
Zhu et al. Journal of Inequalities and Applications 2012, 2012:299
http://www.journalofinequalitiesandapplications.com/content/2012/1/299

RESEARCH Open Access

Some new fractional q-integral Grüss-type
inequalities and other inequalities
Chaowu Zhu, Wengui Yang* and Qingbo Zhao

*Correspondence:
wgyang0617@yahoo.com
Ministry of Public Education,
Sanmenxia Polytechnic, Sanmenxia,
472000, China

Abstract
In this paper, we employ a fractional q-integral on the specific time scale,
Tt0 = {t : t = t0qn,n a nonnegative integer} ∪ {0}, where t0 ∈R and 0 < q < 1, to
establish some new fractional q-integral Grüss-type inequalities by using one or two
fractional parameters. Furthermore, other fractional q-integral inequalities are also
obtained.
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1 Introduction
In the past several years, by using the Riemann-Liouville fractional integrals, the frac-
tional integral inequalities and applications have been addressed extensively by several
researchers. For example, we refer the reader to [–] and the references cited therein.
Dahmani et al. [] gave the following fractional integral inequalities by using the Riemann-
Liouville fractional integrals. Let f and g be two integrable functions on [,∞) satisfying
the following conditions:

ϕ ≤ f (x)≤ ϕ, ψ ≤ g(x)≤ ψ, ϕ,ϕ,ψ,ψ ∈R, x ∈ [,∞).

For all t > , α >  and β > , then

∣∣∣∣ tα

�(α + )
Jα(fg)(t) – Jαf (t)Jαg(t)

∣∣∣∣ ≤
(

tα

�(α + )

)

(ϕ – ϕ)(ψ –ψ)

and

(
tα

�(α + )
Jβ (fg)(t) +

tβ

�(β + )
Jα(fg)(t) – Jαf (t)Jβg(t) – Jβ f (t)Jαg(t)

)

≤
((

ϕ
tα

�(α + )
– Jαf (t)

)(
Jβ f (t) – ϕ

tβ

�(β + )

)
+

(
Jαf (t) – ϕ

tα

�(α + )

)

×
(

ψ
tβ

�(β + )
– Jβ f (t)

))((
ψ

tα

�(α + )
– Jαg(t)

)(
Jβg(t) –ψ

tβ

�(β + )

)

+
(
Jαg(t) –ψ

tα

�(α + )

)(
ψ

tβ

�(β + )
– Jβg(t)

))
.
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To the best of authors’ knowledge, only some fractional q-integral inequalities have been
established in recent years. That is, only Öğünmez andÖzkan [], Bohner and Ferreira []
and Yang [] obtained some fractional q-integral inequalities. With motivation from the
papers [, , ], the main purpose of this article is to establish some new fractional q-
integral inequalities. First of all, by using one or two fractional parameters, we establish
some new fractional q-integral Grüss-type inequalities on the specific time scale Tt = {t :
t = tqn,n a nonnegative integer} ∪ {}, where t ∈R and  < q < . In general, a time scale
is an arbitrary nonempty closed subset of real numbers []. Furthermore, other fractional
q-integral inequalities are also obtained.

2 Description of fractional q-calculus
In this section, we introduce the basic definitions on fractional q-calculus. More results
concerning fractional q-calculus can be found in [–].
Let t ∈ R and define Tt = {t : t = tqn,n a nonnegative integer} ∪ {},  < q < . For a

function f : Tt →R, the nabla q-derivative of f

∇qf (t) =
f (qt) – f (t)
(q – )t

for all t ∈ Tt\{}. The q-integral of f is
∫ t


f (s)∇s = ( – q)t

∞∑
i=

qif
(
tqi

)
.

The q-factorial function is defined in the following way: if n is a positive integer, then

(t – s)(n) = (t – s)(t – qs)
(
t – qs

) · · · (t – qn–s
)
.

If n is not a positive integer, then

(t – s)(n) = tn
∞∏
k=

 – (s/t)qk

 – (s/t)qn+k
.

The q-derivative of the q-factorial function with respect to t is

∇q(t – s)(n) =
 – qn

 – q
(t – s)(n–),

and the q-derivative of the q-factorial function with respect to s is

∇q(t – s)(n) = –
 – qn

 – q
(t – qs)(n–).

The q-exponential function is defined as

eq(t) =
∞∏
k=

(
 – qkt

)
, eq() = .
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Define the q-gamma function by

�q(ν) =


 – q

∫ 



(
t

 – q

)ν–

eq(qt)∇t, ν ∈R
+.

Note that

�q(ν + ) = [ν]q�q(ν), ν ∈R
+,

where [ν]q := ( – qν)/( – q). The fractional q-integral is defined as

∇–ν
q f (t) =


�q(ν)

∫ t


(t – qs)(ν–)f (s)∇s.

Note that

∇–ν
q () =


�q(ν)

q – 
qν – 

t(ν) =


�q(ν + )
t(ν).

3 Fractional q-integral Grüss-type inequalities
To state the main results in this paper, we employ the following lemmas. For the sake of
convenience, we use the following assumption (A) in this section:

ϕ ≤ f (x)≤ ϕ, ψ ≤ g(x)≤ ψ, ϕ,ϕ,ψ,ψ ∈R, x ∈ Tt .

Lemma  Let ϕ,ϕ ∈ R and f be a function defined on Tt . Then, for all t >  and ν > ,
we have

t(ν)

�q(ν + )
∇–ν

q f (t) –
(∇–ν

q f (t)
) = (

ϕ
t(ν)

�q(ν + )
–∇–ν

q f (t)
)(

∇–ν
q f (t) – ϕ

t(ν)

�q(ν + )

)

–
t(ν)

�q(ν + )
∇–ν

q
(
ϕ – f (t)

)(
f (t) – ϕ

)
. ()

Proof Let ϕ,ϕ ∈ R and f be a function defined on Tt . For any τ >  and ρ > , we
have

(
ϕ – f (ρ)

)(
f (τ ) – ϕ

)
+

(
ϕ – f (τ )

)(
f (ρ) – ϕ

)
–

(
ϕ – f (τ )

)(
f (τ ) – ϕ

)
–

(
ϕ – f (ρ)

)(
f (ρ) – ϕ

)
= f (τ ) + f (ρ) – f (τ )f (ρ). ()

Multiplying both sides of () by (t – qτ )(ν–)/�q(ν) and integrating the resulting identity
with respect to τ from  to t, we get

(
ϕ – f (ρ)

)(∇–ν
q f (t) – ϕ

t(ν)

�q(ν + )

)
+

(
ϕ

t(ν)

�q(ν + )
–∇–ν

q f (t)
)(

f (ρ) – ϕ
)

–∇–ν
q

(
ϕ – f (t)

)(
f (t) – ϕ

)
–

(
ϕ – f (ρ)

)(
f (ρ) – ϕ

) t(ν)

�q(ν + )

= ∇–ν
q f (t) + f (ρ)

t(ν)

�q(ν + )
– f (ρ)∇–ν

q f (t). ()
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Multiplying both sides of () by (t – qρ)(ν–)/�q(ν) and integrating the resulting identity
with respect to ρ from  to t, we obtain

(
ϕ

t(ν)

�q(ν + )
–∇–ν

q f (t)
)(

∇–ν
q f (t) – ϕ

t(ν)

�q(ν + )

)

+
(

ϕ
t(ν)

�q(ν + )
–∇–ν

q f (t)
)(

∇–ν
q f (t) – ϕ

t(ν)

�q(ν + )

)

–∇–ν
q

(
ϕ – f (t)

)(
f (t) – ϕ

) t(ν)

�q(ν + )
–∇–ν

q
(
ϕ – f (t)

)(
f (t) – ϕ

) t(ν)

�q(ν + )

= ∇–ν
q f (t)

t(ν)

�q(ν + )
+∇–ν

q f (t)
t(ν)

�q(ν + )
– ∇–ν

q f (t)∇–ν
q f (t),

which implies (). �

Lemma  Let f and g be two functions defined on Tt . Then, for all t > , μ >  and ν > ,
we have

(
t(ν)

�q(ν + )
∇–μ

q (fg)(t) +
t(μ)

�q(μ + )
∇–ν

q (fg)(t) –∇–ν
q f (t)∇–μ

q g(t) –∇–μ
q f (t)∇–ν

q g(t)
)

≤
(

t(ν)

�q(ν + )
∇–μ

q f (t) +
t(μ)

�q(μ + )
∇–ν

q f (t) – ∇–ν
q f (t)∇–μ

q f (t)
)

×
(

t(ν)

�q(ν + )
∇–μ

q g(t) +
t(μ)

�q(μ + )
∇–ν

q g(t) – ∇–ν
q g(t)∇–μ

q g(t)
)
. ()

Proof In order to prove Lemma , we firstly prove that the following inequality (i.e.,
Cauchy-Schwarz inequality for double q-integrals) holds. Let f (x, y), g(x, y) and h(x, y) be
three functions defined on T


t with h(x, y) ≥ . Then we have

(∫ t



∫ t


h(x, y)f (x, y)g(x, y)dqxdqy

)

≤
(∫ t



∫ t


h(x, y)f (x, y)dqxdqy

)(∫ t



∫ t


h(x, y)g(x, y)dqxdqy

)
.

According to the definition of q-integral, it is easy to obtain that double q-integral is

∫ t



∫ t


f (x, y)dqxdqy

=
∫ t



(
( – q)t

∞∑
i=

qif
(
tqi, y

))
dqy

= ( – q)t
∞∑
j=

qj
(
( – q)t

∞∑
i=

qif
(
tqi, tqj

))

= ( – q)t
∞∑
i=

∞∑
j=

qi+jf
(
tqi, tqj

)
.
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Due to discrete Cauchy-Schwarz inequality with weight coefficient, we have

(∫ t



∫ t


h(x, y)f (x, y)g(x, y)dqxdqy

)

=

(
( – q)t

∞∑
i=

∞∑
j=

qi+jh
(
tqi, tqj

)
f
(
tqi, tqj

)
g
(
tqi, tqj

))

≤
(
( – q)t

∞∑
i=

∞∑
j=

qi+jh
(
tqi, tqj

)
f 

(
tqi, tqj

))

×
(
( – q)t

∞∑
i=

∞∑
j=

qi+jh
(
tqi, tqj

)
g

(
tqi, tqj

))

=
(∫ t



∫ t


h(x, y)f (x, y)dqxdqy

)(∫ t



∫ t


h(x, y)g(x, y)dqxdqy

)
.

Next, we prove that Lemma  holds. Let H(τ ,ρ) be defined by

H(τ ,ρ) =
(
f (τ ) – f (ρ)

)(
g(τ ) – g(ρ)

)
, t > , τ > ,ρ > . ()

Multiplying both sides of () by (t – qτ )(ν–)(t – qρ)(μ–)/(�q(ν)�q(μ)) and integrating the
resulting identity with respect to τ and ρ from  to t, then applying the Cauchy-Schwarz
inequality for double q-integrals, we obtain (). �

Lemma  Let ϕ,ϕ ∈ R and f be a function defined on Tt . Then, for all t >  and ν > ,
we have

t(ν)

�q(ν + )
∇–μ

q f (t) +
t(μ)

�q(μ + )
∇–ν

q f (t) – ∇–ν
q f (t)∇–μ

q f (t)

=
(

ϕ
t(ν)

�q(ν + )
–∇–ν

q f (t)
)(

∇–μ
q f (t) – ϕ

t(μ)

�q(μ + )

)

+
(

ϕ
t(μ)

�q(μ + )
–∇–μ

q f (t)
)(

∇–ν
q f (t) – ϕ

t(ν)

�q(ν + )

)

–
t(ν)

�q(ν + )
∇–μ

q
(
ϕ – f (t)

)(
f (t) – ϕ

)

–
t(μ)

�q(μ + )
∇–ν

q
(
ϕ – f (t)

)(
f (t) – ϕ

)
. ()

Proof Multiplying both sides of () by (t – qρ)(μ–)/�q(μ) and integrating the resulting
identity with respect to ρ from  to t, we obtain

(
ϕ

t(μ)

�q(μ + )
–∇–μ

q f (t)
)(

∇–ν
q f (t) – ϕ

t(ν)

�q(ν + )

)

+
(

ϕ
t(ν)

�q(ν + )
–∇–ν

q f (t)
)(

∇–μ
q f (t) – ϕ

t(μ)

�q(μ + )

)

–∇–ν
q

(
ϕ – f (t)

)(
f (t) – ϕ

) t(μ)

�q(μ + )
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–∇–μ
q

(
ϕ – f (t)

)(
f (t) – ϕ

) t(ν)

�q(ν + )

= ∇–ν
q f (t)

t(μ)

�q(μ + )
+∇–μ

q f (t)
t(ν)

�q(ν + )
– ∇–ν

q f (t)∇–μ
q f (t),

which implies (). �

Theorem  Let f and g be two functions defined on Tt satisfying (A). Then, for all t > 
and ν > , we have

∣∣∣∣ t(ν)

�q(ν + )
∇–ν

q (fg)(t) –∇–ν
q f (t)∇–ν

q g(t)
∣∣∣∣ ≤

(
t(ν)

�q(ν + )

)

(ϕ – ϕ)(ψ –ψ). ()

Proof Let f and g be two functions defined on Tt satisfying (A). Multiplying both sides
of () by (t – qτ )(ν–)(t – qρ)(ν–)/�

q(ν) and integrating the resulting identity with respect
to τ and ρ from  to t, we can state that


�
q(μ)

∫ t



∫ t


(t – qτ )(ν–)(t – qρ)(ν–)H(τ ,ρ)∇qτ∇qρ

= 
(

t(ν)

�q(ν + )
∇–ν

q (fg)(t) –∇–ν
q f (t)∇–ν

q g(t)
)
. ()

Applying the Cauchy-Schwarz inequality for double q-integrals, we have

(
t(ν)

�q(ν + )
∇–ν

q (fg)(t) –∇–ν
q f (t)∇–ν

q g(t)
)

≤
(

t(ν)

�q(ν + )
∇–ν

q f (t) –
(∇–ν

q f (t)
))(

t(ν)

�q(ν + )
∇–ν

q g(t) –
(∇–ν

q g(t)
)). ()

Since (ϕ – f (x))(f (x) – ϕ) ≥  and (ψ – g(x))(g(x) –ψ) ≥ , we have

t(ν)

�q(ν + )
∇–ν

q
(
ϕ – f (x)

)(
f (x) – ϕ

) ≥ ,

t(ν)

�q(ν + )
∇–ν

q
(
ψ – g(x)

)(
g(x) –ψ

) ≥ .

Thus,

t(ν)

�q(ν + )
∇–ν

q f (t) –
(∇–ν

q f (t)
)

≤
(

ϕ
t(ν)

�q(ν + )
–∇–ν

q f (t)
)(

∇–ν
q f (t) – ϕ

t(ν)

�q(ν + )

)
,

t(ν)

�q(ν + )
∇–ν

q g(t) –
(∇–ν

q g(t)
)

≤
(

ψ
t(ν)

�q(ν + )
–∇–ν

q g(t)
)(

∇–ν
q g(t) –ψ

t(ν)

�q(ν + )

)
.

()
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Combining () and (), from Lemma , we deduce that

(
t(ν)

�q(ν + )
∇–ν

q (fg)(t) –∇–ν
q f (t)∇–ν

q g(t)
)

≤
(

ϕ
t(ν)

�q(ν + )
–∇–ν

q f (t)
)(

∇–ν
q f (t) – ϕ

t(ν)

�q(ν + )

)

×
(

ψ
t(ν)

�q(ν + )
–∇–ν

q g(t)
)(

∇–ν
q g(t) –ψ

t(ν)

�q(ν + )

)
. ()

Now by using the elementary inequality xy≤ (x + y), x, y ∈R, we can state that


(

ϕ
t(ν)

�q(ν + )
–∇–ν

q f (t)
)(

∇–ν
q f (t) – ϕ

t(ν)

�q(ν + )

)

≤
(

t(ν)

�q(ν + )
(ϕ – ϕ)

)

,


(

ψ
t(ν)

�q(ν + )
–∇–ν

q g(t)
)(

∇–ν
q g(t) –ψ

t(ν)

�q(ν + )

)

≤
(

t(ν)

�q(ν + )
(ψ –ψ)

)

.

()

From () and (), we obtain (). �

Theorem  Let f and g be two functions defined on Tt satisfying (A). Then, for all t > ,
μ >  and ν > , we have

(
t(ν)

�q(ν + )
∇–μ

q (fg)(t) +
t(μ)

�q(μ + )
∇–ν

q (fg)(t) –∇–ν
q f (t)∇–μ

q g(t) –∇–μ
q f (t)∇–ν

q g(t)
)

≤
((

ϕ
t(ν)

�q(ν + )
–∇–ν

q f (t)
)(

∇–μ
q f (t) – ϕ

t(μ)

�q(μ + )

)
+

(
∇–ν

q f (t) – ϕ
t(ν)

�q(ν + )

)

×
(

ϕ
t(μ)

�q(μ + )
–∇–μ

q f (t)
))((

ψ
t(ν)

�q(ν + )
–∇–ν

q g(t)
)

×
(

∇–μ
q g(t) –ψ

t(μ)

�q(μ + )

)

+
(

∇–ν
q g(t) –ψ

t(ν)

�q(ν + )

)(
ψ

t(μ)

�q(μ + )
–∇–μ

q g(t)
))

.

Proof Since (ϕ – f (x))(f (x) – ϕ) ≥  and (ψ – g(x))(g(x) –ψ) ≥ , then we can write

–
t(ν)

�q(ν + )
∇–μ

q
(
ϕ – f (x)

)(
f (x) – ϕ

)
–

t(μ)

�q(μ + )
∇–ν

q
(
ϕ – f (x)

)(
f (x) – ϕ

)
≤ ,

–
t(ν)

�q(ν + )
∇–μ

q
(
ψ – g(x)

)(
g(x) –ψ

)
–

t(μ)

�q(μ + )
∇–ν

q
(
ψ – g(x)

)(
g(x) –ψ

)
≤ .

()
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Applying Lemma  to f and g , then by using Lemma  and the formula (), we obtain
Theorem . �

4 The other fractional q-integral inequalities
For the sake of simplicity, we always assume that ∇ν

qφ denotes ∇ν
qφ(t) and all of fractional

q-integrals are finite in this section.

Theorem Let f and g be two functions defined onTt and α,β >  satisfying /α+/β = .
Then the following inequalities hold:
(a) 

α
∇–ν

q (|f |α) + 
β
∇–ν

q (|g|β )≥ �q(ν+)
t(ν)

∇–ν
q (|f |)∇–ν

q (|g|).
(b) 

α
∇–ν

q (|f |α)∇–ν
q (|g|α) + 

β
∇–ν

q (|f |β )∇–ν
q (|g|β ) ≥ (∇–ν

q (|fg|)).
(c) 

α
∇–ν

q (|f |α)∇–ν
q (|g|β ) + 

β
∇–ν

q (|f |β )∇–ν
q (|g|α)≥ ∇–ν

q (|f ||g|α–)∇–ν
q (|f ||g|β–).

(d) ∇–ν
q (|f |α)∇–ν

q (|g|β ) ≥ ∇–ν
q (|fg|)∇–ν

q (|f |α–|g|β–).

Proof According to the well-known Young inequality,


α
xα +


β
yβ ≥ xy, ∀x, y≥ ,α,β > ,


α
+


β
= .

Putting x = f (τ ) and y = g(ρ), τ ,ρ > , we have


α

∣∣f (τ )∣∣α + 
β

∣∣g(ρ)∣∣β ≥ ∣∣f (τ )∣∣∣∣g(ρ)∣∣, ∀τ ,ρ > . ()

Multiplying both sides of () by (t – qτ )(ν–)(t – qρ)(ν–)/�
q(ν), we obtain


α

(t – qρ)(ν–)

�q(ν)
(t – qτ )(ν–)

�q(ν)
∣∣f (τ )∣∣α + 

β

(t – qτ )(ν–)

�q(ν)
(t – qρ)(ν–)

�q(ν)
∣∣g(ρ)∣∣β

≥ (t – qτ )(ν–)

�q(ν)
∣∣f (τ )∣∣ (t – qρ)(ν–)

�q(ν)
∣∣g(ρ)∣∣.

Integrating the preceding identity with respect to τ and ρ from  to t, we can state that


α

t(ν)

�q(ν + )
∇–ν

q
(∣∣f (t)∣∣α)

+

β

t(ν)

�q(ν + )
∇–ν

q
(∣∣g(t)∣∣β) ≥ ∇–ν

q
(∣∣f (t)∣∣)∇–ν

q
(∣∣g(t)∣∣),

which implies (a). The rest of inequalities can be proved in the same manner by the next
choice of the parameters in the Young inequality:
(b) x = |f (τ )||g(ρ)|, y = |f (ρ)||g(τ )|.
(c) x = |f (τ )|/|g(τ )|, y = |f (ρ)|/|g(ρ)|, (g(τ )g(ρ) 
= ).
(d) x = |f (ρ)|/|f (τ )|, y = |g(ρ)|/|g(τ )|, (f (τ )g(ρ) 
= ).

Repeating the foregoing arguments, we obtain (b)-(d). �

Theorem Let f and g be two functions defined onTt and α,β >  satisfying /α+/β = .
Then the following inequalities hold:
(a) 

α
∇–ν

q (|f |α)∇–ν
q (|g|) + 

β
∇–ν

q (|f |)∇–ν
q (|g|β ) ≥ ∇–ν

q (|fg|)∇–ν
q (|f |/β |g|/α).

(b) 
α
∇–ν

q (|f |)∇–ν
q (|g|β ) + 

β
∇–ν

q (|f |β )∇–ν
q (|g|) ≥ ∇–ν

q (|f |/α|g|/β )∇–ν
q (|f |α–|g|β–).

(c) ∇–ν
q (|f |)∇–ν

q ( 
α
|g|α + 

β
|g|β ) ≥ ∇–ν

q (|f |/α|g|)∇–ν
q (|f |/β |g|).
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Proof As a previous one, the proof is based on the Young inequality with the following
appropriate choice of parameters:
(a) x = |f (τ )||g(ρ)|/α , y = |f (ρ)|/β |g(τ )|.
(b) x = |f (τ )|/α/|f (ρ)|, y = |g(τ )|/β/|g(ρ)|, (f (ρ)g(ρ) 
= ).
(c) x = |f (τ )|/α/|g(ρ)|, y = |f (ρ)|/β/|g(τ )|, (g(τ )g(ρ) 
= ). �

Theorem  Let f and g be two positive functions defined on Tt such that for all t > ,

m = min
≤τ≤t

f (τ )
g(τ )

, M = max
≤τ≤t

f (τ )
g(τ )

. ()

Then the following inequalities hold:
(a)  ≤ ∇–ν

q (f )∇–ν
q (g)≤ (m+M)

mM (∇–ν
q (fg)).

(b)  ≤
√

∇–ν
q (f )∇–ν

q (g) –∇–ν
q (fg) ≤ (

√
M–

√
m)


√
mM ∇–ν

q (fg).

(c)  ≤ ∇–ν
q (f )∇–ν

q (g) – (∇–ν
q (fg)) ≤ (M–m)

mM (∇–ν
q (fg)).

Proof It follows from () and

(
f (τ )
g(τ )

–m
)(

M –
f (τ )
g(τ )

)
g(τ ) ≥ ,  ≤ τ ≤ t. ()

Multiplying both sides of () by (t – qτ )(ν–)/�q(ν) and integrating the resulting identity
with respect to τ from  to t, we can get

∇–ν
q

(
f 

)
+mM∇–ν

q
(
g

) ≤ (m +M)∇–ν
q (fg). ()

On the other hand, it follows frommM >  and (
√

∇–ν
q (f ) –

√
mM∇–ν

q (g)) ≥  that


√

∇–ν
q

(
f 

)√
mM∇–ν

q
(
g

) ≤ ∇–ν
q

(
f 

)
+mM∇–ν

q
(
g

)
. ()

According to () and (), we have

mM∇–ν
q

(
f 

)∇–ν
q

(
g

) ≤ (m +M)
(∇–ν

q (fg)
),

which implies (a). By a few transformations of (a), similarly, we obtain (b) and (c). �

Corollary  Under the conditions of Theorem , if α,β ∈ (, ), α + β = , then it follows
from the arithmetric-geometric mean inequality that

(

α

∇–ν
q

(
f 

))α(
mM
β

∇–ν
q

(
g

))β

≤ ∇–ν
q

(
f 

)
+mM∇–ν

q
(
g

) ≤ (m +M)∇–ν
q (fg),

which implies that

(∇–ν
q

(
f 

))α(∇–ν
q

(
g

))β ≤ ααββ m +M
(mM)β

∇–ν
q (fg).
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Theorem  Let f and g be two positive functions on Tt and

 < � ≤ f (τ )≤ � < ∞,  < � ≤ g(τ )≤ � <∞. ()

Then the following inequalities hold:
(a)  ≤ ∇–ν

q (f )∇–ν
q (g)≤ (��+��)

����
(∇–ν

q (fg)).

(b)  ≤
√

∇–ν
q (f )∇–ν

q (g) –∇–ν
q (fg) ≤ (

√
��–

√
��)


√

����
∇–ν

q (fg).

(c)  ≤ ∇–ν
q (f )∇–ν

q (g) – (∇–ν
q (fg)) ≤ (��–��)

����
(∇–ν

q (fg)).

Proof Under the conditions satisfied by the functions f and g , we have

�

�
≤ f (τ )

g(τ )
≤ �

�
.

Applying Theorem , we get the inequality (a) and using it, we have (b) and (c). �

Corollary  Let f be a positive function onTt satisfying ().Then the following inequality
holds:

∇–ν
q

(
f 

) ≤ �q(ν + )(� +�)

t(ν)��

(∇–ν
q (f )

).
Theorem  Let f and g be two positive functions on Tt and

 <m≤ g(τ )
f (τ )

≤ M <∞ ()

and p 
=  be a real number, then the following inequality holds:

∇–ν
q

(
f –pgp

)
+
mM(Mp– –mp–)

M –m
∇–ν

q
(
f p

) ≤ Mp –mp

M –m
∇–ν

q (fg)

for p /∈ (, ), or reverse for p ∈ (, ). Especially, for p = , we have

∇–ν
q

(
g

)
+mM∇–ν

q
(
f 

) ≤ (m +M)∇–ν
q (fg).

Proof The inequality is based on the Lah-Ribaric inequality [, p.] and [, p.]. �

Theorem  Let f and g be two positive functions on Tt and p 
=  be a real number. Then
the following inequality holds:

(∇–ν
q (fg)

)p ≤ (∇–ν
q

(
f 

))p–∇–ν
q

(
f –pgp

)

for p /∈ (, ), or reverse for p ∈ (, ).

Proof The above inequality is obtained via the Jensen inequality for the convex func-
tions. �
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Corollary  Let f be a positive function on Tt and p 
=  be a real number. Then the
following inequality holds:

(∇–ν
q (f )

)p ≤
(

t(ν)

�q(ν + )

)p–

∇–ν
q

(
f p

)

for p /∈ (, ), or reverse for p ∈ (, ).

Theorem Let p, f and g be three positive functions on Tt satisfying (). If  < α ≤ β < ,
α + β = , then the following inequalities hold:

(∇–ν
q (pf )

)β

(
∇–ν

q

(
p
f

))α

≤ α� + β�

(��)α
∇–ν

q (p), ()

(∇–ν
q

(
pf 

))β(∇–ν
q

(
pg

))α ≤ α�� + β��

(��)α(��)β
∇–ν

q (pfg). ()

Proof Since (βf (τ ) – α�)(f (τ ) –�) ≤  on Tt , we have

βf (τ ) – (α� + β�)f (τ ) + α�� ≤ . ()

Multiplying both sides of () by p(τ )/f (τ ), we get

βp(τ )f (τ ) + α��
p(τ )
f (τ )

≤ (α� + β�)p(τ ). ()

From () and arithmetric-geometric mean inequality, we obtain

(


�q(ν)

∫ t


(t – qτ )(ν–)p(τ )f (τ )∇τ

)β(


�q(ν)

∫ t


(t – qτ )(ν–)

p(τ )
f (τ )

∇τ

)α

=


(��)α

(


�q(ν)

∫ t


(t – qτ )(ν–)p(τ )f (τ )∇τ

)β(
��

�q(ν)

∫ t


(t – qτ )(ν–)

p(τ )
f (τ )

∇τ

)α

≤ 
(��)α

(
β

�q(ν)

∫ t


(t – qτ )(ν–)p(τ )f (τ )∇τ +

α��

�q(ν)

∫ t


(t – qτ )(ν–)

p(τ )
f (τ )

∇τ

)

≤ α� + β�

(��)α

(


�q(ν)

∫ t


(t – qτ )(ν–)p(τ )∇τ

)
, ()

which implies ().
Replacing p and f by pfg and f /g in (), respectively, and �/� ≤ f (τ )/g(τ ) ≤ �/�,

we get

(


�q(ν)

∫ t


(t – qτ )(ν–)p(τ )f (τ )∇τ

)β(


�q(ν)

∫ t


(t – qτ )(ν–)p(τ )g(τ )∇τ

)α

≤ α�� + β��

(��)α(��)β

(


�q(ν)

∫ t


(t – qτ )(ν–)p(τ )f (τ )g(τ )∇τ

)
,

which implies (). �
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Corollary  Let p, f and g be three positive functions onTt satisfying (). If  < α ≤ β < ,
α + β = , then the following inequality holds:

α∇–ν
q

(
pg

)
+ βmM∇–ν

q
(
pf 

) ≤ (αm + βM)∇–ν
q (pfg). ()

Proof Replacing�,� and f (τ ) bym,M and g(τ )/f (τ ) in (), andmultiplying both sides
by (t – qτ )(ν–)/�q(ν) and integrating the resulting identity with respect to τ from  to t,
we get (). �

Theorem  Let p, f and g be three functions on Tt with p(τ ) ≥ .
(a) If there exist four constants �,�,�,� ∈ R such that (�g(τ ) – �f (τ ))(�f (τ ) –

�g(τ )) ≥  for all τ > , then

��∇–ν
q

(
pg

)
+��∇–ν

q
(
pf 

) ≤ (�� +��)∇–ν
q (pfg)

≤ |�� +��|
(∇–ν

q
(
pf 

)
+∇–ν

q
(
pg

))
. ()

Moreover, if ���� > , then

√
��

��
∇–ν

q
(
pg

)
+

√
��

��
∇–ν

q
(
pf 

) ≤
(√

��

��
+

√
��

��

)
∇–ν

q (pfg), ()

∇–ν
q

(
pg

)∇–ν
q

(
pf 

) ≤
(

�� +��

����

)

∇–ν
q (pfg). ()

(b) If there exist four constants �,�,�,� ∈ R such that (�g(τ ) –�f (ρ))(�f (ρ) –
�g(τ )) ≥  for all τ ,ρ > , then

��∇–ν
q (p)∇–ν

q
(
pg

)
+��∇–ν

q (p)∇–ν
q

(
pf 

)
≤ (�� +��)∇–ν

q (pf )∇–ν
q (pg). ()

(c) If �� >  and �� > , then

��
(∇–ν

q (pg)
) +��

(∇–ν
q (pf )

) ≤ (�� +��)∇–ν
q (p)∇–ν

q (pfg). ()

(d) If �� >  and �� > , then

��
(∇–ν

q (pg)
) +��

(∇–ν
q (pf )

) ≤ (�� +��)∇–ν
q (pf )∇–ν

q (pg). ()

Proof Case (a). It follows from the assumption that

p(τ )
(
�g(τ ) –�f (τ )

)(
�f (τ ) –�g(τ )

) ≥ 

for all τ ≥ , which implies that

��p(τ )g(τ ) +��p(τ )f (τ )≤ (�� +��)p(τ )f (τ )g(τ ). ()
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Multiplying both sides of () by (t – qτ )(ν–)/�q(ν) and integrating the resulting identity
with respect to τ from to t, we obtain the left-hand side of (). Furthermore, byCauchy’s
inequality, we get the right-hand side of ().
Multiplying both sides of the inequality

��∇–ν
q

(
pg

)
+��∇–ν

q
(
pf 

) ≤ (�� +��)∇–ν
q (pfg)

by /
√

����, we get ().
On the other hand, it follows from ���� >  and (

√
��∇–ν

q (pg) –√
��∇–ν

q (pf )) ≥  that


√

��∇–ν
q

(
pg

)√
��∇–ν

q
(
pf 

) ≤ ��∇–ν
q

(
pg

)
+��∇–ν

q
(
pf 

)
. ()

According to () and (), we have

����∇–ν
q

(
pg

)∇–ν
q

(
pf 

) ≤ (�� +��)
(∇–ν

q (pfg)
),

which implies ().
Case (b). It follows from the assumption that

p(τ )p(ρ)
(
�g(τ ) –�f (ρ)

)(
�f (ρ) –�g(τ )

) ≥ 

for all τ ,ρ > , which implies that

��p(τ )p(ρ)g(τ ) +��p(τ )p(ρ)f (ρ)

≤ ��p(τ )p(ρ)f (ρ)g(τ ) +��p(τ )p(ρ)f (ρ)g(τ ). ()

Multiplying both sides of () by (t–qτ )(ν–)(t–qρ)(ν–)/�
q(ν) and integrating the resulting

identity with respect to τ and ρ from  to t, respectively, we obtain ().
Case (c) and (d). It follows from Cauchy’s inequality that

(∇–ν
q (pf )

) ≤ ∇–ν
q (p)∇–ν

q
(
pf 

)
,

(∇–ν
q (pg)

) ≤ ∇–ν
q (p)∇–ν

q
(
pg

)
.

Combining (a), (b) and the preceding two inequalities, we see that

��
(∇–ν

q (pg)
) +��

(∇–ν
q (pf )

) ≤ ��∇–ν
q (p)∇–ν

q
(
pf 

)
+��∇–ν

q (p)∇–ν
q

(
pg

)
≤ (�� +��)∇–ν

q (p)∇–ν
q (pfg),

which implies (). Furthermore,

��
(∇–ν

q (pg)
) +��

(∇–ν
q (pf )

) ≤ ��∇–ν
q (p)∇–ν

q
(
pf 

)
+��∇–ν

q (p)∇–ν
q

(
pg

)
≤ (�� +��)∇–ν

q (pf )∇–ν
q (pg),

which implies (). �
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Theorem  Let p, f and g be three positive functions on Tt with p(τ ) ≥ . Then we have

(∇–ν
q (p)∇–ν

q (pfg) +∇–ν
q (pf )∇–ν

q (pg)
) ≤ (∇–ν

q (p)∇–ν
q

(
pf 

)
+

(∇–ν
q (pf )

))
× (∇–ν

q (p)∇–ν
q

(
pg

)
+

(∇–ν
q (pg)

)). ()

Moreover, under the assumptions of (a) and (b) in Theorem , the following inequality
holds:

����
(∇–ν

q (p)∇–ν
q

(
pf 

)
+

(∇–ν
q (pf )

))(∇–ν
q (p)∇–ν

q
(
pg

)
+

(∇–ν
q (pg)

))
≤ (�� +��)

(∇–ν
q (p)∇–ν

q (pfg) +∇–ν
q (pf )∇–ν

q (pg)
). ()

Proof First of all, we give the proof of (). By Cauchy’s inequality and the element in-
equality xy

√
uv ≤ xu + yv, for all x, y,u, v ≥ , we have

(∇–ν
q (p)∇–ν

q (pfg) +∇–ν
q (pf )∇–ν

q (pg)
)

=
(∇–ν

q (p)
)(∇–ν

q (pfg)
) + (∇–ν

q (pf )
)(∇–ν

q (pf )
)

+ ∇–ν
q (p)∇–ν

q (pf )∇–ν
q (pg)∇–ν

q (pfg)

≤ (∇–ν
q (p)

)(∇–ν
q (pfg)

) + (∇–ν
q (pf )

)(∇–ν
q (pf )

)
+ ∇–ν

q (p)∇–ν
q (pf )∇–ν

q (pg)
√

∇–ν
q

(
pf 

)∇–ν
q

(
pg

)
≤ (∇–ν

q (p)
)∇–ν

q
(
pf 

)∇–ν
q

(
pg

)
+

(∇–ν
q (pf )

)(∇–ν
q (pf )

)
+∇–ν

q (p)
(∇–ν

q
(
pf 

)(∇–ν
q (pg)

) +∇–ν
q

(
pg

)(∇–ν
q (pf )

))
=

(∇–ν
q (p)∇–ν

q
(
pf 

)
+

(∇–ν
q (pf )

))(∇–ν
q (p)∇–ν

q
(
pg

)
+

(∇–ν
q (pg)

)),
which implies ().
Next, we prove that () holds. It follows from (a) and (b) in Theorem  that

(�� +��)∇–ν
q (p)∇–ν

q (pfg) ≥ ��∇–ν
q (p)∇–ν

q
(
pg

)
+��∇–ν

q (p)∇–ν
q

(
pf 

)
≥ ��∇–ν

q (p)∇–ν
q

(
pg

)
+��

(∇–ν
q (pf )

),
(�� +��)∇–ν

q (pf )∇–ν
q (pg) ≥ ��∇–ν

q (p)∇–ν
q

(
pg

)
+��∇–ν

q (p)∇–ν
q

(
pf 

)
≥ ��

(∇–ν
q (pg)

) +��∇–ν
q (p)∇–ν

q
(
pf 

)
.

Combining the preceding two inequalities and the element inequality (x + y) ≥ xy, we
see that

(�� +��)
(∇–ν

q (p)∇–ν
q (pfg) +∇–ν

q (pf )∇–ν
q (pg)

)
=

(
(�� +��)∇–ν

q (p)∇–ν
q (pfg) + (�� +��)∇–ν

q (pf )∇–ν
q (pg)

)
≥ (

��∇–ν
q (p)∇–ν

q
(
pg

)
+��

(∇–ν
q (pf )

)
+��

(∇–ν
q (pg)

) +��∇–ν
q (p)∇–ν

q
(
pf 

))
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=
(
��

(∇–ν
q (p)∇–ν

q
(
pg

)
+

(∇–ν
q (pg)

))
+��

(∇–ν
q (p)∇–ν

q
(
pf 

)
+

(∇–ν
q (pf )

)))
≥ ����

(∇–ν
q (p)∇–ν

q
(
pf 

)
+

(∇–ν
q (pf )

))(∇–ν
q (p)∇–ν

q
(
pg

)
+

(∇–ν
q (pg)

)),
which implies (). �
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