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Abstract
Recently, Alonso showed that every two-dimensional normed space is isometrically
isomorphic to a generalized Day-James space introduced by Nilsrakoo and Saejung.
In this paper, we consider the result of Alonso for n-dimensional normed spaces.
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A norm ‖ · ‖ on R
 is said to be absolute if ‖(x, y)‖ = ‖(|x|, |y|)‖ for all (x, y) ∈R

, and nor-
malized if ‖(, )‖ = ‖(, )‖ = . The set of all absolute normalized norms onR is denoted
by AN. Bonsall and Duncan [] showed the following characterization of absolute nor-
malized norms on R

. Namely, the set AN of all absolute normalized norms on R
 is in

a one-to-one correspondence with the set � of all convex functions ψ on [, ] satisfy-
ing max{ – t, t} ≤ ψ(t) ≤  for all t ∈ [, ] (cf. []). The correspondence is given by the
equation ψ(t) = ‖( – t, t)‖ for all t ∈ [, ]. Note that the norm ‖ · ‖ψ associated with the
function ψ ∈ � is given by

∥∥(x, y)∥∥
ψ
=

⎧⎨
⎩(|x| + |y|)ψ( |y|

|x|+|y| ), if (x, y) �= (, ),

, if (x, y) = (, ).

The Day-James space �p-�q is defined for  ≤ p, q ≤ ∞ as the space R endowed with
the norm

∥∥(x, y)∥∥p,q =

⎧⎨
⎩‖(x, y)‖p, if xy≥ ,

‖(x, y)‖q, if xy≤ .

James [] considered the space �p-�q with p– +q– =  as an example of a two-dimensional
normed space where Birkhoff orthogonality is symmetric. Recall that if x, y are elements of
a real normed space X, then x is said to be Birkhoff-orthogonal to y, denoted by x ⊥B y, if
‖x+λy‖ ≥ ‖x‖ for all λ ∈R. Birkhoff orthogonality is homogeneous, that is, x⊥B y implies
αx⊥B βy for any real numbers α and β . However, Birkhoff orthogonality is not symmetric
in general, that is, x⊥B y does not imply y⊥B x. More details about Birkhoff orthogonality
can be found in Birkhoff [], Day [, ] and James [, , ].
In , Nilsrakoo and Saejung [] introduced and studied generalized Day-James

spaces �ϕ-�ψ , where �ϕ-�ψ is defined for ϕ,ψ ∈ � as the space R
 endowed with the
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norm

∥∥(x, y)∥∥
ϕ,ψ =

⎧⎨
⎩‖(x, y)‖ϕ , if xy≥ ,

‖(x, y)‖ψ , if xy≤ .

Recently, Alonso [] showed that every two-dimensional normed space is isometri-
cally isomorphic to a generalized Day-James space. In this paper, we consider the result of
Alonso for n-dimensional spaces.
First, we give a characterization of generalized Day-James spaces.

Proposition  Let ‖ · ‖ be a norm on R
. Then the space (R,‖ · ‖) is a generalized Day-

James space if and only if ‖ · ‖∞ ≤ ‖ · ‖ ≤ ‖ · ‖.

Proof If (R,‖ · ‖) is a generalized Day-James space, then one can easily have ‖ · ‖∞ ≤
‖ · ‖ ≤ ‖ · ‖. So, we assume that ‖ · ‖∞ ≤ ‖ · ‖ ≤ ‖ · ‖. Let

ϕ(t) =
∥∥( – t, t)

∥∥ and ψ(t) =
∥∥( – t, –t)

∥∥
for all t ∈ [, ], respectively. Then, clearly, we have ϕ,ψ ∈ � and ‖ · ‖ = ‖ · ‖ϕ,ψ . Hence,
the space (R,‖ · ‖) is a generalized Day-James space. �

Motivated by this fact, we consider the following

Definition  A norm ‖ · ‖ on R
n is said to be normal if it satisfies ‖ · ‖∞ ≤ ‖ · ‖ ≤ ‖ · ‖.

We recall some notions about multilinear forms. Let X be a real vector space. Then a
real-valued function F on Xn is said to be an n-linear form if it is linear separately in each
variable, that is,

F
(
x, . . . ,xi–,αxi + x′

i,xi+, . . . ,xn
)

= αF(x, . . . ,xi–,xi,xi+, . . . ,xn) + F
(
x, . . . ,xi–,x′

i,xi+, . . . ,xn
)

for each i ∈ {, , . . . ,n}. If F : Xn →R is an n-linear form, then F is said to be alternating if

F(x, . . . ,xi,xi+, . . . ,xn) = –F(x, . . . ,xi+,xi, . . . ,xn)

for each i ∈ {, , . . . ,n} or, equivalently, F(x,x, . . . ,xn) =  if xi = xj for some i, j with i �= j.
Furthermore, F is said to be bounded if

‖F‖ := sup
{∣∣F(x,x, . . . ,xn)∣∣ : (x,x, . . . ,xn) ∈ (SX)n

}
< ∞,

where SX denotes the unit sphere of X. If F is bounded, then we have

∣∣F(x,x, . . . ,xn)∣∣ ≤ ‖F‖‖x‖‖x‖ · · · ‖xn‖

for all (x,x, . . . ,xn) ∈ Xn.
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For our purpose, we give another simple proof of the following result of Day []. For
each subset A of a normed space, let [A] denote the closed linear span of A. If M, N are
subspaces of a real normed spaceX, thenM is said to be Birkhoff orthogonal toN , denoted
by M ⊥B N , if ‖x + y‖ ≥ ‖x‖ for all x ∈ M and all y ∈ N . In particular, x ⊥B M denotes
[{x}]⊥B M.

Lemma  Let X be an n-dimensional real normed space. Then there exists a basis
{e, e, . . . , en} for X such that ‖ei‖ =  and ei ⊥B [{ek}k �=i] for all i = , , . . . ,n.

Proof Let {u,u, . . . ,un} be a basis for X. Then each vector x ∈ X is uniquely expressed in
the form x =

∑n
k= αk(x)uk . Define the function F on Xn by

F(x,x, . . . ,xn) =

∣∣∣∣∣∣∣∣∣∣

α(x) α(x) . . . αn(x)
α(x) α(x) . . . αn(x)

...
...

. . .
...

α(xn) α(xn) . . . αn(xn)

∣∣∣∣∣∣∣∣∣∣
for all (x,x, . . . ,xn) ∈ Xn. Then it is easy to check that F is an alternating bounded n-
linear form. Since F is jointly continuous on the compact subset (SX)n of Xn, there exists
(e, e, . . . , en) ∈ (SX)n such that

F(e, e, . . . , en) = ‖F‖ > .

For all i = , , . . . ,n and all (α,α, . . . ,αn) ∈R
n, we have

‖F‖
∥∥∥∥∥

n∑
k=

αkek

∥∥∥∥∥ ≥
∣∣∣∣∣F

(
e, . . . , ei–,

n∑
k=

αkek , ei+, . . . , en

)∣∣∣∣∣
=

∣∣∣∣∣
n∑
k=

αkF(e, . . . , ei–, ek , ei+, . . . , en)

∣∣∣∣∣
=

∣∣αiF(e, e, . . . , en)
∣∣ = ‖F‖|αi|.

Thus, we obtain

∥∥∥∥∥
n∑
k=

αkek

∥∥∥∥∥ ≥ |αi| = ‖αiei‖,

for all i = , , . . . ,n and all (α,α, . . . ,αn) ∈ R
n. This means that ei ⊥B [{ek}k �=i] for all i =

, , . . . ,n. �

Now, we state the main theorem.

Theorem  Every n-dimensional normed space is isometrically isomorphic to the space
R

n endowed with a normal norm.
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Proof By Lemma , there exists an n-tuple (e, e, . . . , en) of elements of SX such that ei ⊥B

[{ek}k �=i] for all i = , , . . . ,n. Since ei ⊥B [{ek}k �=i], we have
∥∥∥∥∥

n∑
k=

αkek

∥∥∥∥∥ ≥ ‖αiei‖ = |αi|,

for all i = , , . . . ,n and all (α,α, . . . ,αn) ∈R
n. Hence, we obtain

∥∥∥∥∥
n∑
k=

αkek

∥∥∥∥∥ ≥ max
{|α|, |α|, . . . , |αn|

}

for all (α,α, . . . ,αn) ∈ R
n. From this fact, we note that {e, e, . . . , en} is linearly indepen-

dent, that is, a basis for X.
Define the norm ‖ · ‖ on R

n by the formula

∥∥(α,α, . . . ,αn)
∥∥
 =

∥∥∥∥∥
n∑
k=

αkek

∥∥∥∥∥
for all (α,α, . . . ,αn) ∈R

n. Then, clearly, ‖ · ‖ is normal and X is isometrically isomorphic
to the space (Rn,‖ · ‖). This completes the proof. �

Since the space R endowed with a normal norm is a generalized Day-James space by
Proposition , we have the result of Alonso as a corollary.

Corollary  ([]) Every two-dimensional real normed space is isometrically isomorphic
to a generalized Day-James space.
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