Lee Journal of Inequalities and Applications 2012, 2012:177 ® Journal of Inequalities and Applications
http://www.journalofinequalitiesandapplications.com/content/2012/1/177 a SpringerOpen Journal

RESEARCH Open Access

Stability of quadratic functional equations in
tempered distributions

Young-Su Lee’

“Correspondence:
masuri@sogang.ac.kr

Department of Mathematics,
Sogang University, Seoul, 121-741,
Republic of Korea

@ Springer

Abstract
We reformulate the following quadratic functional equation:

Flkx +y) + Flkx — y) = 2K*F(x) + 2f(y)

as the equation for generalized functions. Using the fundamental solution of the heat
equation, we solve the general solution of this equation and prove the Hyers-Ulam
stability in the spaces of tempered distributions and Fourier hyperfunctions.
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1 Introduction
In 1940, Ulam [31] raised a question concerning the stability of group homomorphisms as

follows:

Let G; be a group and let G, be a metric group with the metric d(-,-). Given € > 0,
does there exist a § > 0 such that if a function % : G; — G, satisfies the inequality
d(h(xy), h(x)h(y)) < § for all x, y € Gy, then there exists a homomorphism H : G; — G,
with d(h(x), H(x)) < € forallx € G;?

The case of approximately additive mappings was solved by Hyers [16] under the assump-
tion that G, is a Banach space. In 1978, Rassias [25] generalized Hyers’ result to the un-
bounded Cauchy difference.

During the last decades, stability problems of various functional equations have been
extensively studied and generalized by a number of authors (see [13, 14, 17, 19, 24, 27,
30]). In particular, the stability problem of the following quadratic functional equation

fle+y)+flx—y)=2f(x) + 2 (y) 1.1)

was proved by Skof [29]. Thereafter, many authors studied the stability problems of (1.1)
in various settings (see [3, 4, 12, 18]). Usually, quadratic functional equations are used to
characterize the inner product spaces. Note that a square norm on an inner product space

satisfies the parallelogram equality

e +y1% + lloe = yI> = 201> + 21111
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for all vectors x, y. By virtue of this equality, the quadratic functional equation (1.1) is
induced. It is well known that a function f between real vector spaces satisfies (1.1) if and
only if there exists a unique symmetric biadditive function B such that f(x) = B(x,x) (see
[1,13,17,19, 27]). The biadditive function B is given by

Blxy) = ~(F(x +9) — fx— 7).
4

Recently, Lee et al. [21] introduced the following quadratic functional equation which is

equivalent to (1.1):

Slka +y) +flke—y) = 2K (x) + 2f (), 1.2)

where £ is a fixed positive integer. They proved the Hyers-Ulam-Rassias stability of this
equation in Banach spaces. Wang [32] considered the intuitionistic fuzzy stability of (1.2)
by using the fixed-point alternative. Saadati and Park [26] proved the Hyers-Ulam-Rassias
stability of (1.2) in non-Archimedean £-fuzzy normed spaces.

In this paper, we solve the general solution and the stability problem of (1.2) in the spaces
of generalized functions such as S’ of tempered distributions and F” of Fourier hyperfunc-
tions. Using pullbacks, Chung and Lee [8] reformulated (1.1) as the equation for general-
ized functions and proved that every solution of (1.1) in &’ (or F/, resp.) is a quadratic
form. Also, Chung [7, 11] proved the stability problem of (1.1) in the spaces &’ and F'.
Making use of the similar methods as in [7-11, 22], we reformulate (1.2) and the related

inequality in the spaces of generalized functions as follows:

uoA+uoB=2kuoP+2uoQ, (1.3)

||qu+uoB—2k2uoP—2qu||56, (1.4)
where A, B, P, and Q are the functions defined by

Alx,y) = kx +y, B(x,y) = kx -y, P(x,y) = x, Qx,y) =y.

Here, o denotes the pullback of generalized functions and the inequality ||v|| < € in (1.4)
means that |(v,¢)| < €|lg||1 for all test functions ¢. We refer to [15] for pullbacks and to
[2, 7-11] for more details of the spaces of generalized functions.

As results, we shall prove that every solution u in &’ (or F/, resp.) of Eq. (1.3) is a

quadratic form

u= E a;jXiXj,

1=<i<j=n

where a;; € C. Also, we shall prove that every solution # in S’ (or 77, resp.) of the inequality

(1.4) can be written uniquely in the form

U= Z agxix; + ju(x),

1<i<j<n
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where 1 is a bounded measurable function such that

%1 k:l,

/(2+1)e
2k2(k2-1)° k =2

il <

2 Preliminaries

In this section, we introduce the spaces of tempered distributions and Fourier hyperfunc-
tions. Here, we use the n-dimensional notations. If o« = (o, ...,®,) € Njj, where N is the
set of nonnegative integers, then o] =og +- - -+ oy, a! = ;! - -l For x = (xy,.....,%,) € R”,
we denote x* = x7" - - - x% and 9% = (3/0x1)™ - - - (3/d2x,,)*".

2.1 Tempered distributions

We present a very useful space of test functions for the tempered distributions as follows.

Definition 2.1 ([15, 28]) An infinitely differentiable function ¢ in R” is called rapidly de-

creasing if
[@llap = sup|x*0 p(x)| < 00 2.1)
x€R”

for all &, B € Nij. The vector space of such functions is denoted by S(R”). A linear func-
tional # on S(R”) is said to be a tempered distribution if there exists the constant C > 0

and the nonnegative integer N such that

o) <C Y supla“ofy

ol | <N <R
for all ¢ € S(R"). The set of all tempered distributions is denoted by S'(R").

We note that, if ¢ € S(R”), then each derivative of ¢ decreases faster than |x|™ for all
N >0as |x| — oo.Itis easy to see that the function ¢(x) = exp(—al|x|?), where a > 0 belongs
to S(R”), but ¥ (x) = (1 + |x|>)~! is not a member of S(R"). It is known from [5] that (2.1)

is equivalent to

sup [*p(@)| <00, sup [£%4()] < oo
xeR" EeR"
for all o, B € Njj, where ¢ is the Fourier transform of ¢.

For example, every polynomial p(x) = Z\alsrn aux®, where a, € C, defines a tempered
distribution by

(%), 0) = /R PWe@)dx, ¢ eS(R").

Note that tempered distributions are generalizations of L”-functions. These are very
useful for the study of Fourier transforms in generality, since all tempered distributions
have a Fourier transform.
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2.2 Fourier hyperfunctions
Imposing the growth condition on | - ||, in (2.1) Sato and Kawai introduced the new space
of test functions for the Fourier hyperfunctions as follows.

Definition 2.2 ([6]) We denote by F(R") the set of all infinitely differentiable functions
@ in R” such that

58P p ()|

llollaz = sup

< 2.2
ves ATBPIGI] (22)

for some positive constants A, B depending only on ¢. The strong dual of F(R"), denoted
by F'(R"), is called the Fourier hyperfunction.

It can be verified that the seminorm (2.2) is equivalent to

|0%@(x)| exp k|x|

hk = Su
Il = sup ——2rn

for some constants /4, k > 0. Furthermore, it is shown in [6] that (2.2) is equivalent to

sup [p(x)| expklal <00, sup|@(€)] exphlé| < oo
xeR” EeR”
for some /1, k > 0.

Fourier hyperfunctions were introduced by Sato in 1958. The space F'(R”) is a natu-
ral generalization of the space S'(R”) and can be thought informally as distributions of
a infinite order. Observing the above growth conditions, we can easily see the following
topological inclusions:

FR") = S[R"), S(R")— F(R").

3 General solution in generalized functions
In order to solve the general solution of (1.3), we employ the #-dimensional heat kernel,
fundamental solution of the heat equation,

(4mt) ™2 exp(—|x|2/4t), xR t>0,
0, xeR"t<0.

E/(x) =

Since for each ¢ > 0, E;(-) belongs to the space F(R"), the convolution
i(x, 1) = (u 5 E;) (%) = {1y, Er(x - )

is well defined for all # in F'(R”), which is called the Gauss transform of u. Subsequently,
the semigroup property

(E¢ * Eg)(x) = Eps(x)

of the heat kernel is very useful to convert Eq. (1.3) into the classical functional equation
defined on upper-half plane. We also use the following famous result, the so-called heat
kernel method, which is stated as follows.
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Theorem 3.1 ([23]) Let u € S'(R”). Then its Gauss transform i is a C*°-solution of the

heat equation
(3/0t — A)u(x,2) =0

satisfying
(i) There exist positive constants C, M, and N such that

|inx, )| < CeM(1+ |x|)N inR" x (0, 6). (3.1)

(ii) u(x,t) > uast— 0" in the sense that for every ¢ € S(R"),

(u, @) = tlir(g/it(x, te(x) dx.

Conversely, every C*-solution U(x,t) of the heat equation satisfying the growth condition
(3.1) can be uniquely expressed as U(x, t) = u(x,t) for some u € S'(R").

Similarly, we can represent Fourier hyperfunctions as a special case of the results as in
[20]. In this case, the estimate (3.1) is replaced by the following:

For every € > 0, there exists a positive constant C, such that
|it(x,£)| < Ceexp(e(|x] +1/2))  inR” x (0,9).
Here, we need the following lemma to solve the general solution of (1.3).

Lemma 3.2 Suppose that f : R” x (0,00) — C is a continuous function satisfying the equa-

tion
Sflkx+y, Kt + s) +f (kx -y, Kt + 5) = 203 f (%, ) + 2f (3, 5) (3.2)

forall x,y € R", t,s > 0. Then the solution f is the quadratic-additive function

flx,t) = Z agxix; + bt

1<i<j<n
for some a;;, b e C.

Proof Define a function /1: R” x (0,00) — C as h(x, t) := f(x,t) — £(0,£). We immediately
have 4(0,¢) = 0 and

h(kx +y, k%t + s) + h(kx —y, kKt + s) = 2K%h(x, t) + 2h(y,s) (3.3)
for all ¥,y € R", t,s > 0. Putting y = 0 in (3.3) yields

h(kx, K>t +s) = K*h(x,t) (3.4)
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for all x € R”, £,5 > 0. Letting s — 0% in (3.4) gives

h(kx, K*t) = Kh(x, t) (3.5)
for all x € R”, ¢ > 0. Replacing s by ks in (3.4) and then using (3.5), we obtain

h(x,t+s) = h(x,t)

for all x € R”, t,s > 0. This shows that /(x, t) is independent with respect to the second
variable. Thus, we see that H(x) := h(x, t) satisfies (1.2). Using the induction argument on
the dimension n, we verify that every continuous solution of (1.2) in R” is a quadratic
form

H) =h(x,t)= Y agx;,

1<i<j<n

where a;; € C.
On the other hand, putting x = y = 0 in (3.2) yields

f(O,k2t+s) = I2f(0,2) + £(0,s) (3.6)
for all £,5 > 0. In view of (3.6), we verify that lim,_, ¢+ f(0,s) = 0 and
£(0,K7t) = K*f(0,£) (3.7)

for all ¢ > 0. It follows from (3.6) and (3.7) that we see that (0, t) satisfies the Cauchy
functional equation

J(0,2+5) =£(0,2) + (0,5)

for all £,5 > 0. Given the continuity, we have
f(0,2) = bt

for some b € C. Therefore, we finally obtain

f(xr t) = h(x,t) +f(0: t) = Z ajxixj + bt

1<i<j<n
forallx e R”, ¢ > 0. O

As a direct consequence of the above lemma, we present the general solution of the
quadratic functional equation (1.3) in the spaces of generalized functions.

Theorem 3.3 Every solution u in S'(R”) (or F'(R"), resp.) of Eq. (1.3) is the quadratic form

u= E a ljxixj

1=<i<j=n

for some a;; € C.

Page60of 11
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Proof Convolving the tensor product E,(§)Es(n) of n-dimensional heat kernels in both

sides of (1.3), we have

[(oA)* (E()Es(n)](x,y) = (oA, Ei(x—&)Es(y —n))

(e E( gk”)m n)dn>

<us,k” (k’”y o n>Es(n)dn>

k
e, [ Belos -6 - EG )
ug, (Eg2y % Eg)(kx +y — &)

JE2ps(hx +y = )

= it(kx +y,k°t +5)

=
= {ue

and similarly we get

[0 B) * (E®E)](9) = ke — 3, K¢ + 5),
[0 P) % (E€)E) | (5,9) = i, )
[0 Q) * (E)Em)](5,9) = i(2,5).

Thus, (1.3) is converted into the classical functional equation
iw(kx +y,k°t + ) + it(kx — y, K>t + 5) = 2K>14(x, £) + 27(y, $)

for all x,y € R”, t,s > 0. We note that the Gauss transform # is a C* function and so, by

Lemma 3.2, the solution # is of the form

i t)= Y agwx+ bt (3.8)

1=<i<j=n

for some a;;, b € C. By the heat kernel method, we obtain

E a,»,»x,«xj

1<i<j<n

ast— 0% in (3.8). O
4 Stability in generalized functions

In this section, we are going to solve the stability problem of (1.4). For the case of k =1 in
(1.4), the result is known as follows.

Theorem 4.1 ([7, 10]) Suppose that u in S'(R") (or F'(R"), resp.) satisfies the inequality

[toA+uoB-2uoP-2uoQ| <e.

Page 7 of 11
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Then there exists a unique quadratic form

T(x): Z a;jXiXj

1<i<j<n
such that
€
~TW| < =.
- 76 <
We here need the following lemma to solve the stability problem of (1.4).

Lemma 4.2 Let k be a fixed positive integer with k > 2. Suppose that f : R" x (0,00) - C
is a continuous function satisfying the inequality

If (kxc + 3, K>t + 8) + f (ke — 3, K2t + 5) = 2K°f (%, £) = 2 (3, 9) | ;o < €. (4.1)

Then there exist a unique function g(x, t) satisfying the quadratic-additive functional equa-

tion
g(kx +9,k%t + s) +g(kx -y, Kt + s) = 2i%g(x, t) + 2g(3,5)

such that

K2+1
6ot g 0)] 1 = e

Proof Putting x =y =0 in (4.1) yields
I£(0,2¢ + 5) — K2 (0,£) —£(0,5)| < % (4.2)
for all £,s > 0. In view of (4.2), we see that

¢:=limsupf(0, )

t—0t

exists. Letting ¢ = t, — 07 so that f(0,t,) — ¢ in (4.2) gives

€
< —. 4.3
o= 55 (23)

Putting y = 0 and letting s = s, — 0* so that f(0,s,) — ¢ in (4.1) we have
If (kx, K2£) — K2 (3, ) — | < % (4.4)
for all x € R”, ¢ > 0. Using (4.3), we can rewrite (4.4) as

f(kx, k2t) K +1
e TR s

Page8of 11
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for all x € R”, ¢ > 0. By the induction argument yields

k", K2t
‘ L (4.5)

K+1
<
S )‘< 2w -1)"

forall m e N, x € R”, t > 0. We claim that the sequence {k~2"f(k"x,k?"t)} converges. Re-
placing x by k”’x and ¢ by k2t in (4.5), respectively, where m > n, we get

kZ(m+n) =

f(km+nx’ k2(m+n)t) f(kmx, /(2mt) 2 +1
- o = Qk20m1) (j2 _ 1)6'

Letting n — oo, by Cauchy convergence criterion, we see that the sequence {k~2"f(k"x,

k*'t)} is a Cauchy sequence. We can now define a function 4 : R” x (0, 00) — C by

n 2n
glx,t):= lim M

T S0 f2n

Letting n — oo in (4.5) we obtain

K +1

Replacing x, y, t, s by kK"x, k™y, k*"t, k*"s in (4.1), dividing both sides by k?” and letting
n — oo we have

glkx +y,k%t +5) + g(kx — 3, K7t + 5) = 2k>g(x, t) +2g(3, 5) (4.7)

for all x,y € R”, t,s > 0. Next, we shall prove that g is unique. Suppose that there exists
another function % : R” x (0,00) — C such that / satisfies (4.6) and (4.7). Since g and &
satisfy (4.7), we see from Lemma 3.2 that

g(k"x, kz”t) = k*"g(x,t), h(k"x, kz”t) = k2" h(x, t)
forallme N, x € R”, £ > 0. One gets from (4.6) that

|g(xr t) - h(x) t)|
=k | g(k”x, kZ”t) - h(k”x, k2”t)|
<k"(|g(k"x, k>"t) = f (K", K" 8) | + |f (K%, k*"E) — h(K"x, k") ])
K+1
<—— ¢
- k2(n+1)(k2 _ 1)

forall n € N, x € R”, t > 0. Taking the limit as » — 0o, we conclude that g(x, t) = h(x, £) for
allx e R", £ > 0. O

We now state and prove the main theorem of this paper.

Page9of 11
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Theorem 4.3 Suppose that uin S'(R") (or F'(R"), resp.) satisfies the inequality (1.4). Then
there exists a unique quadratic form

T(x): Z a;jXiXj

1<i<j<n
such that

%; k:l,

k% +1)e
2k2(k2-1)’ k=2.

lu-Tw)| <

Proof As discussed above, it is done for the case of k = 1. We assume that & is a fixed-
positive integer with k > 2. Convolving the tensor product E,(§)Es(n) of n-dimensional
heat kernels in both sides of (1.4), we have

||ﬁ(kx +y, K%t + s) + ﬁ(kx —y, k%t + s) — 2K 1(x, t) — 28(y, 5) ||LDO <e.

By Lemma 4.2, there exists a unique function g(x, ) satisfying the quadratic-additive func-
tional equation

g(kx +y, k%t + s) +g(kx -y, K2t + s) = 2k%g(x, t) + 2g(, )

such that

- K+l
||M(x, t) - glx,t) ||Lc>o < mﬁ (4.8)

It follows from Lemma 3.2 that g(, £) is of the form

glx,t) = Z a;xix; + bt

1<i<j<n

for some a;;, b € C. Letting £ — 0% in (4.8), we have

K +1
u- Z aixixi|| = —2/(2(/(2 ~ 1)6
I<i<j<n
This completes the proof. d

Remark 4.4 The resulting inequality in Theorem 4.3 implies that  — T'(x) is a measurable
function. Thus, all of the solution « in S’(R”) (or 7' (R"), resp.) can be written uniquely in
the form

u=T(x)+ pnx),

where

SIE

)
<
S

2k2(k2-1)" z
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