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Abstract
In this paper, we consider a risk process in which the distribution of the inter-claim
time is the sum of two independent exponential random variables. We introduce a
dependence structure between the claim size and the inter-claim time. The structure
is based on FGM copula. An integro-differential equation for the expected discounted
penalty function is derived and an explicit expression for the Laplace transform of ruin
probability is given for exponential claim size.

1 Introduction
In classical risk models, the surplus process usually relies on the assumption of indepen-
dence between the claim size and the inter-claim time. However, in many applications
this assumption is too restrictive and unrealistic. Actually, we know that the greater the
claim size is, the longer the inter-claim time is. The requirement for generalization has
led to some papers on the modeling of dependence. Among them, Albrecher and Teugels
[] consider general dependence structure based on a copula for the claim size and the
inter-claim time, they derive asymptotic results for both the finite and infinite time ruin
probabilities. Boudreault et al. [] consider a particular dependence structure among the
inter-claim time and the claim size and derive the defective renewal equation satisfied by
expected discounted penalty function. Cossette et al. [] consider the compound Poisson
risk model in which the claim size and the inter-claim time are dependent, and the depen-
dence structure is based on Farlie-Gumbel-Morgenstern (FGM) copula. They derive the
Laplace transform of the expected discounted penalty function, and give explicit expres-
sion for the Laplace transform of the time of ruin for exponential claim sizes. Barges and
Cossette [] investigate the computation of the moments of the compound Poisson risk
model with FGM copula.
In this article, we consider a Sparre Andersen risk process where the claim size and the

inter-claim time are dependent with FGM copula, and the distribution of the inter-claim
time is the sum of two independent exponential random variables. In ruin theory, a com-
mon approach is to obtain an integro-differential equation for the expected discounted
penalty function and apply it to derive the Laplace transform of the function. Dickson and
Hipp [] investigate ruin probability for Erlang() risk process, Li andGarrido [] consider
this problem of Erlang(n) risk model, Gerber and Shui [] also do some relative works.
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The paper is arranged as follows. In Section , we present the risk model and give some
notations. An integro-differential equation of the expected discounted penalty function
is formulated and the main results are presented in Section . In Section , we apply the
integro-differential equation to derive the Laplace transform of the expected discounted
penalty function. The special case where the claim size is exponentially distributed is con-
sidered in the final section.

2 The risk model
The surplus process is defined as U(t) = u + ct –

∑N(t)
i= Xi, where U() = u is the initial

surplus, c is the premium rate, {N(t), t ∈R
+} is a renewal process, and Xi (i = , , . . .) is the

random variable (r.v.) corresponding to the amount of the ith claim. The time between the
(i – )th and ith claim is defined by the r.v. Vi with V being the time of the first claim.
The claim amounts {Xi, i ∈N

+} form a sequence of independent identically distributed
(i.i.d.) random variables (r.v.s) as the r.v. X with probability density function (p.d.f.) fX ,
cumulative distribution function (c.d.f.) FX . The inter-claim times {Vi, i ∈N

+} form a se-
quence of independent r.v.’s identically distributed as the canonical r.v. V , V =W +W,
where {Wj} are two independent exponentially distributed r.v.s with parameters λj, j = , ,
V has p.d.f. fV , and c.d.f. FV . Note that theErlang()model is the special casewhere λ = λ.
{(Xi,Vi), i ∈N

+} form a sequence of i.i.d. random vectors distributed as the canonical ran-
dom vector (X,V ). The joint p.d.f. of (X,V ) is denoted by fX,V (x, t) with x, t ∈R

+.
The joint distribution of (X,V ) is based on the classical FGM copula, which is defined

by

C(u, v) = uv + θu( – u)v( – v) ()

for every (u, v) in [, ] and the dependence parameter θ takes value in [–, ].
We choose this class of copula since it provides an easy manner to construct bivariate

models with a variety of dependence structures. Even if the FGM copula introduces only
light dependence, it admits positive as well as negative dependence between a set of ran-
dom variables and includes the independence copula when θ =  (see Nelsen []).
The p.d.f. associated to () is given by

c(u, v) =  + θ ( – u)( – v). ()

Given (), the joint c.d.f. FX,V is defined by

FX,V (x, t) = C
(
FX(x),FV (t)

)
= FX(x)FV (t) + θFX(x)

(
 – FX(x)

)
FV (t)

(
 – FV (t)

)
.

With (), the joint p.d.f. fX,V is

fX,V (x, t) = fX(x)fV (t)c
(
FX(x),FV (t)

)
= fX(x)fV (t) + θ fX(x)fV (t)

(
 – FX(x)

)(
 – FV (t)

)
.

()

For simplicity, we define the following functions:

kX(x) = fX(x)
(
 – FX(x)

)
()
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and

kV (t) = fV (t)
(
 – FV (t)

)
. ()

Let T denote the time to ruin, so that

T = inf
{
t|U(t) < , for t > 

}
.

Then the probability of ultimate ruin from initial surplus u is defined as

ψ(u) = P
(
T < ∞|U() = u

)
.

To ensure that ruin will not occur almost surely, we assume that

E(cV –X) > . ()

Besides the ruin probability, other important ruin quantities in ruin theory include the
Laplace transform of ruin time; the surplus immediately before ruin denoted by U(T–);
the deficit at ruin denoted by |U(T)|, etc. A unified approach to study these ruin quantities
is to consider the so-called expected discounted penalty function introduced by Gerber
and Shiu []; the function is given by

mδ(u) = E
[
e–δTω

(
U(T–),

∣∣U(T)
∣∣)I(T < ∞)|U() = u

]
, u > , ()

where ω(x, y), for all x, y ≥ , is the penalty function at the time of ruin for the surplus
prior to ruin and the deficit at ruin, I(·) is the indicator function, and δ is a nonnegative
parameter. We can think of δ either as being a force of interest or as a dummy variable in
the context of the Laplace transform. A special case of the expected discounted penalty
function with ω(x, y) =  is the Laplace transform of the time of ruin. The cases δ =  and
ω(x, y) =  correspond to the infinite-time ruin probability.

3 Integro-differential equation
In this section, we derive an integro-differential equation for the expected discounted
penalty function mδ(u). By conditioning on the time and the amount of the first claim,
we have

mδ(u) =
∫ ∞



∫ u+ct


e–δtmδ(u + ct – x)fX,V (x, t)dxdt

+
∫ ∞



∫ ∞

u+ct
e–δtω(u + ct,x – u – ct)fX,V (x, t)dxdt.

()

http://www.journalofinequalitiesandapplications.com/content/2012/1/156
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With (), () and (), () becomes

mδ(u) =
∫ ∞



∫ u+ct


e–δtmδ(u + ct – x)fX(x)fV (t)dxdt

+ θ

∫ ∞



∫ u+ct


e–δtmδ(u + ct – x)kX(x)kV (t)dxdt

+
∫ ∞



∫ ∞

u+ct
e–δtω(u + ct,x – u – ct)fX(x)fV (t)dxdt

+ θ

∫ ∞



∫ ∞

u+ct
e–δtω(u + ct,x – u – ct)kX(x)kV (t)dxdt.

()

We define two functions:

σ(y) =
∫ y


mδ(y – x)fX(x)dx +ω(y) ()

and

σ(y) =
∫ y


mδ(y – x)kX(x)dx +ω(y), ()

where

ω(y) =
∫ ∞

y
ω(y,x – y)fX(x)dx,

ω(y) =
∫ ∞

y
ω(y,x – y)kX(x)dx.

Given () and (), () becomes

mδ(u) =
∫ ∞


e–δt fV (t)σ(u + ct)dt + θ

∫ ∞


e–δtkV (t)σ(u + ct)dt. ()

Substituting s = u + ct into (), we have

cmδ(u) =
∫ ∞

u
e–δ s–u

c fV
(
s – u
c

)
σ(s)ds

+ θ

∫ ∞

u
e–δ s–u

c kV
(
s – u
c

)
σ(s)ds.

()

Theorem  In the risk model introduced in Section , the excepted discounted penalty
function mδ(u) satisfies the following integro-differential equation:

α(D)β(D)mδ(u) = α(D)
(
σ(u) – θσ(u)

)
+ θβ(D)γ (D)σ(u), ()

where

α(D) =
(

λ + λ + δ


I –

c

D

)(
λ + δ

λ
I –

c
λ

D
)(

λ + δ

λ
I –

c
λ

D
)
,

β(D) =
(

λ + δ

λ
I –

c
λ

D
)(

λ + δ

λ
I –

c
λ

D
)
,
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γ (D) = (λ + λ + δ)I – cD,

I and D are the identity and differential operators.

Proof Case . λ �= λ, we obtain the p.d.f. and c.d.f. of r.v. V ,

fV (t) =
λλ

λ – λ

(
e–λt – e–λt

)
,

FV (t) =  –


λ – λ

(
λe–λt – λe–λt

)
,

()

hence

kV (t) = fV (t)
(
 – FV (t)

)
=

λλ

λ – λ

(
e–λt – e–λt

)( λ

λ – λ
e–λt –

λ

λ – λ
e–λt – 

)
.

()

Let

λ =
λλ

λ – λ
, r =

λ

λ – λ
, r =

λ

λ – λ
,

then () becomes

mδ(u) =
λ

c

∫ ∞

u

(
e–(δ+λ) s–uc – e–(δ+λ) s–uc

)(
σ(s) – θσ(s)

)
ds

+ θ
λ

c

∫ ∞

u

(
e–(δ+λ) s–uc – e–(δ+λ) s–uc

)(
re–λ

s–u
c – re–λ

s–u
c

)
σ(s)ds

=
λ

c
ξ (u) + θ

λ

c
η(u),

()

where

ξ (u) =
∫ ∞

u

(
e–(δ+λ) s–uc – e–(δ+λ) s–uc

)(
σ(s) – θσ(s)

)
ds ()

and

η(u) =
∫ ∞

u

(
e–(δ+λ) s–uc – e–(δ+λ) s–uc

)(
re–λ

s–u
c – re–λ

s–u
c

)
σ(s)ds

=
∫ ∞

u

(
(r + r)e–(λ+λ+δ) s–uc – re–(λ+δ) s–uc – re–(λ+δ) s–uc

)
σ(s)ds.

()

In order to get (), we firstly apply the operator β(D) to both sides of () with respect to
(w.r.t.) u.
Given (), we have

Dξ (u) =
∫ ∞

u

(
λ + δ

c
e–(δ+λ) s–uc –

λ + δ

c
e–(δ+λ) s–uc

)(
σ(s) – θσ(s)

)
ds
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and

Dξ (u) =
∫ ∞

u

((
λ + δ

c

)

e–(δ+λ) s–uc –
(

λ + δ

c

)

e–(δ+λ) s–uc

)(
σ(s) – θσ(s)

)
ds

–
λ – λ

c
(
σ(u) – θσ(u)

)
.

These allow us to derive the following result:

β(D)ξ (u) =


λλ

(
(λ + δ)(λ + δ)I – c(λ + λ + δ)D + cD)

=
c
λ

(
σ(u) – θσ(u)

)
.

()

Secondly, we take the operator α(D) to both sides of () w.r.t. u.
From (), we get

Dη(u) =
∫ ∞

u

(
(r + r)

λ + λ + δ

c
e–(λ+λ+δ) s–uc – r

λ + δ

c
e–(λ+δ) s–uc

– r
λ + δ

c
e–(λ+δ) s–uc

)
σ(s)ds,

Dη(u) =
∫ ∞

u

(
(r + r)

(
λ + λ + δ

c

)

e–(λ+λ+δ) s–uc – r
(
λ + δ

c

)

e–(λ+δ) s–uc

– r
(
λ + δ

c

)

e–(λ+δ) s–uc

)
σ(s)ds

–
(
(r + r)

(
λ + λ + δ

c

)
– r

(
λ + δ

c

)
– r

(
λ + δ

c

))
σ(u)

and

Dη(u) =
∫ ∞

u

(
(r + r)

(
λ + λ + δ

c

)

e–(λ+λ+δ) s–uc

– r
(
λ + δ

c

)

e–(λ+δ) s–uc – r
(
λ + δ

c

)

e–(λ+δ) s–uc

)
σ(s)ds

–
(
(r + r)

(
λ + λ + δ

c

)

– r
(
λ + δ

c

)

– r
(
λ + δ

c

))
σ(u)

–
(
(r + r)

(
λ + λ + δ

c

)
– r

(
λ + δ

c

)
– r

(
λ + δ

c

))
Dσ(u).

Hence

α(D)η(u) =


λλ

{
(λ + λ + δ)(λ + δ)(λ + δ)η(u)

– c
(
(λ + λ + δ) + (λ + δ)(λ + δ)

)
Dη(u)

+ c(λ + λ + δ)Dη(u) – cDη(u)
}

()

=
c
λ

(
(λ + λ + δ)σ(u) – cDσ(u)

)
=

c
λ

γ (D)σ(u).
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Applying the operator α(D)β(D) to both sides of (), we can obtain

α(D)β(D)mδ(u) = α(D)β(D)
(

λ

c
ξ (u) + θ

λ

c
η(u)

)

= α(D)
(
σ(u) – θσ(u)

)
+ θβ(D)γ (D)σ(u).

Case . λ = λ = λ, we know

fV (t) = λte–λt , ()

FV (t) =  – ( + λt)e–λt ,

kV (t) = fV (t)
(
 – FV (t)

)
= λ( + λt)te–λt – λte–λt , ()

then () becomes

mδ(u) =
λ

c
Dξ (u) + θ

λ

c
Dη(u), ()

where

Dξ (u) =
∫ ∞

u

s – u
c

e–(δ+λ) s–uc
(
σ(s) – θσ(s)

)
ds

and

Dη(u) =
∫ ∞

u

(
λ

(
s – u
c

)

+
s – u
c

)
e–(δ+λ)

s–u
c σ(s)ds.

When repeating a similar procedure to Case , the following formulae can be obtained:

β(D)Dξ (u) =
c
λ

(
σ(u) – θσ(u)

)
, ()

α(D)Dη(u) =
c
λ

(
(δ + λ)σ(u) – cDσ(u)

)
=

c
λ γ (D)σ(u).

()

Given () and (), applying the operator α(D)β(D) to both sides of (), we can derive

α(D)β(D)mδ(u) = α(D)β(D)D
(

λ

c
ξ (u) + θ

λ

c
η(u)

)

= α(D)
(
σ(u) – θσ(u)

)
+ θβ(D)γ (D)σ(u).

Hence, the integro-differential equation is true. �

4 The Laplace transform ofmδ(u) for δ = 0
Throughout this paper we denote the Laplace transform of a function f (x) by

f *(s) =
∫ ∞


e–sxf (x)dx.

http://www.journalofinequalitiesandapplications.com/content/2012/1/156
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Before deriving the Laplace transform of Gerber-Shiu function, one important step is to
develop Lundberg’s fundamental equation and examine its properties.
To derive Lundberg’s fundamental equation, we consider the process

{
exp

(
–δ

k∑
i=

Vi + sUk

)
,k = , , . . .

}
, for s > .

It is a martingale if and only if

E
(
e–δV es(cV–X)) = , ()

which corresponds to Lundberg’s fundamental equation, see Gerber and Shui []. Due to
(), () and (), () can be written as

E
(
e–δV es(cV–X)) = ∫ ∞



∫ ∞


et(cs–δ)e–sxfX,V (x, t)dxdt

+ θ

∫ ∞



∫ ∞


et(cs–δ)e–sxkX(x)kV (t)dxdt

= f *X(s)f
*
V (δ – cs) + θk*X(s)k

*
V (δ – cs)

= .

()

From (), () and (), (), we conclude that f *V (δ – cs) and k*V (δ – cs) have the same
form in Case  or Case ,

f *V (δ – cs) =
(

λ + δ

λ
–

c
λ

s
)–(

λ + δ

λ
–

c
λ

s
)–

=


β(s)

and

k*V (δ – cs) =
(λ + λ + δ) – cs

α(s)
–


β(s)

=
γ (s)
α(s)

–


β(s)
.

Thereby, () is equivalent to

α(s)β(s) – α(s)f *X(s) – θ
(
β(s)γ (s) – α(s)

)
k*X(s) = . ()

To derive the expression ofm*
δ
(s), we need to know the number of roots in the right-half-

plane of Lundberg’s fundamental equation (). For δ =  and θ �= , by Theorem  of
Klimenok [], we can determine the number of roots to () with a positive real part.
However, for δ >  and θ �=  we do not reach the conclusion about it.

Lemma  For δ =  and θ �= , Lundberg’s fundamental equation () has exactly  roots
denoted by {ρi, i = , . . . , } with Re(ρi) >  and a th root ρ = .

Proof Let z(s) = k–s
k , Ck = {s : |z(s)| = }.

http://www.journalofinequalitiesandapplications.com/content/2012/1/156
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Firstly, α(s)β(s) and α(s)f *X(s)+θ (β(s)γ (s) – α(s))k*X(s) are analytic inside the unit contour
Ck and continuous on Ck . Let k → ∞ and denote by C the limiting contour. We want to
show

∣∣α(s)β(s)∣∣ > ∣∣α(s)f *X(s) – θ
(
β(s)γ (s) – α(s)

)
k*X(s)

∣∣,
which is equivalent to

∣∣f *X(s)∣∣ 
|β(s)| +

∣∣θk*X(s)∣∣ |β(s)γ (s) – α(s)|
|α(s)||β(s)| < ,


|β(s)| and

|β(s)γ (s)–α(s)|
|α(s)||β(s)| are the ratios of polynomials with a strictly higher degree at the de-

nominator. From the definitions, we have |f *X(s)| ≤  and |θk*X(s)| ≤ . Hence

∣∣f *X(s)∣∣ 
|β(s)| +

∣∣θk*X(s)∣∣ |β(s)γ (s) – α(s)|
|α(s)||β(s)| → 

on C (excluding s = ). Moreover, due to (),

d
dz

(
 –

∣∣f *X(k – kz)
∣∣ 
|β(k – kz)|

–
∣∣θk*X(k – kz)

∣∣ |β(k – kz)γ (k – kz) – α(k – kz)|
|α(k – kz)||β(k – kz)|

)∣∣∣∣
z=

=
d
dz

(
 – E

(
e–k(–z)(X–cV )))∣∣∣∣

z=
= E(cV –X) > .

Because α(s)β(s) have  positive roots, by Theorem  of Klimenok [], we can conclude
that the number of solutions to () inside C is equal to . Finally, it is clear that the th
root to () is ρ =  with δ = . Hence, the conclusion is true. �

In the following sections, we only consider the case that the roots {ρi, i = , . . . , } are
distinct.

Theorem  In the risk model introduced in Section , the Laplace transform of mδ(u) for
δ =  denoted by m*

(s) is

m*
(s) =

ω̃(s) – q̃(s)
f̃ (s)

, ()

where

ω̃(s) = α(s)ω*
(s) + θ

(
β(s)γ (s) – α(s)

)
ω*
(s),

q̃(s) =
∑
j=

ω̃(ρj)
∏

k=,k �=j

s – ρk

ρj – ρk

and

f̃ (s) = α(s)β(s) – α(s)f *X(s) – θ
(
β(s)γ (s) – α(s)

)
k*X(s).

http://www.journalofinequalitiesandapplications.com/content/2012/1/156
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Proof First, from the properties of the Laplace transform, we have

(
f (k)

)*(s) = skf *(s) –
k–∑
l=

sk–l–Dlf (), for k ∈N
+

and

(∫ x


f(y)f(x – y)dy

)*

(s) = f * (s)f
*
 (s).

In order to get (), we must take the Laplace transform of both sides of ().
The Laplace transform of α(D)β(D)m(u) is

α(s)β(s)m*
(s) + q(s),

where q(s) is a polynomial of degree four or less, with coefficients in terms of c, λ, λ, and
the value ofm() and its first  derivatives at u = .
The Laplace transform of α(D)(σ(u) – θσ(u)) + θβ(D)γ (D)σ(u) is

{
α(s)

[(
m*

(s)f
*
X(s) +ω*

(s)
)
– θ

(
m*

(s)k
*
X(s) +ω*

(s)
)]
+ q(s)

}
+ θ

{
β(s)γ (s)

[
m*

(s)k
*
X(s) +ω*

(s)
]
+ q(s)

}
,

where q(s) and q(s) are polynomials of degree three or less, with coefficients in terms of
c, λ, λ.
For simplicity, we define the following functions:

ω̃(s) = α(s)ω*
(s) + θ

(
β(s)γ (s) – α(s)

)
ω*
(s),

q̃(s) = q(s) – q(s) – θq(s)

and

f̃ (s) = α(s)β(s) – α(s)f *X(s) – θ
(
β(s)γ (s) – α(s)

)
k*X(s),

then

α(s)β(s)m*
(s) + q(s) =

(
α(s)f *X(s) + θ

(
β(s)γ (s) – α(s)

)
k*X(s)

)
m*

(s)

+ω(s) + q(s) + θq(s).

Hence

m*
(s) =

ω̃(s) – q̃(s)
f̃ (s)

. ()

Becausem*
(s) is finite for Re(s) ≥ , the numerator on the right-hand side of () must be

zero whenever the denominator is zero. From Lemma , it follows that q̃(s) is the collo-
cation polynomial of function ω̃(s) with respect to {ρi, i = , . . . , }. Then, by the Lagrange
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interpolation formula, we obtain

q̃(s) =
∑
j=

ω̃(ρj)
∏

k=,k �=j

ρk – s
ρk – ρj

. ()

Thereby, we complete the proof. �

5 Exponential claim size
In this section, we assume that the individual claim size follows an exponential distribution
with parameter μ.
Let

fX(x) = μe–μx

and

kX(x) = fX(x)
(
 – FX(x)

)
= μe–μx –μe–μx,

then

f *X(s) =
μ

μ + s
, ()

k*
X
(s) =

μ
μ + s

–
μ

μ + s
. ()

In order to get the expression of the ruin probability, we consider a special case of the
expected penalty function with ω(x, y) =  for all x, y > .

Corollary  In the risk model introduced in Section , if X ∼ Exp(μ) and ω(x, y) = , the
Laplace transform of ruin probability denoted by ψ *(s) is

ψ *(s) =
�
ω(s) –�q(s)

�

f (s)
. ()

Proof Given ω(x, y) = , () and (), we know

m*
(s) = ψ *(s),

ω̃(s) = (μ + s)α(s) + θμ
(
β(s)γ (s) – α(s)

)
,

and

f̃ (s) = α(s)β(s) – α(s)
μ

μ + s
– θ

(
β(s)γ (s) – α(s)

)( μ
μ + s

–
μ

μ + s

)
.

For simplicity, to invert the Laplace transform of ψ *(s), we multiply(μ + s)(μ + s) on f̃ (s),
ω̃(s), q̃(s) respectively, yielding

�

f (s) = (μ + s)(μ + s)f̃ (s),

http://www.journalofinequalitiesandapplications.com/content/2012/1/156
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�
ω(s) = (μ + s)(μ + s)ω̃(s),
�q(s) = (μ + s)(μ + s)q̃(s).

So

ψ *(s) =
�
ω(s) –�q(s)

�

f (s)
. �

Example  For the numerical results, we choose λ = , λ = , μ =  and the premium
rate c = . We can invert the Laplace transform in () leading to ψ(u). In Table ,
the analytic expressions of ψ(u) are provided for differential dependence parameters:
θ = –;–.;–.; ; .; . and , respectively.
From analytic expressions of ruin probability in Table , the resulting ruin probabilities

are depicted in Figure . We can see that for fixed value of initial surplus u and the impact
of the dependence parameters range from – to , the ruin probabilities decrease.

Table 1 Analytic expressions of ruin probability

θ Expressions for the ruin probability ψ(u)

–1 0.5201exp(–0.5214u) – 0.02806exp(–2.2149u)
–0.5 0.4665exp(–0.5661u) – 0.01537exp(–2.0653u)
–0.25 0.4372exp(–0.5910u) – 0.008086exp(–2.0335u)
0 0.3820exp(–0.6180u)
0.25 0.3557exp(–0.6474u) + 0.008384exp(–1.9646u)
0.5 0.3270exp(–0.6794u) + 0.01841exp(–1.9271u)
1 0.2600exp(–0.7534u) + 0.04565exp(–1.8434u)

Figure 1 The result of ruin probability.
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