Sanmenxia Polytechnic, Sanmenxia, 472000, China

Abstract

In this paper, we employ a fractional *q*-integral on the specific time scale, $\mathbb{T}_{t_0} = \{t : t = t_0 q^n, n \text{ a nonnegative integer}\} \cup \{0\}$, where $t_0 \in \mathbb{R}$ and 0 < q < 1, to establish some new fractional *q*-integral Grüss-type inequalities by using one or two fractional parameters. Furthermore, other fractional *q*-integral inequalities are also obtained.

MSC: 26D10; 26A33

Keywords: fractional q-integral; integral inequalities; Grüss-type inequalities

1 Introduction

In the past several years, by using the Riemann-Liouville fractional integrals, the fractional integral inequalities and applications have been addressed extensively by several researchers. For example, we refer the reader to [1-6] and the references cited therein. Dahmani *et al.* [7] gave the following fractional integral inequalities by using the Riemann-Liouville fractional integrals. Let f and g be two integrable functions on $[0, \infty)$ satisfying the following conditions:

$$\varphi_1 \leq f(x) \leq \varphi_2, \qquad \psi_1 \leq g(x) \leq \psi_2, \qquad \varphi_1, \varphi_2, \psi_1, \psi_2 \in \mathbb{R}, \quad x \in [0, \infty).$$

For all t > 0, $\alpha > 0$ and $\beta > 0$, then

$$\left|\frac{t^{\alpha}}{\Gamma(\alpha+1)}J^{\alpha}(fg)(t)-J^{\alpha}f(t)J^{\alpha}g(t)\right| \leq \left(\frac{t^{\alpha}}{\Gamma(\alpha+1)}\right)^{2}(\varphi_{2}-\varphi_{1})(\psi_{2}-\psi_{1})$$

and

$$\begin{split} &\left(\frac{t^{\alpha}}{\Gamma(\alpha+1)}J^{\beta}(fg)(t) + \frac{t^{\beta}}{\Gamma(\beta+1)}J^{\alpha}(fg)(t) - J^{\alpha}f(t)J^{\beta}g(t) - J^{\beta}f(t)J^{\alpha}g(t)\right)^{2} \\ &\leq \left(\left(\varphi_{2}\frac{t^{\alpha}}{\Gamma(\alpha+1)} - J^{\alpha}f(t)\right)\left(J^{\beta}f(t) - \varphi_{1}\frac{t^{\beta}}{\Gamma(\beta+1)}\right) + \left(J^{\alpha}f(t) - \varphi_{1}\frac{t^{\alpha}}{\Gamma(\alpha+1)}\right) \\ &\times \left(\psi_{2}\frac{t^{\beta}}{\Gamma(\beta+1)} - J^{\beta}f(t)\right)\right)\left(\left(\psi_{2}\frac{t^{\alpha}}{\Gamma(\alpha+1)} - J^{\alpha}g(t)\right)\left(J^{\beta}g(t) - \psi_{1}\frac{t^{\beta}}{\Gamma(\beta+1)}\right) \\ &+ \left(J^{\alpha}g(t) - \psi_{1}\frac{t^{\alpha}}{\Gamma(\alpha+1)}\right)\left(\psi_{2}\frac{t^{\beta}}{\Gamma(\beta+1)} - J^{\beta}g(t)\right)\right). \end{split}$$

© 2012 Zhu et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. To the best of authors' knowledge, only some fractional q-integral inequalities have been established in recent years. That is, only Öğünmez and Özkan [8], Bohner and Ferreira [9] and Yang [10] obtained some fractional q-integral inequalities. With motivation from the papers [7, 11, 12], the main purpose of this article is to establish some new fractional qintegral inequalities. First of all, by using one or two fractional parameters, we establish some new fractional q-integral Grüss-type inequalities on the specific time scale $\mathbb{T}_{t_0} = \{t : t = t_0q^n, n \text{ a nonnegative integer}\} \cup \{0\}$, where $t_0 \in \mathbb{R}$ and 0 < q < 1. In general, a time scale is an arbitrary nonempty closed subset of real numbers [13]. Furthermore, other fractional q-integral inequalities are also obtained.

2 Description of fractional q-calculus

In this section, we introduce the basic definitions on fractional q-calculus. More results concerning fractional q-calculus can be found in [14–17].

Let $t_0 \in \mathbb{R}$ and define $\mathbb{T}_{t_0} = \{t : t = t_0 q^n, n \text{ a nonnegative integer}\} \cup \{0\}, 0 < q < 1$. For a function $f : \mathbb{T}_{t_0} \to \mathbb{R}$, the nabla *q*-derivative of *f*

$$\nabla_q f(t) = \frac{f(qt) - f(t)}{(q-1)t}$$

for all $t \in \mathbb{T}_{t_0} \setminus \{0\}$. The *q*-integral of *f* is

$$\int_0^t f(s)\nabla s = (1-q)t\sum_{i=0}^\infty q^i f(tq^i)$$

The *q*-factorial function is defined in the following way: if *n* is a positive integer, then

$$(t-s)^{(n)} = (t-s)(t-qs)(t-q^2s)\cdots(t-q^{n-1}s)$$

If *n* is not a positive integer, then

$$(t-s)^{(n)} = t^n \prod_{k=0}^{\infty} \frac{1-(s/t)q^k}{1-(s/t)q^{n+k}}.$$

The *q*-derivative of the *q*-factorial function with respect to *t* is

$$\nabla_q (t-s)^{(n)} = \frac{1-q^n}{1-q} (t-s)^{(n-1)},$$

and the q-derivative of the q-factorial function with respect to s is

$$\nabla_q (t-s)^{(n)} = -\frac{1-q^n}{1-q} (t-qs)^{(n-1)}.$$

The *q*-exponential function is defined as

$$e_q(t) = \prod_{k=0}^{\infty} \left(1 - q^k t\right), \quad e_q(0) = 1.$$

Define the *q*-gamma function by

$$\Gamma_q(\nu) = \frac{1}{1-q} \int_0^1 \left(\frac{t}{1-q}\right)^{\nu-1} e_q(qt) \nabla t, \quad \nu \in \mathbb{R}^+.$$

Note that

$$\Gamma_q(\nu+1) = [\nu]_q \Gamma_q(\nu), \quad \nu \in \mathbb{R}^+,$$

where $[\nu]_q := (1 - q^{\nu})/(1 - q)$. The fractional *q*-integral is defined as

$$\nabla_q^{-\nu}f(t) = \frac{1}{\Gamma_q(\nu)} \int_0^t (t-qs)^{(\nu-1)} f(s) \nabla s.$$

Note that

$$\nabla_q^{-\nu}(1) = \frac{1}{\Gamma_q(\nu)} \frac{q-1}{q^{\nu}-1} t^{(\nu)} = \frac{1}{\Gamma_q(\nu+1)} t^{(\nu)}.$$

3 Fractional q-integral Grüss-type inequalities

To state the main results in this paper, we employ the following lemmas. For the sake of convenience, we use the following assumption (A) in this section:

$$\varphi_1 \leq f(x) \leq \varphi_2$$
, $\psi_1 \leq g(x) \leq \psi_2$, $\varphi_1, \varphi_2, \psi_1, \psi_2 \in \mathbb{R}$, $x \in \mathbb{T}_{t_0}$.

Lemma 1 Let $\varphi_1, \varphi_2 \in \mathbb{R}$ and f be a function defined on \mathbb{T}_{t_0} . Then, for all t > 0 and v > 0, we have

$$\frac{t^{(\nu)}}{\Gamma_q(\nu+1)} \nabla_q^{-\nu} f^2(t) - \left(\nabla_q^{-\nu} f(t)\right)^2 = \left(\varphi_2 \frac{t^{(\nu)}}{\Gamma_q(\nu+1)} - \nabla_q^{-\nu} f(t)\right) \left(\nabla_q^{-\nu} f(t) - \varphi_1 \frac{t^{(\nu)}}{\Gamma_q(\nu+1)}\right) - \frac{t^{(\nu)}}{\Gamma_q(\nu+1)} \nabla_q^{-\nu} \left(\varphi_2 - f(t)\right) \left(f(t) - \varphi_1\right).$$
(1)

Proof Let $\varphi_1, \varphi_2 \in \mathbb{R}$ and f be a function defined on \mathbb{T}_{t_0} . For any $\tau > 0$ and $\rho > 0$, we have

$$(\varphi_2 - f(\rho))(f(\tau) - \varphi_1) + (\varphi_2 - f(\tau))(f(\rho) - \varphi_1) - (\varphi_2 - f(\tau))(f(\tau) - \varphi_1) - (\varphi_2 - f(\rho))(f(\rho) - \varphi_1) = f^2(\tau) + f^2(\rho) - 2f(\tau)f(\rho).$$

$$(2)$$

Multiplying both sides of (2) by $(t - q\tau)^{(\nu-1)}/\Gamma_q(\nu)$ and integrating the resulting identity with respect to τ from 0 to t, we get

$$(\varphi_{2} - f(\rho)) \left(\nabla_{q}^{-\nu} f(t) - \varphi_{1} \frac{t^{(\nu)}}{\Gamma_{q}(\nu+1)} \right) + \left(\varphi_{2} \frac{t^{(\nu)}}{\Gamma_{q}(\nu+1)} - \nabla_{q}^{-\nu} f(t) \right) (f(\rho) - \varphi_{1}) - \nabla_{q}^{-\nu} (\varphi_{2} - f(t)) (f(t) - \varphi_{1}) - (\varphi_{2} - f(\rho)) (f(\rho) - \varphi_{1}) \frac{t^{(\nu)}}{\Gamma_{q}(\nu+1)} = \nabla_{q}^{-\nu} f^{2}(t) + f^{2}(\rho) \frac{t^{(\nu)}}{\Gamma_{q}(\nu+1)} - 2f(\rho) \nabla_{q}^{-\nu} f(t).$$

$$(3)$$

Multiplying both sides of (3) by $(t - q\rho)^{(\nu-1)}/\Gamma_q(\nu)$ and integrating the resulting identity with respect to ρ from 0 to *t*, we obtain

$$\begin{split} & \left(\varphi_2 \frac{t^{(\nu)}}{\Gamma_q(\nu+1)} - \nabla_q^{-\nu} f(t)\right) \left(\nabla_q^{-\nu} f(t) - \varphi_1 \frac{t^{(\nu)}}{\Gamma_q(\nu+1)}\right) \\ & + \left(\varphi_2 \frac{t^{(\nu)}}{\Gamma_q(\nu+1)} - \nabla_q^{-\nu} f(t)\right) \left(\nabla_q^{-\nu} f(t) - \varphi_1 \frac{t^{(\nu)}}{\Gamma_q(\nu+1)}\right) \\ & - \nabla_q^{-\nu} \left(\varphi_2 - f(t)\right) \left(f(t) - \varphi_1\right) \frac{t^{(\nu)}}{\Gamma_q(\nu+1)} - \nabla_q^{-\nu} \left(\varphi_2 - f(t)\right) \left(f(t) - \varphi_1\right) \frac{t^{(\nu)}}{\Gamma_q(\nu+1)} \\ & = \nabla_q^{-\nu} f^2(t) \frac{t^{(\nu)}}{\Gamma_q(\nu+1)} + \nabla_q^{-\nu} f^2(t) \frac{t^{(\nu)}}{\Gamma_q(\nu+1)} - 2\nabla_q^{-\nu} f(t) \nabla_q^{-\nu} f(t), \end{split}$$

which implies (1).

Lemma 2 Let f and g be two functions defined on \mathbb{T}_{t_0} . Then, for all t > 0, $\mu > 0$ and $\nu > 0$, we have

$$\left(\frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)}\nabla_{q}^{-\mu}(fg)(t) + \frac{t^{(\underline{\mu})}}{\Gamma_{q}(\mu+1)}\nabla_{q}^{-\nu}(fg)(t) - \nabla_{q}^{-\nu}f(t)\nabla_{q}^{-\mu}g(t) - \nabla_{q}^{-\mu}f(t)\nabla_{q}^{-\nu}g(t)\right)^{2} \\
\leq \left(\frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)}\nabla_{q}^{-\mu}f^{2}(t) + \frac{t^{(\underline{\mu})}}{\Gamma_{q}(\mu+1)}\nabla_{q}^{-\nu}f^{2}(t) - 2\nabla_{q}^{-\nu}f(t)\nabla_{q}^{-\mu}f(t)\right) \\
\times \left(\frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)}\nabla_{q}^{-\mu}g^{2}(t) + \frac{t^{(\underline{\mu})}}{\Gamma_{q}(\mu+1)}\nabla_{q}^{-\nu}g^{2}(t) - 2\nabla_{q}^{-\nu}g(t)\nabla_{q}^{-\mu}g(t)\right). \tag{4}$$

Proof In order to prove Lemma 2, we firstly prove that the following inequality (*i.e.*, Cauchy-Schwarz inequality for double *q*-integrals) holds. Let f(x, y), g(x, y) and h(x, y) be three functions defined on $\mathbb{T}_{t_0}^2$ with $h(x, y) \ge 0$. Then we have

$$\left(\int_{0}^{t} \int_{0}^{t} h(x, y)f(x, y)g(x, y) d_{q}x d_{q}y\right)^{2} \leq \left(\int_{0}^{t} \int_{0}^{t} h(x, y)f^{2}(x, y) d_{q}x d_{q}y\right) \left(\int_{0}^{t} \int_{0}^{t} h(x, y)g^{2}(x, y) d_{q}x d_{q}y\right).$$

According to the definition of *q*-integral, it is easy to obtain that double *q*-integral is

$$\begin{split} &\int_{0}^{t} \int_{0}^{t} f(x, y) \, d_{q} x \, d_{q} y \\ &= \int_{0}^{t} \left((1 - q) t \sum_{i=0}^{\infty} q^{i} f(tq^{i}, y) \right) d_{q} y \\ &= (1 - q) t \sum_{j=0}^{\infty} q^{j} \left((1 - q) t \sum_{i=0}^{\infty} q^{i} f(tq^{i}, tq^{j}) \right) \\ &= (1 - q)^{2} t^{2} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} q^{i+j} f(tq^{i}, tq^{j}). \end{split}$$

Due to discrete Cauchy-Schwarz inequality with weight coefficient, we have

$$\begin{split} &\left(\int_{0}^{t}\int_{0}^{t}h(x,y)f(x,y)g(x,y)\,d_{q}x\,d_{q}y\right)^{2} \\ &= \left((1-q)^{2}t^{2}\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}q^{i+j}h(tq^{i},tq^{j})f(tq^{i},tq^{j})g(tq^{i},tq^{j})\right)^{2} \\ &\leq \left((1-q)^{2}t^{2}\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}q^{i+j}h(tq^{i},tq^{j})f^{2}(tq^{i},tq^{j})\right) \\ &\qquad \times \left((1-q)^{2}t^{2}\sum_{i=0}^{\infty}\sum_{j=0}^{\infty}q^{i+j}h(tq^{i},tq^{j})g^{2}(tq^{i},tq^{j})\right) \\ &= \left(\int_{0}^{t}\int_{0}^{t}h(x,y)f^{2}(x,y)\,d_{q}x\,d_{q}y\right)\left(\int_{0}^{t}\int_{0}^{t}h(x,y)g^{2}(x,y)\,d_{q}x\,d_{q}y\right). \end{split}$$

Next, we prove that Lemma 2 holds. Let $H(\tau, \rho)$ be defined by

$$H(\tau, \rho) = (f(\tau) - f(\rho))(g(\tau) - g(\rho)), \quad t > 0, \tau > 0, \rho > 0.$$
(5)

Multiplying both sides of (5) by $(t - q\tau)^{(\nu-1)}(t - q\rho)^{(\mu-1)}/(\Gamma_q(\nu)\Gamma_q(\mu))$ and integrating the resulting identity with respect to τ and ρ from 0 to t, then applying the Cauchy-Schwarz inequality for double q-integrals, we obtain (4).

Lemma 3 Let $\varphi_1, \varphi_2 \in \mathbb{R}$ and f be a function defined on \mathbb{T}_{t_0} . Then, for all t > 0 and v > 0, we have

$$\frac{t^{(\nu)}}{\Gamma_{q}(\nu+1)} \nabla_{q}^{-\mu} f^{2}(t) + \frac{t^{(\mu)}}{\Gamma_{q}(\mu+1)} \nabla_{q}^{-\nu} f^{2}(t) - 2\nabla_{q}^{-\nu} f(t) \nabla_{q}^{-\mu} f(t) \\
= \left(\varphi_{2} \frac{t^{(\nu)}}{\Gamma_{q}(\nu+1)} - \nabla_{q}^{-\nu} f(t)\right) \left(\nabla_{q}^{-\mu} f(t) - \varphi_{1} \frac{t^{(\mu)}}{\Gamma_{q}(\mu+1)}\right) \\
+ \left(\varphi_{2} \frac{t^{(\mu)}}{\Gamma_{q}(\mu+1)} - \nabla_{q}^{-\mu} f(t)\right) \left(\nabla_{q}^{-\nu} f(t) - \varphi_{1} \frac{t^{(\nu)}}{\Gamma_{q}(\nu+1)}\right) \\
- \frac{t^{(\nu)}}{\Gamma_{q}(\nu+1)} \nabla_{q}^{-\mu} \left(\varphi_{2} - f(t)\right) (f(t) - \varphi_{1}) \\
- \frac{t^{(\mu)}}{\Gamma_{q}(\mu+1)} \nabla_{q}^{-\nu} \left(\varphi_{2} - f(t)\right) (f(t) - \varphi_{1}).$$
(6)

Proof Multiplying both sides of (3) by $(t - q\rho)^{(\mu-1)}/\Gamma_q(\mu)$ and integrating the resulting identity with respect to ρ from 0 to *t*, we obtain

$$\begin{split} \left(\varphi_2 \frac{t^{(\mu)}}{\Gamma_q(\mu+1)} - \nabla_q^{-\mu} f(t)\right) \left(\nabla_q^{-\nu} f(t) - \varphi_1 \frac{t^{(\nu)}}{\Gamma_q(\nu+1)}\right) \\ &+ \left(\varphi_2 \frac{t^{(\nu)}}{\Gamma_q(\nu+1)} - \nabla_q^{-\nu} f(t)\right) \left(\nabla_q^{-\mu} f(t) - \varphi_1 \frac{t^{(\mu)}}{\Gamma_q(\mu+1)}\right) \\ &- \nabla_q^{-\nu} \left(\varphi_2 - f(t)\right) \left(f(t) - \varphi_1\right) \frac{t^{(\mu)}}{\Gamma_q(\mu+1)} \end{split}$$

which implies (6).

Theorem 1 Let f and g be two functions defined on \mathbb{T}_{t_0} satisfying (A). Then, for all t > 0 and v > 0, we have

$$\left|\frac{t^{(\nu)}}{\Gamma_q(\nu+1)}\nabla_q^{-\nu}(fg)(t) - \nabla_q^{-\nu}f(t)\nabla_q^{-\nu}g(t)\right| \le \left(\frac{t^{(\nu)}}{2\Gamma_q(\nu+1)}\right)^2(\varphi_2 - \varphi_1)(\psi_2 - \psi_1).$$
(7)

Proof Let *f* and *g* be two functions defined on \mathbb{T}_{t_0} satisfying (A). Multiplying both sides of (6) by $(t - q\tau)\frac{(\nu-1)}{(t - q\rho)}/\Gamma_q^2(\nu)$ and integrating the resulting identity with respect to τ and ρ from 0 to *t*, we can state that

$$\frac{1}{\Gamma_q^2(\mu)} \int_0^t \int_0^t (t - q\tau)^{(\nu-1)} (t - q\rho)^{(\nu-1)} H(\tau, \rho) \nabla_q \tau \nabla_q \rho$$

$$= 2 \left(\frac{t^{(\nu)}}{\Gamma_q(\nu+1)} \nabla_q^{-\nu} (fg)(t) - \nabla_q^{-\nu} f(t) \nabla_q^{-\nu} g(t) \right).$$
(8)

Applying the Cauchy-Schwarz inequality for double *q*-integrals, we have

$$\left(\frac{t^{(\underline{\nu})}}{\Gamma_q(\nu+1)}\nabla_q^{-\nu}(fg)(t) - \nabla_q^{-\nu}f(t)\nabla_q^{-\nu}g(t)\right)^2 \\
\leq \left(\frac{t^{(\underline{\nu})}}{\Gamma_q(\nu+1)}\nabla_q^{-\nu}f^2(t) - \left(\nabla_q^{-\nu}f(t)\right)^2\right) \left(\frac{t^{(\underline{\nu})}}{\Gamma_q(\nu+1)}\nabla_q^{-\nu}g^2(t) - \left(\nabla_q^{-\nu}g(t)\right)^2\right).$$
(9)

Since $(\varphi_2 - f(x))(f(x) - \varphi_1) \ge 0$ and $(\psi_2 - g(x))(g(x) - \psi_1) \ge 0$, we have

$$\begin{split} &\frac{t^{(\nu)}}{\Gamma_q(\nu+1)}\nabla_q^{-\nu}\big(\varphi_2-f(x)\big)\big(f(x)-\varphi_1\big)\geq 0,\\ &\frac{t^{(\nu)}}{\Gamma_q(\nu+1)}\nabla_q^{-\nu}\big(\psi_2-g(x)\big)\big(g(x)-\psi_1\big)\geq 0. \end{split}$$

Thus,

$$\frac{t^{(\nu)}}{\Gamma_q(\nu+1)} \nabla_q^{-\nu} f^2(t) - \left(\nabla_q^{-\nu} f(t)\right)^2 \\
\leq \left(\varphi_2 \frac{t^{(\nu)}}{\Gamma_q(\nu+1)} - \nabla_q^{-\nu} f(t)\right) \left(\nabla_q^{-\nu} f(t) - \varphi_1 \frac{t^{(\nu)}}{\Gamma_q(\nu+1)}\right), \\
\frac{t^{(\nu)}}{\Gamma_q(\nu+1)} \nabla_q^{-\nu} g^2(t) - \left(\nabla_q^{-\nu} g(t)\right)^2 \\
\leq \left(\psi_2 \frac{t^{(\nu)}}{\Gamma_q(\nu+1)} - \nabla_q^{-\nu} g(t)\right) \left(\nabla_q^{-\nu} g(t) - \psi_1 \frac{t^{(\nu)}}{\Gamma_q(\nu+1)}\right).$$
(10)

Combining (9) and (10), from Lemma 1, we deduce that

$$\left(\frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)}\nabla_{q}^{-\nu}(fg)(t) - \nabla_{q}^{-\nu}f(t)\nabla_{q}^{-\nu}g(t)\right)^{2} \leq \left(\varphi_{2}\frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)} - \nabla_{q}^{-\nu}f(t)\right)\left(\nabla_{q}^{-\nu}f(t) - \varphi_{1}\frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)}\right) \\ \times \left(\psi_{2}\frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)} - \nabla_{q}^{-\nu}g(t)\right)\left(\nabla_{q}^{-\nu}g(t) - \psi_{1}\frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)}\right). \tag{11}$$

Now by using the elementary inequality $4xy \le (x + y)^2$, $x, y \in \mathbb{R}$, we can state that

$$4\left(\varphi_{2}\frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)} - \nabla_{q}^{-\nu}f(t)\right)\left(\nabla_{q}^{-\nu}f(t) - \varphi_{1}\frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)}\right)$$

$$\leq \left(\frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)}(\varphi_{2} - \varphi_{1})\right)^{2},$$

$$4\left(\psi_{2}\frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)} - \nabla_{q}^{-\nu}g(t)\right)\left(\nabla_{q}^{-\nu}g(t) - \psi_{1}\frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)}\right)$$

$$\leq \left(\frac{t^{(\underline{\nu})}}{\Gamma_{q}(\nu+1)}(\psi_{2} - \psi_{1})\right)^{2}.$$
(12)

From (11) and (12), we obtain (7).

Theorem 2 Let f and g be two functions defined on \mathbb{T}_{t_0} satisfying (A). Then, for all t > 0, $\mu > 0$ and $\nu > 0$, we have

$$\begin{split} &\left(\frac{t^{(\underline{\nu})}}{\Gamma_q(\nu+1)}\nabla_q^{-\mu}(fg)(t) + \frac{t^{(\underline{\mu})}}{\Gamma_q(\mu+1)}\nabla_q^{-\nu}(fg)(t) - \nabla_q^{-\nu}f(t)\nabla_q^{-\mu}g(t) - \nabla_q^{-\mu}f(t)\nabla_q^{-\nu}g(t)\right)^2 \\ &\leq \left(\left(\varphi_2\frac{t^{(\underline{\nu})}}{\Gamma_q(\nu+1)} - \nabla_q^{-\nu}f(t)\right)\left(\nabla_q^{-\mu}f(t) - \varphi_1\frac{t^{(\underline{\mu})}}{\Gamma_q(\mu+1)}\right) + \left(\nabla_q^{-\nu}f(t) - \varphi_1\frac{t^{(\underline{\nu})}}{\Gamma_q(\nu+1)}\right) \right) \\ &\times \left(\varphi_2\frac{t^{(\underline{\mu})}}{\Gamma_q(\mu+1)} - \nabla_q^{-\mu}f(t)\right)\right)\left(\left(\psi_2\frac{t^{(\underline{\nu})}}{\Gamma_q(\nu+1)} - \nabla_q^{-\nu}g(t)\right) \right) \\ &\times \left(\nabla_q^{-\mu}g(t) - \psi_1\frac{t^{(\underline{\mu})}}{\Gamma_q(\nu+1)}\right) \\ &+ \left(\nabla_q^{-\nu}g(t) - \psi_1\frac{t^{(\underline{\nu})}}{\Gamma_q(\nu+1)}\right)\left(\psi_2\frac{t^{(\underline{\mu})}}{\Gamma_q(\mu+1)} - \nabla_q^{-\mu}g(t)\right)\right). \end{split}$$

Proof Since $(\varphi_2 - f(x))(f(x) - \varphi_1) \ge 0$ and $(\psi_2 - g(x))(g(x) - \psi_1) \ge 0$, then we can write

$$-\frac{t^{(\nu)}}{\Gamma_{q}(\nu+1)}\nabla_{q}^{-\mu}(\varphi_{2}-f(x))(f(x)-\varphi_{1}) - \frac{t^{(\mu)}}{\Gamma_{q}(\mu+1)}\nabla_{q}^{-\nu}(\varphi_{2}-f(x))(f(x)-\varphi_{1})$$

$$\leq 0,$$

$$-\frac{t^{(\nu)}}{\Gamma_{q}(\nu+1)}\nabla_{q}^{-\mu}(\psi_{2}-g(x))(g(x)-\psi_{1}) - \frac{t^{(\mu)}}{\Gamma_{q}(\mu+1)}\nabla_{q}^{-\nu}(\psi_{2}-g(x))(g(x)-\psi_{1})$$

$$\leq 0.$$
(13)

Applying Lemma 3 to f and g, then by using Lemma 2 and the formula (13), we obtain Theorem 2. \square

4 The other fractional *q*-integral inequalities

For the sake of simplicity, we always assume that $\nabla_q^v \phi$ denotes $\nabla_q^v \phi(t)$ and all of fractional *q*-integrals are finite in this section.

Theorem 3 Let f and g be two functions defined on \mathbb{T}_{t_0} and $\alpha, \beta > 1$ satisfying $1/\alpha + 1/\beta = 1$. Then the following inequalities hold:

- (a) $\frac{1}{\alpha} \nabla_q^{-\nu}(|f|^{\alpha}) + \frac{1}{\beta} \nabla_q^{-\nu}(|g|^{\beta}) \ge \frac{\Gamma_q(\nu+1)}{t^{(\nu)}} \nabla_q^{-\nu}(|f|) \nabla_q^{-\nu}(|g|).$
- (b) $\frac{1}{\alpha} \nabla_a^{-\nu}(|f|^{\alpha}) \nabla_a^{-\nu}(|g|^{\alpha}) + \frac{1}{\beta} \nabla_a^{-\nu}(|f|^{\beta}) \nabla_a^{-\nu}(|g|^{\beta}) \ge (\nabla_a^{-\nu}(|fg|))^2.$
- (c) $\frac{1}{\alpha} \nabla_a^{-\nu}(|f|^{\alpha}) \nabla_a^{-\nu}(|g|^{\beta}) + \frac{1}{\beta} \nabla_a^{-\nu}(|f|^{\beta}) \nabla_a^{-\nu}(|g|^{\alpha}) \ge \nabla_a^{-\nu}(|f||g|^{\alpha-1}) \nabla_a^{-\nu}(|f||g|^{\beta-1}).$
- (d) $\nabla_a^{-\nu}(|f|^{\alpha})\nabla_a^{-\nu}(|g|^{\beta}) \ge \nabla_a^{-\nu}(|fg|)\nabla_a^{-\nu}(|f|^{\alpha-1}|g|^{\beta-1}).$

Proof According to the well-known Young inequality,

$$\frac{1}{\alpha}x^{\alpha} + \frac{1}{\beta}y^{\beta} \ge xy, \quad \forall x, y \ge 0, \alpha, \beta > 1, \frac{1}{\alpha} + \frac{1}{\beta} = 1.$$

Putting $x = f(\tau)$ and $y = g(\rho)$, $\tau, \rho > 0$, we have

$$\frac{1}{\alpha} \left| f(\tau) \right|^{\alpha} + \frac{1}{\beta} \left| g(\rho) \right|^{\beta} \ge \left| f(\tau) \right| \left| g(\rho) \right|, \quad \forall \tau, \rho > 0.$$
(14)

Multiplying both sides of (6) by $(t - q\tau)^{(\nu-1)}(t - q\rho)^{(\nu-1)}/\Gamma_q^2(\nu)$, we obtain

$$\begin{split} &\frac{1}{\alpha} \frac{(t-q\rho)^{(\nu-1)}}{\Gamma_q(\nu)} \frac{(t-q\tau)^{(\nu-1)}}{\Gamma_q(\nu)} \big| f(\tau) \big|^{\alpha} + \frac{1}{\beta} \frac{(t-q\tau)^{(\nu-1)}}{\Gamma_q(\nu)} \frac{(t-q\rho)^{(\nu-1)}}{\Gamma_q(\nu)} \big| g(\rho) \big|^{\beta} \\ &\geq \frac{(t-q\tau)^{(\nu-1)}}{\Gamma_q(\nu)} \big| f(\tau) \big| \frac{(t-q\rho)^{(\nu-1)}}{\Gamma_q(\nu)} \big| g(\rho) \big|. \end{split}$$

Integrating the preceding identity with respect to τ and ρ from 0 to t, we can state that

$$\frac{1}{\alpha}\frac{t^{(\nu)}}{\Gamma_q(\nu+1)}\nabla_q^{-\nu}\left(\left|f(t)\right|^{\alpha}\right) + \frac{1}{\beta}\frac{t^{(\nu)}}{\Gamma_q(\nu+1)}\nabla_q^{-\nu}\left(\left|g(t)\right|^{\beta}\right) \geq \nabla_q^{-\nu}\left(\left|f(t)\right|\right)\nabla_q^{-\nu}\left(\left|g(t)\right|\right),$$

which implies (a). The rest of inequalities can be proved in the same manner by the next choice of the parameters in the Young inequality:

(b) $x = |f(\tau)||g(\rho)|, y = |f(\rho)||g(\tau)|.$ (c) $x = |f(\tau)|/|g(\tau)|, y = |f(\rho)|/|g(\rho)|, (g(\tau)g(\rho) \neq 0).$ (d) $x = |f(\rho)|/|f(\tau)|, y = |g(\rho)|/|g(\tau)|, (f(\tau)g(\rho) \neq 0).$

Repeating the foregoing arguments, we obtain (b)-(d).

Theorem 4 Let f and g be two functions defined on \mathbb{T}_{t_0} and α , $\beta > 1$ satisfying $1/\alpha + 1/\beta = 1$. Then the following inequalities hold:

- $\begin{array}{l} \text{(a)} \quad \frac{1}{\alpha} \nabla_{q}^{-\nu} (|f|^{\alpha}) \nabla_{q}^{-\nu} (|g|^{2}) + \frac{1}{\beta} \nabla_{q}^{-\nu} (|f|^{2}) \nabla_{q}^{-\nu} (|g|^{\beta}) \geq \nabla_{q}^{-\nu} (|fg|) \nabla_{q}^{-\nu} (|f|^{2/\beta} |g|^{2/\alpha}). \\ \text{(b)} \quad \frac{1}{\alpha} \nabla_{q}^{-\nu} (|f|^{2}) \nabla_{q}^{-\nu} (|g|^{\beta}) + \frac{1}{\beta} \nabla_{q}^{-\nu} (|f|^{\beta}) \nabla_{q}^{-\nu} (|g|^{2}) \geq \nabla_{q}^{-\nu} (|f|^{2/\alpha} |g|^{2/\beta}) \nabla_{q}^{-\nu} (|f|^{\alpha-1} |g|^{\beta-1}). \\ \text{(c)} \quad \nabla_{q}^{-\nu} (|f|^{2}) \nabla_{q}^{-\nu} (\frac{1}{\alpha} |g|^{\alpha} + \frac{1}{\beta} |g|^{\beta}) \geq \nabla_{q}^{-\nu} (|f|^{2/\alpha} |g|) \nabla_{q}^{-\nu} (|f|^{2/\beta} |g|). \end{array}$

Proof As a previous one, the proof is based on the Young inequality with the following appropriate choice of parameters:

(a)
$$x = |f(\tau)||g(\rho)|^{2/\alpha}, y = |f(\rho)|^{2/\beta}|g(\tau)|.$$

(b) $x = |f(\tau)|^{2/\alpha}/|f(\rho)|, y = |g(\tau)|^{2/\beta}/|g(\rho)|, (f(\rho)g(\rho) \neq 0).$
(c) $x = |f(\tau)|^{2/\alpha}/|g(\rho)|, y = |f(\rho)|^{2/\beta}/|g(\tau)|, (g(\tau)g(\rho) \neq 0).$

Theorem 5 Let f and g be two positive functions defined on \mathbb{T}_{t_0} such that for all t > 0,

$$m = \min_{0 \le \tau \le t} \frac{f(\tau)}{g(\tau)}, \qquad M = \max_{0 \le \tau \le t} \frac{f(\tau)}{g(\tau)}.$$
(15)

Then the following inequalities hold:

$$\begin{array}{ll} \text{(a)} & 0 \leq \nabla_q^{-\nu}(f^2)\nabla_q^{-\nu}(g^2) \leq \frac{(m+M)^2}{4mM}(\nabla_q^{-\nu}(fg))^2. \\ \text{(b)} & 0 \leq \sqrt{\nabla_q^{-\nu}(f^2)}\nabla_q^{-\nu}(g^2) - \nabla_q^{-\nu}(fg) \leq \frac{(\sqrt{M}-\sqrt{m})^2}{2\sqrt{mM}}\nabla_q^{-\nu}(fg). \\ \text{(c)} & 0 \leq \nabla_q^{-\nu}(f^2)\nabla_q^{-\nu}(g^2) - (\nabla_q^{-\nu}(fg))^2 \leq \frac{(M-m)^2}{4mM}(\nabla_q^{-\nu}(fg))^2. \end{array}$$

Proof It follows from (15) and

$$\left(\frac{f(\tau)}{g(\tau)} - m\right) \left(M - \frac{f(\tau)}{g(\tau)}\right) g^2(\tau) \ge 0, \quad 0 \le \tau \le t.$$
(16)

Multiplying both sides of (15) by $(t - q\tau)^{(\nu-1)}/\Gamma_q(\nu)$ and integrating the resulting identity with respect to τ from 0 to t, we can get

$$\nabla_q^{-\nu}(f^2) + mM\nabla_q^{-\nu}(g^2) \le (m+M)\nabla_q^{-\nu}(fg).$$

$$\tag{17}$$

On the other hand, it follows from mM > 0 and $(\sqrt{\nabla_q^{-\nu}(f^2)} - \sqrt{mM\nabla_q^{-\nu}(g^2)})^2 \ge 0$ that

$$2\sqrt{\nabla_q^{-\nu}(f^2)}\sqrt{mM\nabla_q^{-\nu}(g^2)} \le \nabla_q^{-\nu}(f^2) + mM\nabla_q^{-\nu}(g^2).$$
⁽¹⁸⁾

According to (17) and (18), we have

$$4mM\nabla_q^{-\nu}(f^2)\nabla_q^{-\nu}(g^2) \leq (m+M)^2(\nabla_q^{-\nu}(fg))^2,$$

which implies (a). By a few transformations of (a), similarly, we obtain (b) and (c). \Box

Corollary 1 Under the conditions of Theorem 5, if $\alpha, \beta \in (0,1)$, $\alpha + \beta = 1$, then it follows from the arithmetric-geometric mean inequality that

$$\left(\frac{1}{\alpha}\nabla_q^{-\nu}(f^2)\right)^{\alpha}\left(\frac{mM}{\beta}\nabla_q^{-\nu}(g^2)\right)^{\beta} \leq \nabla_q^{-\nu}(f^2) + mM\nabla_q^{-\nu}(g^2) \leq (m+M)\nabla_q^{-\nu}(fg),$$

which implies that

$$\left(\nabla_q^{-\nu}(f^2)\right)^{\alpha}\left(\nabla_q^{-\nu}(g^2)\right)^{\beta} \le \alpha^{\alpha}\beta^{\beta}\frac{m+M}{(mM)^{\beta}}\nabla_q^{-\nu}(fg)$$

Theorem 6 Let f and g be two positive functions on \mathbb{T}_{t_0} and

$$0 < \Phi_1 \le f(\tau) \le \Phi_2 < \infty, \qquad 0 < \Psi_1 \le g(\tau) \le \Psi_2 < \infty. \tag{19}$$

Then the following inequalities hold:

$$\begin{array}{ll} \text{(a)} & 0 \leq \nabla_{q}^{-\nu}(f^{2})\nabla_{q}^{-\nu}(g^{2}) \leq \frac{(\Phi_{1}\Psi_{1}+\Phi_{2}\Psi_{2})^{2}}{4\Phi_{1}\Psi_{1}\Phi_{2}\Psi_{2}}(\nabla_{q}^{-\nu}(fg))^{2}. \\ \text{(b)} & 0 \leq \sqrt{\nabla_{q}^{-\nu}(f^{2})\nabla_{q}^{-\nu}(g^{2})} - \nabla_{q}^{-\nu}(fg) \leq \frac{(\sqrt{\Phi_{2}\Psi_{2}}-\sqrt{\Phi_{1}\Psi_{1}})^{2}}{2\sqrt{\Phi_{1}\Psi_{1}\Phi_{2}\Psi_{2}}}\nabla_{q}^{-\nu}(fg). \\ \text{(c)} & 0 \leq \nabla_{q}^{-\nu}(f^{2})\nabla_{q}^{-\nu}(g^{2}) - (\nabla_{q}^{-\nu}(fg))^{2} \leq \frac{(\Phi_{2}\Psi_{2}-\Phi_{1}\Psi_{1})^{2}}{4\Phi_{1}\Psi_{1}\Phi_{2}\Psi_{2}}(\nabla_{q}^{-\nu}(fg))^{2}. \end{array}$$

Proof Under the conditions satisfied by the functions f and g, we have

$$\frac{\Phi_1}{\Psi_2} \le \frac{f(\tau)}{g(\tau)} \le \frac{\Phi_2}{\Psi_1}.$$

Applying Theorem 6, we get the inequality (a) and using it, we have (b) and (c). \Box

Corollary 2 Let f be a positive function on \mathbb{T}_{t_0} satisfying (19). Then the following inequality holds:

$$\nabla_{q}^{-\nu}(f^{2}) \leq \frac{\Gamma_{q}(\nu+1)(\Phi_{1}+\Phi_{2})^{2}}{4t^{(\nu)}\Phi_{1}\Phi_{2}} (\nabla_{q}^{-\nu}(f))^{2}.$$

Theorem 7 Let f and g be two positive functions on \mathbb{T}_{t_0} and

$$0 < m \le \frac{g(\tau)}{f(\tau)} \le M < \infty \tag{20}$$

and $p \neq 0$ be a real number, then the following inequality holds:

$$\nabla_{q}^{-\nu} \left(f^{2-p} g^{p} \right) + \frac{m M (M^{p-1} - m^{p-1})}{M - m} \nabla_{q}^{-\nu} \left(f^{p} \right) \le \frac{M^{p} - m^{p}}{M - m} \nabla_{q}^{-\nu} (fg)$$

for $p \notin (0,1)$, or reverse for $p \in (0,1)$. Especially, for p = 2, we have

$$\nabla_q^{-\nu}(g^2) + mM\nabla_q^{-\nu}(f^2) \le (m+M)\nabla_q^{-\nu}(fg).$$

Proof The inequality is based on the Lah-Ribaric inequality [18, p.9] and [19, p.123].

Theorem 8 Let f and g be two positive functions on \mathbb{T}_{t_0} and $p \neq 0$ be a real number. Then the following inequality holds:

$$\left(\nabla_q^{-\nu}(fg)\right)^p \le \left(\nabla_q^{-\nu}(f^2)\right)^{p-1} \nabla_q^{-\nu}\left(f^{2-p}g^p\right)$$

for $p \notin (0,1)$, or reverse for $p \in (0,1)$.

Proof The above inequality is obtained via the Jensen inequality for the convex functions. \Box

Corollary 3 Let f be a positive function on \mathbb{T}_{t_0} and $p \neq 0$ be a real number. Then the following inequality holds:

$$\left(\nabla_q^{-\nu}(f)\right)^p \leq \left(\frac{t^{(\nu)}}{\Gamma_q(\nu+1)}\right)^{p-1} \nabla_q^{-\nu}(f^p)$$

for $p \notin (0, 1)$, or reverse for $p \in (0, 1)$.

Theorem 9 Let p, f and g be three positive functions on \mathbb{T}_{t_0} satisfying (19). If $0 < \alpha \le \beta < 1$, $\alpha + \beta = 1$, then the following inequalities hold:

$$\left(\nabla_q^{-\nu}(pf)\right)^{\beta} \left(\nabla_q^{-\nu}\left(\frac{p}{f}\right)\right)^{\alpha} \le \frac{\alpha \Phi_1 + \beta \Phi_2}{(\Phi_1 \Phi_2)^{\alpha}} \nabla_q^{-\nu}(p),\tag{21}$$

$$\left(\nabla_q^{-\nu}(pf^2)\right)^{\beta} \left(\nabla_q^{-\nu}(pg^2)\right)^{\alpha} \le \frac{\alpha \Phi_1 \Psi_1 + \beta \Phi_2 \Psi_2}{(\Phi_1 \Phi_2)^{\alpha} (\Psi_1 \Psi_2)^{\beta}} \nabla_q^{-\nu}(pfg).$$

$$\tag{22}$$

Proof Since $(\beta f(\tau) - \alpha \Phi_1)(f(\tau) - \Phi_2) \le 0$ on \mathbb{T}_{t_0} , we have

$$\beta f^2(\tau) - (\alpha \Phi_1 + \beta \Phi_2) f(\tau) + \alpha \Phi_1 \Phi_2 \le 0.$$
⁽²³⁾

Multiplying both sides of (23) by $p(\tau)/f(\tau)$, we get

$$\beta p(\tau) f(\tau) + \alpha \Phi_1 \Phi_2 \frac{p(\tau)}{f(\tau)} \le (\alpha \Phi_1 + \beta \Phi_2) p(\tau).$$
(24)

From (24) and arithmetric-geometric mean inequality, we obtain

$$\left(\frac{1}{\Gamma_{q}(\nu)}\int_{0}^{t}(t-q\tau)\frac{(\nu-1)}{p}(\tau)f(\tau)\nabla\tau\right)^{\beta}\left(\frac{1}{\Gamma_{q}(\nu)}\int_{0}^{t}(t-q\tau)\frac{(\nu-1)}{f(\tau)}\nabla\tau\right)^{\alpha}$$

$$=\frac{1}{(\Phi_{1}\Phi_{2})^{\alpha}}\left(\frac{1}{\Gamma_{q}(\nu)}\int_{0}^{t}(t-q\tau)\frac{(\nu-1)}{p}(\tau)f(\tau)\nabla\tau\right)^{\beta}\left(\frac{\Phi_{1}\Phi_{2}}{\Gamma_{q}(\nu)}\int_{0}^{t}(t-q\tau)\frac{(\nu-1)}{f(\tau)}\frac{p(\tau)}{f(\tau)}\nabla\tau\right)^{\alpha}$$

$$\leq\frac{1}{(\Phi_{1}\Phi_{2})^{\alpha}}\left(\frac{\beta}{\Gamma_{q}(\nu)}\int_{0}^{t}(t-q\tau)\frac{(\nu-1)}{p}(\tau)f(\tau)\nabla\tau+\frac{\alpha\Phi_{1}\Phi_{2}}{\Gamma_{q}(\nu)}\int_{0}^{t}(t-q\tau)\frac{(\nu-1)}{f(\tau)}\frac{p(\tau)}{f(\tau)}\nabla\tau\right)$$

$$\leq\frac{\alpha\Phi_{1}+\beta\Phi_{2}}{(\Phi_{1}\Phi_{2})^{\alpha}}\left(\frac{1}{\Gamma_{q}(\nu)}\int_{0}^{t}(t-q\tau)\frac{(\nu-1)}{p}(\tau)\nabla\tau\right),$$
(25)

which implies (21).

Replacing p and f by pfg and f/g in (25), respectively, and $\Phi_1/\Psi_2 \leq f(\tau)/g(\tau) \leq \Phi_2/\Psi_1$, we get

$$\begin{split} &\left(\frac{1}{\Gamma_{q}(\nu)}\int_{0}^{t}(t-q\tau)^{(\nu-1)}p(\tau)f(\tau)\nabla\tau\right)^{\beta}\left(\frac{1}{\Gamma_{q}(\nu)}\int_{0}^{t}(t-q\tau)^{(\nu-1)}p(\tau)g(\tau)\nabla\tau\right)^{\alpha}\\ &\leq \frac{\alpha\Phi_{1}\Psi_{1}+\beta\Phi_{2}\Psi_{2}}{(\Phi_{1}\Phi_{2})^{\alpha}(\Psi_{1}\Psi_{2})^{\beta}}\left(\frac{1}{\Gamma_{q}(\nu)}\int_{0}^{t}(t-q\tau)^{(\nu-1)}p(\tau)f(\tau)g(\tau)\nabla\tau\right), \end{split}$$

which implies (22).

Corollary 4 Let p, f and g be three positive functions on \mathbb{T}_{t_0} satisfying (20). If $0 < \alpha \le \beta < 1$, $\alpha + \beta = 1$, then the following inequality holds:

$$\alpha \nabla_q^{-\nu} (pg^2) + \beta m M \nabla_q^{-\nu} (pf^2) \le (\alpha m + \beta M) \nabla_q^{-\nu} (pfg).$$
⁽²⁶⁾

Proof Replacing Φ_1 , Φ_2 and $f(\tau)$ by m, M and $g(\tau)/f(\tau)$ in (24), and multiplying both sides by $(t - q\tau)^{(\nu-1)}/\Gamma_q(\nu)$ and integrating the resulting identity with respect to τ from 0 to t, we get (25).

Theorem 10 Let p, f and g be three functions on \mathbb{T}_{t_0} with $p(\tau) \ge 0$. (a) If there exist four constants $\Phi_1, \Phi_2, \Psi_1, \Psi_2 \in \mathbb{R}$ such that $(\Phi_2 g(\tau) - \Psi_1 f(\tau))(\Psi_2 f(\tau) - \Phi_1 g(\tau)) \ge 0$ for all $\tau > 0$, then

$$\Phi_{1}\Phi_{2}\nabla_{q}^{-\nu}(pg^{2}) + \Psi_{1}\Psi_{2}\nabla_{q}^{-\nu}(pf^{2}) \leq (\Phi_{1}\Psi_{1} + \Phi_{2}\Psi_{2})\nabla_{q}^{-\nu}(pfg)$$

$$\leq |\Phi_{1}\Psi_{1} + \Phi_{2}\Psi_{2}|(\nabla_{q}^{-\nu}(pf^{2}) + \nabla_{q}^{-\nu}(pg^{2})).$$
 (27)

Moreover, if $\Phi_1 \Phi_2 \Psi_1 \Psi_2 > 0$ *, then*

$$\sqrt{\frac{\Phi_1\Phi_2}{\Psi_1\Psi_2}}\nabla_q^{-\nu}\left(pg^2\right) + \sqrt{\frac{\Psi_1\Psi_2}{\Phi_1\Phi_2}}\nabla_q^{-\nu}\left(pf^2\right) \le \left(\sqrt{\frac{\Phi_2\Psi_2}{\Phi_1\Psi_1}} + \sqrt{\frac{\Phi_1\Psi_1}{\Phi_2\Psi_2}}\right)\nabla_q^{-\nu}\left(pfg\right),\tag{28}$$

$$\nabla_{q}^{-\nu}(pg^{2})\nabla_{q}^{-\nu}(pf^{2}) \leq \left(\frac{\Phi_{1}\Psi_{1} + \Phi_{2}\Psi_{2}}{2\Phi_{1}\Psi_{1}\Phi_{2}\Psi_{2}}\right)^{2}\nabla_{q}^{-\nu}(pfg).$$
⁽²⁹⁾

(b) If there exist four constants $\Phi_1, \Phi_2, \Psi_1, \Psi_2 \in \mathbb{R}$ such that $(\Phi_2 g(\tau) - \Psi_1 f(\rho))(\Psi_2 f(\rho) - \Phi_1 g(\tau)) \ge 0$ for all $\tau, \rho > 0$, then

$$\Phi_{1}\Phi_{2}\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pg^{2}) + \Psi_{1}\Psi_{2}\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pf^{2})$$

$$\leq (\Phi_{1}\Psi_{1} + \Phi_{2}\Psi_{2})\nabla_{q}^{-\nu}(pf)\nabla_{q}^{-\nu}(pg).$$
(30)

(c) *If* $\Phi_1 \Phi_2 > 0$ *and* $\Psi_1 \Psi_2 > 0$ *, then*

$$\Phi_1 \Phi_2 \left(\nabla_q^{-\nu}(pg) \right)^2 + \Psi_1 \Psi_2 \left(\nabla_q^{-\nu}(pf) \right)^2 \le (\Phi_1 \Psi_1 + \Phi_2 \Psi_2) \nabla_q^{-\nu}(p) \nabla_q^{-\nu}(pfg).$$
(31)

(d) *If* $\Phi_1 \Phi_2 > 0$ *and* $\Psi_1 \Psi_2 > 0$ *, then*

$$\Phi_1 \Phi_2 \left(\nabla_q^{-\nu}(pg) \right)^2 + \Psi_1 \Psi_2 \left(\nabla_q^{-\nu}(pf) \right)^2 \le (\Phi_1 \Psi_1 + \Phi_2 \Psi_2) \nabla_q^{-\nu}(pf) \nabla_q^{-\nu}(pg).$$
(32)

Proof Case (a). It follows from the assumption that

$$p(\tau)\big(\Phi_2 g(\tau) - \Psi_1 f(\tau)\big)\big(\Psi_2 f(\tau) - \Phi_1 g(\tau)\big) \ge 0$$

for all $\tau \ge 0$, which implies that

$$\Phi_1 \Phi_2 p(\tau) g^2(\tau) + \Psi_1 \Psi_2 p(\tau) f^2(\tau) \le (\Phi_1 \Psi_1 + \Phi_2 \Psi_2) p(\tau) f(\tau) g(\tau).$$
(33)

Multiplying both sides of (33) by $(t - q\tau)^{(\nu-1)}/\Gamma_q(\nu)$ and integrating the resulting identity with respect to τ from 0 to t, we obtain the left-hand side of (27). Furthermore, by Cauchy's inequality, we get the right-hand side of (27).

Multiplying both sides of the inequality

$$\Phi_1\Phi_2\nabla_q^{-\nu}\left(pg^2\right)+\Psi_1\Psi_2\nabla_q^{-\nu}\left(pf^2\right)\leq (\Phi_1\Psi_1+\Phi_2\Psi_2)\nabla_q^{-\nu}\left(pfg\right)$$

by $1/\sqrt{\Phi_1\Phi_2\Psi_1\Psi_2}$, we get (28).

On the other hand, it follows from $\Phi_1 \Phi_2 \Psi_1 \Psi_2 > 0$ and $(\sqrt{\Phi_1 \Phi_2 \nabla_q^{-\nu}(pg^2)} - \sqrt{\Psi_1 \Psi_2 \nabla_q^{-\nu}(pf^2)})^2 \ge 0$ that

$$2\sqrt{\Phi_{1}\Phi_{2}\nabla_{q}^{-\nu}(pg^{2})}\sqrt{\Psi_{1}\Psi_{2}\nabla_{q}^{-\nu}(pf^{2})} \leq \Phi_{1}\Phi_{2}\nabla_{q}^{-\nu}(pg^{2}) + \Psi_{1}\Psi_{2}\nabla_{q}^{-\nu}(pf^{2}).$$
(34)

According to (27) and (34), we have

$$4\Phi_{1}\Phi_{2}\Psi_{1}\Psi_{2}\nabla_{q}^{-\nu}(pg^{2})\nabla_{q}^{-\nu}(pf^{2}) \leq (\Phi_{1}\Psi_{1}+\Phi_{2}\Psi_{2})^{2}(\nabla_{q}^{-\nu}(pfg))^{2},$$

which implies (29).

Case (b). It follows from the assumption that

$$p(\tau)p(\rho)\big(\Phi_2g(\tau)-\Psi_1f(\rho)\big)\big(\Psi_2f(\rho)-\Phi_1g(\tau)\big)\geq 0$$

for all τ , $\rho > 0$, which implies that

$$\Phi_1 \Phi_2 p(\tau) p(\rho) g^2(\tau) + \Psi_1 \Psi_2 p(\tau) p(\rho) f^2(\rho)$$

$$\leq \Phi_1 \Psi_1 p(\tau) p(\rho) f(\rho) g(\tau) + \Phi_2 \Psi_2 p(\tau) p(\rho) f(\rho) g(\tau).$$
(35)

Multiplying both sides of (35) by $(t-q\tau)^{(\nu-1)}(t-q\rho)^{(\nu-1)}/\Gamma_q^2(\nu)$ and integrating the resulting identity with respect to τ and ρ from 0 to t, respectively, we obtain (30).

Case (c) and (d). It follows from Cauchy's inequality that

$$\left(\nabla_q^{-\nu}(pf)\right)^2 \leq \nabla_q^{-\nu}(p)\nabla_q^{-\nu}(pf^2), \qquad \left(\nabla_q^{-\nu}(pg)\right)^2 \leq \nabla_q^{-\nu}(p)\nabla_q^{-\nu}(pg^2).$$

Combining (a), (b) and the preceding two inequalities, we see that

$$\begin{split} \Phi_{1}\Phi_{2}\big(\nabla_{q}^{-\nu}(pg)\big)^{2} + \Psi_{1}\Psi_{2}\big(\nabla_{q}^{-\nu}(pf)\big)^{2} &\leq \Phi_{1}\Phi_{2}\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pf^{2}) + \Psi_{1}\Psi_{2}\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pg^{2}) \\ &\leq (\Phi_{1}\Psi_{1} + \Phi_{2}\Psi_{2})\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pfg), \end{split}$$

which implies (31). Furthermore,

$$\begin{split} \Phi_{1}\Phi_{2}\big(\nabla_{q}^{-\nu}(pg)\big)^{2} + \Psi_{1}\Psi_{2}\big(\nabla_{q}^{-\nu}(pf)\big)^{2} &\leq \Phi_{1}\Phi_{2}\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}\big(pf^{2}\big) + \Psi_{1}\Psi_{2}\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}\big(pg^{2}\big) \\ &\leq (\Phi_{1}\Psi_{1} + \Phi_{2}\Psi_{2})\nabla_{q}^{-\nu}(pf)\nabla_{q}^{-\nu}(pg), \end{split}$$

which implies (32).

Theorem 11 Let p, f and g be three positive functions on \mathbb{T}_{t_0} with $p(\tau) \ge 0$. Then we have

$$\left(\nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}(pfg) + \nabla_{q}^{-\nu}(pf) \nabla_{q}^{-\nu}(pg) \right)^{2} \leq \left(\nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}(pf^{2}) + \left(\nabla_{q}^{-\nu}(pf) \right)^{2} \right) \\ \times \left(\nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}(pg^{2}) + \left(\nabla_{q}^{-\nu}(pg) \right)^{2} \right).$$
(36)

Moreover, under the assumptions of (a) and (b) in Theorem 10, the following inequality holds:

$$4\Phi_{1}\Psi_{1}\Phi_{2}\Psi_{2}\left(\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pf^{2}) + \left(\nabla_{q}^{-\nu}(pf)\right)^{2}\right)\left(\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pg^{2}) + \left(\nabla_{q}^{-\nu}(pg)\right)^{2}\right)$$

$$\leq (\Phi_{1}\Psi_{1} + \Phi_{2}\Psi_{2})^{2}\left(\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pfg) + \nabla_{q}^{-\nu}(pf)\nabla_{q}^{-\nu}(pg)\right)^{2}.$$
(37)

Proof First of all, we give the proof of (36). By Cauchy's inequality and the element inequality $2xy\sqrt{uv} \le x^2u + y^2v$, for all $x, y, u, v \ge 0$, we have

$$\begin{split} \left(\nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}(pfg) + \nabla_{q}^{-\nu}(pf) \nabla_{q}^{-\nu}(pg) \right)^{2} \\ &= \left(\nabla_{q}^{-\nu}(p) \right)^{2} \left(\nabla_{q}^{-\nu}(pfg) \right)^{2} + \left(\nabla_{q}^{-\nu}(pf) \right)^{2} \left(\nabla_{q}^{-\nu}(pf) \right)^{2} \\ &+ 2 \nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}(pf) \nabla_{q}^{-\nu}(pg) \nabla_{q}^{-\nu}(pfg) \\ &\leq \left(\nabla_{q}^{-\nu}(p) \right)^{2} \left(\nabla_{q}^{-\nu}(pfg) \right)^{2} + \left(\nabla_{q}^{-\nu}(pf) \right)^{2} \left(\nabla_{q}^{-\nu}(pf) \right)^{2} \\ &+ 2 \nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}(pf) \nabla_{q}^{-\nu}(pg) \sqrt{\nabla_{q}^{-\nu}(pf^{2}) \nabla_{q}^{-\nu}(pg^{2})} \\ &\leq \left(\nabla_{q}^{-\nu}(p) \right)^{2} \nabla_{q}^{-\nu}(pf^{2}) \nabla_{q}^{-\nu}(pg^{2}) + \left(\nabla_{q}^{-\nu}(pf) \right)^{2} \left(\nabla_{q}^{-\nu}(pf) \right)^{2} \\ &+ \nabla_{q}^{-\nu}(p) \left(\nabla_{q}^{-\nu}(pf^{2}) \left(\nabla_{q}^{-\nu}(pg) \right)^{2} + \nabla_{q}^{-\nu}(pg^{2}) \left(\nabla_{q}^{-\nu}(pf) \right)^{2} \right) \\ &= \left(\nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}(pf^{2}) + \left(\nabla_{q}^{-\nu}(pf) \right)^{2} \right) \left(\nabla_{q}^{-\nu}(p) \nabla_{q}^{-\nu}(pg^{2}) + \left(\nabla_{q}^{-\nu}(pg) \right)^{2} \right), \end{split}$$

which implies (36).

Next, we prove that (37) holds. It follows from (a) and (b) in Theorem 10 that

$$\begin{split} (\Phi_{1}\Psi_{1}+\Phi_{2}\Psi_{2})\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pfg) &\geq \Phi_{1}\Phi_{2}\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pg^{2})+\Psi_{1}\Psi_{2}\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pf^{2})\\ &\geq \Phi_{1}\Phi_{2}\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pg^{2})+\Psi_{1}\Psi_{2}\left(\nabla_{q}^{-\nu}(pf)\right)^{2},\\ (\Phi_{1}\Psi_{1}+\Phi_{2}\Psi_{2})\nabla_{q}^{-\nu}(pf)\nabla_{q}^{-\nu}(pg) &\geq \Phi_{1}\Phi_{2}\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pg^{2})+\Psi_{1}\Psi_{2}\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pf^{2})\\ &\geq \Phi_{1}\Phi_{2}\left(\nabla_{q}^{-\nu}(pg)\right)^{2}+\Psi_{1}\Psi_{2}\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pf^{2}). \end{split}$$

Combining the preceding two inequalities and the element inequality $(x + y)^2 \ge 4xy$, we see that

$$\begin{aligned} (\Phi_{1}\Psi_{1} + \Phi_{2}\Psi_{2})^{2} (\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pfg) + \nabla_{q}^{-\nu}(pf)\nabla_{q}^{-\nu}(pg))^{2} \\ &= \left((\Phi_{1}\Psi_{1} + \Phi_{2}\Psi_{2})\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pfg) + (\Phi_{1}\Psi_{1} + \Phi_{2}\Psi_{2})\nabla_{q}^{-\nu}(pf)\nabla_{q}^{-\nu}(pg) \right)^{2} \\ &\geq \left(\Phi_{1}\Phi_{2}\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pg^{2}) + \Psi_{1}\Psi_{2} (\nabla_{q}^{-\nu}(pf))^{2} \right. \\ &+ \Phi_{1}\Phi_{2} (\nabla_{q}^{-\nu}(pg))^{2} + \Psi_{1}\Psi_{2}\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}(pf^{2}) \right)^{2} \end{aligned}$$

$$\begin{split} &= \left(\Phi_{1}\Phi_{2}\left(\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}\left(pg^{2}\right) + \left(\nabla_{q}^{-\nu}(pg)\right)^{2}\right) \\ &+ \Psi_{1}\Psi_{2}\left(\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}\left(pf^{2}\right) + \left(\nabla_{q}^{-\nu}(pf)\right)^{2}\right)\right)^{2} \\ &\geq 4\Phi_{1}\Psi_{1}\Phi_{2}\Psi_{2}\left(\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}\left(pf^{2}\right) + \left(\nabla_{q}^{-\nu}(pf)\right)^{2}\right)\left(\nabla_{q}^{-\nu}(p)\nabla_{q}^{-\nu}\left(pg^{2}\right) + \left(\nabla_{q}^{-\nu}(pg)\right)^{2}\right), \end{split}$$

which implies (37).

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Acknowledgements

The authors sincerely thank the editor and reviewers for their valuable suggestions and useful comments that have led to the present improved version of the original manuscript.

Received: 2 May 2012 Accepted: 27 November 2012 Published: 17 December 2012

References

- Anastassiou, GA: Opial type inequalities involving fractional derivatives of two functions and applications. Comput. Math. Appl. 48, 1701-1731 (2004)
- 2. Anastassiou, GA: Multivariate fractional Ostrowski type inequalities. Comput. Math. Appl. 54, 434-447 (2007)
- 3. Anastassiou, GA: Hilbert-Pachpatte type fractional integral inequalities. Math. Comput. Model. 49, 1539-1550 (2009)
- 4. Anastassiou, GA: Opial type inequalities involving Riemann-Liouville fractional derivatives of two functions with applications. Math. Comput. Model. **48**, 344-374 (2008)
- 5. Denton, Z, Vatsala, AS: Fractional integral inequalities and applications. Comput. Math. Appl. 59, 1087-1094 (2010)
- 6. Belarbi, S, Dahmani, Z: On some new fractional integral inequalities. J. Inequal. Pure Appl. Math. 10, Art. ID 86 (2009)
- 7. Dahmani, Z, Tabharit, L, Taf, S: New generalisations of Grüss inequality using Riemann-Liouville fractional integrals. Bull. Math. Anal. Appl. **2**, 93-99 (2010)
- 8. Öğünmez, H, Özkan, U: Fractional quantum integral inequalities. J. Inequal. Appl. 2011, Art. ID 787939 (2011)
- 9. Bohner, M, Ferreira, RAC: Some discrete fractional inequalities of Chebyshev type. Afr. Diaspora J. Math. (N.S.) 11(2), 132-137 (2011)
- 10. Yang, W: Some new fractional quantum integral inequalities. Appl. Math. Lett. 25, 963-969 (2012)
- 11. Marinković, S, Rajković, P, Stanković, M: The inequalities for some types of *q*-integrals. Comput. Math. Appl. 56, 2490-2498 (2008)
- 12. Yeh, C, et al.: Some complements of Cauchy's inequality on time scales. J. Inequal. Appl. 2006, Art. ID 97430 (2006)
- 13. Bohner, M, Peterson, A: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001)
- 14. Atici, F, Eloe, P: Fractional q-calculus on a time scale. J. Nonlinear Math. Phys. 14, 341-352 (2007)
- Rajković, P, Marinković, S, Stanković, M: A generalization of the concept of *q*-fractional integrals. Acta Math. Sin. Engl. Ser. 25, 1635-1646 (2009)
- 16. Al-Salam, WA: Some fractional q-integrals and q-derivatives. Proc. Edinb. Math. Soc. 15(2), 135-140 (1966/1967)
- 17. Agarwal, RP: Certain fractional q-integrals and q-derivatives. Proc. Camb. Philos. Soc. 66, 365-370 (1969)
- 18. Mitrinović, DS, Pečarić, JE, Fink, AM: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993)
- Dragomir, SS: A survey on Cauchy-Bunyakovsky-Schwarz type discrete inequalities. J. Inequal. Pure Appl. Math. 4(3), Art. ID 63 (2003)

doi:10.1186/1029-242X-2012-299

Cite this article as: Zhu et al.: **Some new fractional** *q*-integral Grüss-type inequalities and other inequalities. *Journal of Inequalities and Applications* 2012 **2012**:299.