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Abstract

Based on a viscosity hybrid steepest-descent method, in this paper, we introduce an
iterative scheme for finding a common element of a system of equilibrium and fixed
point problems of an infinite family of strictly pseudo-contractive mappings which
solves the variational inequality ((y f — uF)g,p - q) < 0 for p € (2, F(T). Furthermore,
we also prove the strong convergence theorems for the proposed iterative scheme
and give a numerical example to support and illustrate our main theorem.
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1 Introduction
Throughout this paper, we assume that H is a real Hilbert space with inner product (-, -)
and norm || - ||. Let C be a nonempty closed convex subset of H. A self-mapping f: C — C
is said to be a contraction on C if there exists a constant « € (0,1) such that ||f(x) - f(y)|| <
allx = yll, Vx,y € C. We denote by Il¢ the collection of mappings f verifying the above
inequality and note that each f € I1¢ has a unique fixed point in C.

A mapping T : C — Cissaid to be A-strictly pseudo-contractive if there exists a constant
A € [0,1) such that

2
1T - Tyl> < llx =yl + 2| (I - T)x = (I - T)y

, Vx,yeC, 1.1)

and we denote by F(T) the set of fixed points of the mapping T; that is, F(T) = {x € C :
Tx = x}.

Note that 7 is the class of A-strictly pseudo-contractive mappings including the class of
nonexpansive mappings 7 on C (that s, | 7x — Ty|| < |lx - y||, x,¥ € C) as a subclass. That
is, T is nonexpansive if and only if T is 0-strictly pseudo-contractive.

A mapping F : C — C is called k-Lipschitzian if there exists a positive constant k such
that

IFx—Fyll <kllx=yl, VxyeC. (1.2)
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F is said to be n-strongly monotone if there exists a positive constant 7 such that
(Fx—Fy,x-y) = nlx-yl* VxyeC. (1.3)

Definition 1.1 A bounded linear operator A is said to be strongly positive, if there exists
a constant y > 0 such that

(Ax,x) > 7|x||>, VxeH.
In 2006, Marino and Xu [1] introduced the following iterative scheme: for x; =x € C,
Xn+l = anyf(xn) + (1 - anA)Txnr n= 1. (14)

They proved that under appropriate conditions of the sequence {«,}, the sequence {x,}
generated by (1.4) converges strongly to the unique solution of the variational inequality
((yf —A)g,p — q) <0, p e F(T), which is the optimality condition for the minimization
problem

1
min 2 (Ax, x) — h(x),

xeC

where / is a potential function for yf (i.e., /' (x) = yf(x) for x € H).

In 2010, Jung [2] extended the result of Marino and Xu [1] to the class of k-strictly
pseudo-contractive mappings T : C — H with F(T) # ¥ and introduced the following it-
erative scheme: for x; =x € C,

Yn = Bun + (1= Bu)PcSxy,
Xn+l = anyf(xn) +( - O(nA)ym n>1,

(1.5)

where S: C — H is a mapping defined by Sx = kx + (1 — k) Tx. He proved that the sequence
{x,} generated by (1.5) converges strongly to a fixed point g of T, which is the unique
solution of the variational inequality

(vf(@-Aqp-q)<0, peF().

Later, Tian [3] considered the following iterative method for a nonexpansive mapping
T:H — H with F(T) #,

X1 = ey f (xn) + (I — pa,F)Tx,, n>1, (L6)

where F is a k-Lipschitzian and n-strongly monotone operator. He proved that the se-
quence {x,} generated by (1.6) converges to a fixed point g in F(T), which is the unique
solution of the variational inequality

((vf —uF)g,p-q)<0, peFT).

In 2010, Saeidi [4] introduced the following modified hybrid steepest-descent iterative
algorithm for finding a common element of the set of solutions of a system of equilibrium
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problems for a family 7 = {F;: C x C — R,j =1,2,...,M} and the set of common fixed
points for a family of infinitely nonexpansive mappings S = {S; : C — C} with respect to
W -mappings (see [5]):

Far Fy 1F
Yn = Wn rapon ']rz,n]rl,nxm

Xl = ,an + (1 - ,3)(1 - )‘nB)ynr Vne N;

(1.7)

where B is a relaxed (y,r)-cocoercive, k-Lipschitzian mapping such that r > yk2. Then,
under weaker hypotheses on coefficients, he proved the strongly convergence of the pro-
posed iterative algorithm to the unique solution of the variational inequality.

Recently, Wang [6] extended and improved all the above results. He introduced a new
iterative scheme: for x; =x € C,

Yn = ,ann + (1 - ﬂrz)anm
KXn+l = Oan/f(xn) +(I- ManF)ym n>1,

(1.8)

where W), is a mapping defined by (2.3), and F is a k-Lipschitzian and 7-strongly monotone
operator with 0 < i < 2n/k2. He proved that the sequence {x,} generated by (1.7) converges
strongly to a common fixed point of an infinite family of A;-strictly pseudo-contractive
mappings, which is a unique solution of the variational inequality

(vf ~uF)g.p-q) <0, pe()E(T).

i=1

Very recently, He, Liu and Cho [7] introduced an explicit scheme which was defined by
the following suitable sequence:

Zps1 = €Y f(zn) + (I - e,,A)W,,SiLnSfM . ~S§<,nz,,, VneN.

They generated W, -mapping by {7;} and {A,} where {T;} is a family of nonexpansive
mappings from H into itself. They found that if {r¢,}%_,, {€,} and {A,} satisfy appropriate
conditions and F := ( le SEP(Gk)) N (M,,en F(T)) # @, then {z,} converges strongly to
x" € F, which satisfies the variational inequality ((4 — yf)x’,x —x") > 0 for all x € F.

In this paper, we introduce a new iterative scheme in a Hilbert space H which is a mixed
iterative scheme of (1.7) and (1.8). We prove that the sequence converges strongly to a
common element of the set of solutions of the system of equilibrium problems and the
set of common fixed points of an infinite family of strictly pseudo-contractive mappings
by using a viscosity hybrid steepest-descent method. The results obtained in this paper
improved and extended the above mentioned results and many others. Finally, we give a

simple numerical example to support and illustrate our main theorem in the last part.

2 Preliminaries
Let H be a real Hilbert space and C be a nonempty closed convex subset of H. We have

ll = y1I* = l%l* + 171> - 2(x,y), Vax,y € H. (2.1)
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Recall that the nearest projection Pc from H to C assigns to each x € H the unique point
Pcx € C satisfying the property

lx — Pex|| = min ||lx — y|l.
yeC

We recall some lemmas which will be needed in the rest of this paper.

Lemma 2.1 In a Hilbert space H, the following inequality holds:

I+ 911> < llx1? + 2(y,2 +3), %y €H.
Lemma 2.2 Let B be a k-Lipschitzian and n-strongly monotone operator on a Hilbert space
Hwithk>0,1>0,0<u<2n/k>and0<t<1.ThenS =(I—-tuB): H — H is a contraction

with a contractive coefficient 1 — tt and t = %M(Zn — uk?).

Proof From (1.2), (1.3) and (2.1), we have

ISx = Syl* = |[(x - y) - tru(Bx - By)|”
= e = yI> + £1° | Bx — By|* - 211£(Bx — By, x - y)
< e =yl1” + 212kl - yI1* = 2patnlx - y))*
= [1-tu(2n - uk®)]llx - yII?

<(@-tr)lx -yl

where 7 = %/,L(ZT] — nk?), and so, [|Sx — Sy|| < (1 —tz)|lx - y||.

Hence, S is a contraction with a contractive coefficient 1 — ¢7. O
Lemma 2.3 Let H be a Hilbert space. For a given z € H and u € C,
u=Pcz & (u-z,v-u)>0, VveC.

Lemma 2.4 Let H be a real Hilbert space. For q which solves the variational inequality
((yf —uB)q,p—q) <0, f €y, p € F(T), the following statement is true:

(vf-uBqgp-q)<0 & Poll-uB+yf)g=gq, (2.2)
where © := (N F(T:)) N (N, SEP(E)).
Proof From Lemma (2.3), it follows that

q=Po(Il-uB+yflqg & (g-U-pB+yf)gp-q)>0, peo,
& ((uB-yNgp-q)=0

< ((vf -uB)g,p-q)<0. O
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Lemma 2.5 [8] Let C be a closed convex subset of a Hilbert space H and T : C — C be
a nonexpansive mapping with F(T) # 0; if the sequence {x,} weakly converges to x and
(I = T)x, converges strongly to y, then (I — T)x = y.

Lemma 2.6 [9] Let {x,} and {z,} be bounded sequences in a Banach space E and {y,} be
a sequence in [0,1] which satisfies the following condition:

0 <liminfy, <limsupy, <1.

n—00 Hn— 00

SuPpOSe thﬂtxn+1 = VuXy + (1 - Vn)Zn’ n>0 and lim Supn—>oo(||zn+1 _Zn” - ||xn+1 _xn”) <0.
Then lim,,—, oo |2, — %4l = 0.

Lemma 2.7 [10, 11] Let {s,} be a sequence of non-negative real numbers satisfying
Suel <L = An)Su+Aubp+ Yy n>0,

where {\,}, {8,} and {y,} satisfy the following conditions:
(i) {an} C[0,1] and 3772, = 003
(i) limsup,_, o8, <0 0r Y ooy Aud, < 00;
(ifi) ¥ >0 (1= 0), Y72 yu < 00,
Then lim,,_, o s, = 0.

Lemma 2.8 [12] Let C be a nonempty closed convex subset of a real Hilbert space H and
T :C — C be a A-strictly pseudo-contractive mapping. Define a mapping S : C — C by
Sx=ax+(1-a)Ix forall x € C and o € [A,1). Then S is a nonexpansive mapping such
that F(S) = F(T).

In this work, we defined the mapping W, by

un,n+1 =1,
un,n =Vn Ty/,un,ml + (1 - Vn)I;

Un,n—l = VYn-1 T,;_1un,n + (1 - Vn—l)ly

Upi = i Ty e + 1= vl (2.3)

U1 = Yiea Ti g Ui + A = yr-1)l,

Uno = Tyl,s + 1= y)l,

Wy=U =nTiU +1-n),

where y1,y,... are real numbers such that 0 <y, <1, T/ = 6,/ + (1 - 6;)T; where T; is a
Ai-strictly pseudo-contractive mapping of C into itself and 6; € [A;,1). By Lemma 2.8, we
know that T} is a nonexpansive mapping and F(T;) = F(T}). As a result, it can be easily
seen that W, is also a nonexpansive mapping.
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Lemma 2.9 [5] Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let T}, T}, ... be nonexpansive mappings of C into itself such that ;- F(T}) # 0
and y1,v», ... be real numbers such that 0 < y; < b <1 for each i =1,2,.... Then for any
x € Cand k € N, the limit lim,,_, o, U, xx exists.

By using Lemma 2.8, one can define the mapping W of C into itself as follows:

Wx:= lim Wyx= lim U,;x, xe€C. (2.4)
Such a mapping W is called the modified W-mapping generated by 11, Ts,..., Y1, V2, .-
and 91,92,... .

Lemma 2.10 [5] Let C be a nonempty closed convex subset of a strictly convex Banach
space E. Let T}, T}, ... be nonexpansive mappings of C into itself such that (\;- F(T}) # 0
and s, ... be real numbers such that 0 < y; <b<1 foreachi=1,2,.... Then F(W) =

NZ E(T).
Combining Lemmas 2.7-2.9, one can get that F(W) = (>, F(T7) = (s, F(T7).

Lemma 2.11 [13] Let C be a nonempty closed convex subset of a Hilbert space H, (T :
C — C} be a family of infinite nonexpansive mappings with (o, F(T)) # 0, {y:} be a real
sequence such that 0 < y; <b <1, foreach i > 1. If K is any bounded subset of C, then

lim sup || Wx — W,x|| = 0. (2.5)
n—>00 e
For solving the equilibrium problem, let us give the following assumptions on a bifunc-
tion F: C x C — R, which were imposed in [14]:
(Al) F(x,x)=0forallx e C;
(A2) F is monotone, i.e., F(x,y) + F(y,x) <0 for all x,y € C;
(A3) foreachw,y,z € C, limy o F(tz + (1 - t)x,y) < F(x,y);
(A4) for eachx € C, y— F(x,y) is convex and lower semicontinuous.

Lemma 2.12 [14] Let C be a nonempty closed convex subset of H, and let F be a bifunction
of C x C into R satisfying (Al)-(A4). Then for r > 0 and x € H, there exists z € C such that

F(z,y)+%(y—z,z—x)20. (2.6)

Lemma 2.13 [15] Let C be a nonempty closed convex subset of H, and let F be a bifunction
of C x C into R satisfying (A1)-(A4). For r > 0, define a mapping Jf : H — C as follows:

1
]f(x)z{zeC:F(z,y)+;(y—z,z—x)ZO,VyeC} (2.7)
for all x € H. Then the following conclusions hold:

(1) JE is single-valued,;
(2) JE is firmly nonexpansive, i.e., for any x,y € H,

7E @) =TE0)|* < (F (@) = I (), 2 — )
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(3) F(F) = EP(F);
(4) EP(F) is closed and convex.

Lemma 2.14 [5] Let C be a nonempty closed convex subset of a real Hilbert space H. Let
T = {T,'}fil be an infinite family of nonexpanxive mappings with F(T) = (2, F(T;) # @ and
{y:} be a real sequence such that 0 <y; <b <1 foreach i > 1. Then:

(1) W, is nonexpansive and F(W,,) = (., F(T;) for each n > 1;

(2) foreach x € C and for each positive integer k, the limit lim,,_, o U, xx exists;

(3) the mapping W : C — C defined by Wx = lim,,_, oo Wyx = lim,,, oo Uy1% is a
nonexpansive mapping satisfying F(W) = F(T) and it is called the W -mapping
generated by Ty, Ts, ... and y1,va,...;

(4) if K is any bounded subset of C, then lim,,_, oo SUp, || W — W,x|| = 0.

3 Main results

In this section, we will introduce an iterative scheme by using a viscosity hybrid steepest-
descent method for finding a common element of the set of variational inequalities, fixed
points for an infinite family of strictly pseudo-contractive mappings and the set of solu-

tions of a system of equilibrium problems in a real Hilbert space.

Theorem 3.1 Let C be a nonempty closed convex subset of a real Hilbert space H, let
T;: H — H be a ;-strictly pseudo-contractive mapping with (oo F(T;) # 9, F ={F; :j =
1,2,3,..., M} be a finite family of bifunctions C x C into R satisfying (Al)-(A4) and vy,
be a real sequence such that 0 < y; < b <1 for each i > 1. Let B be a k-Lipschitzian and n-
strongly monotone operator on Cwith 0 < yu < n/k* and f € Ty with0 <y < u(n - "Tkz)/oz =
t/a and t < 1. Assume that © := (2 F(T3)) N (ﬂj.fl SEP(F))) # 9. Let the mapping W, be
defined by (2.3). Let {x,} be the sequence generated by x, € H and

Uy ZJS\ZAHIS‘AA{Eln T ’gz,n]rI.Ean’
Yn = BuXn + (1= B) Whtty, (3.1)

Xpi1 = Yfx,) + ([ —auuB)y,, VneNandn=>1,

where {a,,} and {B,} are sequences in (0,1) which satisfy the following conditions:

(C1) lim, o0y =0and 2,0, = 00;

(C2) 0<liminf,_, By <limsup,_, By < a <1 for some constant a € (0,1);

(C3) liminf,_, o 7, >0, foreach j=1,2,...,M.
Then the sequence {x,} converges strongly to q € ®, where q = Po(I — uB + yf)q, which is
the unique solution of the variational inequality

((vf -uB)gp-q) <0, Vpeo, (3.2)
or equivalently, q is the unique solution of the minimization problem

1
i _A1 )
;1;1(5)12( x,x) + h(x)

where h is a potential function for yf.
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Proof We will divide the proof of Theorem 3.1 into several steps.
Step 1. We show that {xn} is bounded. Let p € O. Since for each k =1,2,3,...,M, ],kn

is nonexpansive. Given 3 = J.f gtk 11n]rFkk 2Tt fork € (1,2,3,..., M) and 390 =1, for
each n € N, we have
k
|S0n = | = [0 = Syp | < I = .

Consider,

Iy = oIl = || Butn + (1= B) Wota, - p |
= [ Bulxn = p) + (1 = B) (Wostt - p) |
< Bullxw = pll + A= B) | (Wots - p) |
= Bullxn = pll + (1 = B) | WaS'x — p||
< Bullxw = pll + (1= B) |35, - p|
< Bulldn = pll + (1= Bo) % - pll
= % = pll- (33)

From Lemma 2.2, (3.1) and (3.3), it follows that

I%ni1 = pll = [y f @) + (I = 2uiB)yn - p||
= |t (v (%n) = uBp) + (I = ctuitB)y, — (I - ctuuB)p||
= |(I = awsB) i = p) + au (v (%) — uBp + v () - v/ D)) |
< T = auiB)yu = )| + ny |[f () = f(®)|| + || v 0) — 1B
< (1= D)llyn —pll + anyalx, - pll + | vf(p) - nBp|
< (1=, 7)|l%, = pll + anyellx, - pll + au | vf(p) - 1Bp|
—= | v) - up|

M}. — (3.4)

T-yu -

T
= [1 —Oln(f - Va)]”xn —P” +ay -
< maX{len -pl,

By mathematical induction, we have

/() - nBpl } vne1 55)

% — pll < maX{ % = plls
T—y«o

and we obtain {x,} is bounded. So are {y,}, {W,,3%(x,,)} and {f(x,,)}.
Step 2. We claim that if {x,} is a bounded sequence in C, then

hm ||~s X, — I;Hxn || =0 (3.6)

for every k € {1,2,3,...,M}. From Step 2 of the proof in [16, Theorem 3.1], we have for
kef1,2,3,...,M},

lim |77 %0 =Tk x| = 0. (3.7)

n—o00 " Th,n+1
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Note that for every k € {1,2,3,..., M}, we have

Fr 7F-1 Fk2, Fy Fl_Fk'\kl
]rkn]rk 1n]Vk 2,1 ]anjrln ]rkn

So, we note that

Fk mkl

[t = Sl = 5 S5 2 = T S0
Uka S R R o B VA e R R e
< 7 S =T S|+ 30— |
< Hfi? S =Tk S ‘lan+HLiﬂz”£2 I S|
0 = |
< | S8, =gk S |+ (T S8R, - T S8 |
L A Rt B VAR A B (3.8)

Now, applying (3.7) to (3.8), we conclude (3.6).

Step 3. We show that lim,,, o |41 — %, =0

We define a sequence {z,} by z, = (¥,11 — Buxu)/(1 = B, s0 that x,1 = Buxy + (1= B)zs.
‘We now observe that

X142 = Brual®nsl  Xnal — Bun

Zn+l —Zn = -
1- ﬂ}’H—l 1- ﬂn
_ an+1yf(xn+l) + (1 - Man+1B)yn+l - ,Bn+1xn+1
1- lgnﬂ
oy f () + (U — petuB)yn — Bun
1- :371
n n+l) = B n+ n n) = B n
_ (0 W) = 4Bynt)  ouyf () = 14Byn) | Wity — W, (3.9)
1- :Bn+1 1- ,Bn

It follows from (3.9) that

1Zs1 =

||_1 ﬁm (lvf Gewed) | + 1By ll) + ’;3”(||yf<xn)||+||,,,3yn”)

+ I Winthnn — Wity ||. (3.10)
‘We observe that

” Wn+1un+l - Wnun”

~k o~k
| W1 1601 = WSk ||

IA

H Wn+13§+1xn+l - Wn+1?5nxn H + || Wn+l‘\:sﬁxn+l - anﬁxn ’ (311)

and compute

” Wn+lsﬁxn+l - Wnsﬁxn ” = ” Wm—lsﬁxnﬂ - Wn+1~(\5’,;xn ” + “ Wn+13ﬁxn - Wnsﬁxn ”

= ||xn+1 _xn” + || Wn+l?g;lf,xn n\‘ xn H (312)
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Consider,

| W1 Ssxn = WuSpxn || = |1 Ty Unir oS — 11 Ty U Sl |
< | U 23520, — U2 3 |

vy Tyl K%y = o Ty Uy 33k, [

A

Yive: Vn ” un+1,n+13];xn - un,nJrlS];xn ”

n
<M []» (3.13)
i=1

IA

where M; > 0 is a constant such that ||U,;41,p14, — Uppathn|| < M forall m > 1.
Substituting (3.11) and (3.13) into (3.10), we can obtain
Uyl ay

IZns1 = 24l < 1_—ﬂm(u vf @) + 11Bynal) + 1= 5 (lvf @) + l11eByall)

n

~k ~k
+ || Wn+lxsn+1xn+1 - Wn+1\gnxn+l || + ||xn+1 —Xn “ + Ml l_[ Vi
i=1

(o778 ] oy ~k ~k
= M2( + + ” Wii1301%n1 — Wi S, % ”

1- ,Bn+1 1- ,Bn
n

+ %41 = xall + My l—[ Vi (3.14)
i=1

where My = sup{|lyf ()|l + [|Byull, n > 1}.
It follows from (3.14) that

(07788 | + Ay
1- /3n+1 1- ﬁn

”Zn+1 —Zn ” =< MZ( ) + || 3ﬁ+1xn+1 - *?s];xml H

n
# 1%ea =2l + My | [ e

i=1
Hence, we have
n
(o 77m8 | ay ~k ~k
”ZVI+1 - Zn” - ||xn+1 _xn” = M2 — t—— ]t ||¥5n+1xn+l =~ Xn+ || +M1 H)’i'
1-Bu 1-B

n+ n i=1

From lim,_ ||S’;xn - Tsﬁ+1xn|| = 0 and the condition lim,_.. @, = 0 and 0 <

lim,,_, o inf B,, < lim,,_, o sup B, < a < 1 for some a € (0,1), it follows that

nlingo Sup(||zn+l - zn” - ”xm—l - an) <0. (315)
By Lemma 2.5, we obtain
(3.16)

lim ||z, —x,]|| =0.
n— 00
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http://www.journalofinequalitiesandapplications.com/content/2012/1/224

Witthayarat et al. Journal of Inequalities and Applications 2012, 2012:224 Page 11 of 20
http://www.journalofinequalitiesandapplications.com/content/2012/1/224

From x,,,; = B,x, + (1 — B,)z, and by (3.16), we get
%01 = %]l = A = Bu)llz — %l (3.17)
Hence,
lim %41 — %4 = lim (1= B,)|lz, —x,ll = 0
n—00 n—00
Step 4. We claim that lim,,_, o ||, — Wy,u,] =0

%0 = Wtk | < 1% = X | + 16001 = Wiaa|
= llotn = Fnarll + |ty f (®n) + I = it B)y, — Wiats,|
= %0 = %par | + |ty f Fn) + Vi — it By, — Wiy, |
< 11s1 = Zull + | 7 ) = 1By || + 119 = Wit
< nar = Xl + ]| v (n) = 1By | + | Butn + (L= B) Woath — Wia |

< %1 = x|l + 0t H Yf (%n) = By, ” + Bullxn — Wanty]|.
It follows that

%0 = Whun |l <

1% = %411l + ” Yf (%n) — uByy “

1-B, 1- ﬁ
By the conditions (C1) and (C2), we obtain

lim ||x, — W,u,| = 0. (3.18)
n— 00

Step 5. We show that

lim |3, — 38w, =0, Vk=12,...,M-1 (3.19)
n—0o0
for any p € ® and Vk =1,2,...,M — 1. We note that ],k’flln is firmly nonexpansive by

Lemma 2.12, then we observe that

R I VN ey ]
= Ut St =T, b S = )
= <3k+1 _p Sﬁxn —P)
1
= 2(Hmk+1xn p” n | S, — p||2— ”3]”1 - xn” )
and hence

” okl 2 _ ” ~k+1

R R N

|| ~k+1

< Nt = pII? = |35 = x| (3.20)
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It follows that

et =PI = [otu (v () ~ 1£Bp) + U - uiB) 5 ~ )|
= 2| (vf @) - 1Bp) | + A = @7 lly — pII?
+ 20, ((vf () — 1Bp), (I — 2w uB)(yu — p))
< 2| (yf @) = uBp) |* + @ = s [Bulln = pI> + (1 = B) | 32x, - p|| ]
+20t,((vf (%) — 1Bp), (I — 2w uB)(yu — p))
< (1= 7)* Bl =PI + (= 0u7)?(1 = B) | 33— p|* +
= (L= a0 Bullty — pI* + (1= 2a(z — 1)L = ) | 30, — p||*
+ a2 (1- )| 3%, - p||°
~ 20,y (1= B,) | 3%, - p|” + ¢
< (1= 0u7)?Balltn = p1I% + (1= 20(7 = 1)) (A = B) | 32
+ o221 = B) |3, — p|* + ¢
= (1-20(7 —¥))Bulltn — pI* + 02T Bulltn — pII* = 200y Bulln — pII>
+ (1= 20,(t = )1 - B) |3, - p||?
+ot (1= B,) |3 x,,—p” +Cp
= (1-20(7 —¥))Bulltn — pI* + 02T Bulltn — pII* = 200y Bulln — pII>
+ (1= 2a(t =) 1 = Ba)[ 0w = pII = |50 — Xt | ]
+ o201 = B) |3, — p|* + ¢
< (1=2a,(r = ) 1% = pII* + €27 |5, = plI?
— (1= 2a(r = ) (1 = B) | ¥+t = S| + i

where

Cp = 2(Xn(()/f(xn) - MBP); (] - anﬂB)(Yn —P)> (3'21)
It follows from the condition (C1) that

lim ¢, = 0. (3.22)

n—00

So, we obtain

(1= 20(r = ) (1 = B) [ 3712, - S|
< (1= 2au(® = ) 120 = pI* = %001 = pII?
+apt?(lx, - pl* + cu
< %0 = pI* = 1n1 = I + a2 2 = pI1* + s

2
= [l = ®uea | (16 =PIl = 1901 = 1) + @22 6 =PI + €.
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Using the condition (C1), (3.17) and (3.22), we obtain

lim |5, - Skx,| =0, Vk=1,2,..,M~-1 (3.23)

Hn— 00
Step 6. We show that limsup,,_, .. ((yf — uB)q,%, — q) <0, where g = Po(I — uB + yf)q.
The Banach contraction principle guarantees that Po(I — uB + yf) has a unique fixed
point g which is the unique solution of (3.1). Let {x,, } be a subsequence of {x,} such that

lim ((yf — uB)q, %y, — q) =lim sup <(yf - uB)q,x, — q).
k—o00 n—00
Since {x,, } is bounded, then there exists a subsequence {x,,ki} which converges weakly
to z € H. Without loss of generality, we can assume that x,, — z. We claim that z € ©.
Next, we need to show that z € ﬂj‘fl SEP(F;). First, by (A2) and given y € C and k €
{1,2,...,M -1}, we have

1
k+1 ~k+1 ~k k+1
Ik (y =3, X0, S X — Jnxn) > Fra (y,Sn x,,).
+1,n
Thus,
oxk+1 k
IN) X — 5, X
~xk+1 n, "m " m ~k+1
<y —3kiy, %> > Fra (9, 350 %, )- (3.24)
Tk+1,m,

From (A4), F(y,-) is a lower semicontinuous and convex, and thus weakly semicontinuous.
The condition (C3) and (3.23) imply that

~xk+1 ok
St KXy — ‘Snmx”lm

-0, (3.25)
rk+l,nm

in norm. Therefore, letting m — oo in (3.24) yields
Fei(,2) < lim Fip (5, 351 %,,,) <0,
m—> 00

forallye H and k € {1,2,...,M —1}. Replacing y with y, = ty + (1 — £)z with ¢ € (0,1) and
using (Al) and (A4), we obtain

0= Fk+1()/t:yt) = tFk+1(yt;y) +(1- t)Fk+1(Yt; z) < tFk+l(yt;y)'

Hence, Fi,1(ty + (1 - £)z,y) > 0, for all £ € (0,1) and y € H. Letting t — 0" and using (A3),
we conclude that Fy,1(z,y) > 0 forall y € H and k € {1,2,..., M}. Therefore,

Z€EP(F), Vj=12,...,M, (3.26)
that is,
M
z (") SEP(E). (3.27)

j1
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Next, we show that z € (5, F(T;). By Lemma 2.6, we have
W,z — Wz, VzeC, (3.28)

and F(W) = (5, F(T;). Assume that z ¢ F(W), then z # Wz. Therefore, from the Opial
property of a Hilbert space, (3.27), (3.28) and Step 4, we have

liminf||x,,, —z|| < liminf|x,,, — Wz||
m— 00 m—>00

< I}nnilnf{ ||x,, - an nmxnm ”

+ | Wi U 0, — W,

m Vlm nm

S w2+ [ Wi, S, 2 = Wz}

< liminf{|lx,,, -z + | W,z — Wz| }
m— 00

< liminf||x,,, —z||.
m—> 00

It is a contradiction. Thus z belongs to F(W) = (5, F(T;). Hence, z € ©.
Hence, by Lemma 2.4, we obtain

lim sup ((yf — uB)q, %, — ) = lim sup ((yf — uB)q, %n,, —q)

n—00 m— 00

=((vf - uB)g,z—q) <0

Step 7. We claim that x,, converges strongly to g = Po(I — uB + yf)q. We observe that

e = gl = lenyf Gon) + (U = petuB)yy — |’
= |y @) + U = nauB)y, — q + j10tsBg — 1o, Fl|”
< |t - nawB)y, — (I - pauB)g|” + 2a{yf (%s) - 1tBg, %11 — q)
< (1= u1)llyn —qll?
+ 20 (v () = V(@) X1 — q) + 200{7f (@) — uBG X1 — q)
< (1= au0)* % — ql* + awya(lxn — qlI* + lxna — ql%)

+20(yf (q) — 1BGs X1 — q)

(1-a,1)? a,yo
< % =gl + —— %, — qlI?
l1-a,ya l1-ayya
20,
1 <yf( ) PLBq:erl _q>
Ay
20,(T — ya) + a?1? 20,
= (1— : . 2 llxn — gl + (Vf q) — UBq, Xpi1 — q)
—a,ya
20,(T — ya)
= (1—517 % — gl
—a,ya
20,(T — ya) 1
— uBq, _
* Y eya (T_ya)b/f(q) 1B, %1 — q)

2
o,T 9
+— |y —
Tl qn)
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= (1_ M)Hxn _q||2

l-o,ya

20,(T — ya) 1 a,T>
" — WBG X — )+ ————Ms ),
—aye \G _ya)<yf(q) nBa,xr =)+ 5o i
where Mj = sup,.., [l%, — qlI%. Put &, = 2224 and 8, = =2 (v/(@) - 4B, %u1 — q). It

follows that
”xn+1 - Q||2 = (1 - )Vn)”xn - Q||2 + )"n(sn + Vn.

From (C1), (C2) and Step 5, it follows that Y_,° A, = 0o and limsup,,_, ., §, < 0. Hence,
by Lemma 2.7, the sequence {x,} converges strongly to g. O

Using Theorem 3.1, we obtain the following corollaries.

Corollary 3.2 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{T}} be an infinite family of nonexpansive mappings with (5 F(T;) # 3, F = {F; : j =
1,2,3,..., M} be a finite family of bifunctions C x C into R satisfying (Al1)-(A4) and vy,
be a real sequence such that 0 < y; < b <1 for each i > 1. Let B be a k-Lipschitzian and n-
strongly monotone operator on Cwith 0 < yu < n/k* and f € Ty with0 <y < u(n— “—]2(2)/05 =
t/a and t < 1. Assume that © := (2 F(T3)) N (ﬂj\fl SEP(F))) # 9. Let the mapping W, be
defined by (2.3). Let {x,} be the sequence generated by x, € H and

Fyr vFuv— Fy 1F;
Yn = lgnxn + (1 - ﬂn)Wn rM',,]rM,lf,, o ']rz,n]rllnyn:

X1 = Y f(xy) + { —ayuB)y,, VneNandn=>1,

where {a,,} and {B,} are the sequences in (0,1) which satisfy the following conditions:

(C1) lim, o0y =0and 2,0, = 00;

(C2) 0<liminf,_, By <limsup,_, . By < a <1 for some constant a € (0,1);

(C3) liminf, o7, >0, foreachj=1,2,...,M.
Then the sequence {x,} converges strongly to q € ® where q = Po(I — uB + yf)q, which is
the unique solution of the variational inequality

(vf-uB)gp-q)<0, Vpeo.

Remark 3.3 Corollary 3.2 extends and improves Theorem 3.1 from f an infinite family of
nonexpansive mappings to a family of strictly pseudo contractive mappings.

If M =1 in Theorem 3.1, we obtain the following corollary.

Corollary 3.4 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{T}} be an infinite family of nonexpansive mappings with (i F(T;) # 0, F = (F; :j =
1,2,3,..., M} be a finite family of bifunctions C x C into R satisfying (Al)-(A4) and vy,
be a real sequence such that 0 < y; <b <1 for each i > 1. Let B be a k-Lipschitzian and n-
strongly monotone operator on Cwith 0 < pu < n/k* and f € Ty with0 <y < u(n— “Tkz)/a =
T/a and t < 1. Assume that © := (2 F(T3)) N (ﬂ]].\f1 SEP(F;)) # 9. Let the mapping W, be
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defined by (2.3). Let {x,} be the sequence generated by x; € H and

F(tny) + 2y = thyythy — %) 20, Vy€C,
Yn = ,ann + (1 - ﬂn)Wnum
Xpi1 = Yfx,) + ([ —ayuB)y,, VneNandn=>1,

where {a,} and {B,} are the sequences in (0,1) which satisfy the following conditions:

(C1) lim, oty =0 and 2,0, = 00;

(C2) 0<liminf, o By <limsup,_, By < a <1 for some constant a € (0,1);

(C3) liminf,_, o 1j,, >0, foreachj=1,2,...,M.
Then the sequence {x,} converges strongly to q € ®, where q = Po(I — uB + yf)q, which is
the unique solution of the variational inequality

(vf -uB)q,p-q)<0, Vpeo.

IfM=1,W,=W,y=1,A=1and p =1 in Theorem 3.1, we obtain the following corol-
lary:

Corollary 3.5 Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{T}} be an infinite family of nonexpansive mappings with (o F(T:) # 0, F = {F; :j =
1,2,3,...,M} be a finite family of bifunctions C x C into R satisfying (Al)-(A4) and y;
be a real sequence such that 0 < y; < b <1 for each i > 1. Let B be a k-Lipschitzian and n-
strongly monotone operator on Cwith 0 < u < n/k* and f € Ty with0 <y < u(n- ”Tkz)/oz =
t/a and t < 1. Assume that © := (2 F(T3)) N (ﬂj\fl SEP(F))) # 9. Let the mapping W, be
defined by (2.3). Let {x,} be the sequence generated by x, € H and

F, Far— Fy +Fj
Yn = Bun + (1- /gn)W]rA]/\l/{,,]rX/\[/I_ﬁ,, cee rg?n]rl{Nxm

Xps1 = Oyf %) + ([ —otyuB)yy, VneNandn>1,

where {a,} and {B,} are the sequences in (0,1) which satisfy the following conditions:

(C1) lim,—, o 0ty = 0 and T2 0, = 00;

(C2) 0<liminf,, By <limsup,_, By < a <1 for some constant a € (0,1);

(C3) liminf,_, o #j,, >0, foreachj=1,2,...,M.
Then the sequence {x,} converges strongly to q € ® where q = Po(I — uB + yf)q, which is
the unique solution of the variational inequality

((f -uB)gp-q)<0, Vpeo.

4 Numerical example
In this section, we give a real numerical example of Theorem 3.1 as follows.

Example4.1 LetH =R, C = [0, %], T,=1Filx,y)=0,Vx,ye H,rx, =1,k € {1,2,3,...,K},
B=ILf(x)=x% B, = %, oy = % for every n € Nand p = 1. Then {x,} is the sequence gener-
ated by

2
X 1
KXn+l = -+ (1 - _>xn, (41)
n n
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and z — 0 as n — 00, where 0 is the unique solution of the minimization problem

x> x?

min — + — + Cj, 4.2
—+ 5+ G (42)

xeC

where Cj is a constant.

Proof We divide the proof into four steps.
Step 1. Using the idea in [7], we can show that

Ji x=Pcx, VxeHke{l2,... K}, (4.3)
where
X xeH-C,
Pex={ M (4.4)
x, xeC.

Since Fx(x,y) = 0, Vx,y € C, k € {1,2,...,K}, with the definition of J.(x), Vx € H in

Lemma 2.13, we have
1
]f(x)z{zeC:F(z,y)+—(y—z,z—x)zO,VyeC}. (4.5)
r

By the equivalent property of the nearest projection Pc from H to C, we can conclude that
if we take x € C, ]rkknx = Pcx = Ix. By (3) in Lemma 2.13, we have

K
[\ SEP(F) =C. (4.6)
k=1

Step 2. We show that
W, =1. (4.7)

Since T} = 6,1 + (1 — 6;)T;, where T; is a A;-strictly pseudo-contractive mapping and 6; €
[Ai,1), it can be easily seen that T7 is a nonexpansive mapping. By (2.3), we have

Wi=U,=n T{ULz + (1=,

Wy = Uy = Tl + (L= y) = T{ (12 Tyl + (L= y2)I) + A= )]
=nnTTy+ynd-y)T + A-n)l,

Wi =Usyi =nTiUsy + Q- y) =T (2 Tylss + A= y)I) + A= )]
=nnTiTylUss + (1 -y) T+ 1=yl
=T Ty (3 TsUsa + (L= y3)I) + (L= y2) T1 + (1= )]

=TI TyT+ Q- y) T Ty + (1 - y)T7 + (1- ),
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and we compute (2.3) in the same way as above, so we obtain

Wy=Up=nrya--vuli Ty To+nva- Yua (A= yu) 1Ty T,y

+ Y2 Va2l = yu)) 1Ty Ty 4+ (L= ) T1 + A = 1)1

Since T, =1, y, = B, n € N, hence,
W,=[B"+B" " 1=B)+--+BU-B)+ A=) =1

Step 3. We prove

2
x
x,,+1=;”+<1—;>x,, and x,—> 0 asun— oo,

where 0 is the unique solution of the minimization problem

x ¥

min — + — + Cj.
xeC 2

Since we let B =1, y is a real number, so we choose y = 1. From (4.3), (4.4) and (4.7), we

can obtain a special sequence {x,} of Theorem 3.1 as follows:

x2 1
Aps1=—+1——)x,.
n n

Since T, = I, n € N, we have

(E(T,) =H.

neN

Combining it with (4.6), we obtain

O := (éSEP(Fk)> n ( N ) -C- [o,ﬂ.

neNF(Ty)

It is obvious that x,, — 0, 0 is the unique solution of the minimization problem min,cc % +

2 .
% + Ci, where C;j is a constant number.

Step 4. In this step, we give the numerical results that support our main theorem as
shown by plotting graphs using Matlab 7.11.0. We choose two different initial values as
x1 = 0.1 and x; = 0.15 in Table 1, Figure 1, and Figure 2, respectively. From the example, we

can see that {x,} converges to 0.
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Table 1 The sequence values on each different iteration step

[teration step (n) x(1)=0.1 x(1)=0.15 Iteration step (n) x(1)=0.1 x(1)=0.15
0 0.1000 0.1500 7 0.0015 0.0033
1 0.0100 0.0225 8 0.0013 0.0029
2 0.0051 0.0115 9 0.0011 0.0026
3 0.0034 0.0077 203 0.0001 0.0001
4 0.0025 0.0058 204 0.0000 0.0001
5 0.0020 0.0046 205 0.0000 0.0001
6 0.0017 0.0039 250 0.0000 0.0000
10"
3 10° 4
<
[t}
g
= 10° .
w
1o
0 50 100 150 200 250

lteration steps

Figure 1 The initial value x(1) = 0.1 and iteration steps n = 250.

Sequence value

0 50 100 150 200 250
lteration steps

Figure 2 The initial value x(1) = 0.15 and iteration steps n = 250.
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