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1 Introduction
One of the most well-known inequalities in mathematics for convex functions is so called
Hermite-Hadamard integral inequality (see [, p.])

f
(
a + b


)
≤ 

b – a

∫ b

a
f (t)dt ≤ f (a) + f (b)


, ()

provided that for an interval [a,b]⊆R, f : [a,b]→ R is a convex function. If the function
f is concave, then () holds in the reverse direction. It gives an estimate from below and
above of themean value of a convex function. These inequalities for convex functions play
an important role in nonlinear analysis. In recent years there have been many extensions,
generalizations and similar type results of the inequalities in () (see [–]). These classical
inequalities have been improved and generalized in many ways and applied for special
means including Stolarsky-typemeans, logarithmic and p-logarithmicmeans. Also, many
interesting applications of Hermite-Hadamard inequality can be found in [].
In this paper, we present some refinements of the first Hermite-Hadamard integral in-

equality. Further, we study the n-exponential convexity and log-convexity of the functions
associated with the linear functionals defined as differences of the left-hand and the right-
hand sides of these inequalities. We also prove monotonicity property of the generalized
Cauchymeans obtained via these functionals. Finally, we give several examples of the fam-
ilies of functions for which the obtained results can be applied.

2 Main results
We shall start with the following refinement of the first Hermite-Hadamard inequality for
differentiable convex functions.
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Theorem . Let a,b ∈R with a < b and f : [a,b]→R be a differentiable convex function.
Then the function

H(x) =


b – a

[∫ x

a
f (t)dt + (b – x)f (x)

]
– f

(
bx – x – a

(b – a)

)
()

is increasing on [a,b] and for all x, y ∈ [a,b] such that x≤ y, we have

 ≤ H(x)≤ H(y) ≤ 
b – a

∫ b

a
f (t)dt – f

(
a + b


)
. ()

Proof We have

H ′(x) =
b – x
b – a

[
f ′(x) – f ′

(
bx – x – a

(b – a)

)]
,

where b–x
b–a ≥ , as a < b and x ∈ [a,b]. If we prove that

f ′(x) – f ′
(
bx – x – a

(b – a)

)
≥ , ()

then H(x) will be increasing on [a,b].
For x ≥ a, we have x – bx–x–a

(b–a) ≥ . Since f is a differentiable convex function defined
on [a,b], f ′ is increasing on [a,b], and so () holds, which in turn implies that H ′(x) ≥ ,
showing that H(x) is increasing on [a,b].
Now, as H(x) is increasing on [a,b], for any x, y ∈ [a,b] such that a≤ x ≤ y≤ b, we have

H(a)≤ H(x) ≤H(y) ≤ H(b). ()

At x = a and at x = b, () gives H(a) =  and H(b) = 
b–a

∫ b
a f (t)dt – f ( a+b ) respectively. By

using these values of H(a) and H(b) in (), we have (). �

Remark . If f is strictly convex, then H(x) is strictly increasing on [a,b) and strict in-
equalities hold in ().

The secondmain result is another refinement of the first Hermite-Hadamard inequality
for differentiable convex functions.

Theorem. Let a,b ∈Rwith a < b and f : [a,b]→R be a differentiable convex function.
Then the function

H̄(x) =


b – a

[∫ b

x
f (t)dt + (x – a)f (x)

]
– f

(
x + b – ax

(b – a)

)
()

is decreasing on [a,b] and for any x, y ∈ [a,b] such that x≤ y, we have

 ≤ H̄(y) ≤ H̄(x)≤ 
b – a

∫ b

a
f (t)dt – f

(
a + b


)
. ()
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Proof We have

H̄ ′(x) =
x – a
b – a

[
f ′(x) – f ′

(
x + b – ax

(b – a)

)]
,

where x–a
b–a ≥ , as a < b and x ∈ [a,b]. If we prove that

f ′(x) – f ′
(
x + b – ax

(b – a)

)
≤ , ()

then H̄(x) will be decreasing on [a,b].
For x ≤ b, we have x+b–ax

(b–a) – x ≥ . Since f is a differentiable convex function defined
on [a,b], f ′ is increasing on [a,b], and so () holds, which in turn implies that H̄ ′(x) ≤ ,
showing that H̄(x) is decreasing on [a,b].
Now, as H̄(x) is decreasing on [a,b], for any x, y ∈ [a,b] such that a≤ x ≤ y≤ b, we have

H̄(b)≤ H̄(y) ≤ H̄(x)≤ H̄(a). ()

At x = a and at x = b, () gives H̄(a) = 
b–a

∫ b
a f (t)dt – f ( a+b ) and H̄(b) =  respectively. By

using these values of H̄(a) and H̄(b) in (), we have (). �

Remark . If f is strictly convex, then H̄(x) is strictly decreasing on (a,b] and strict
inequalities hold in ().

Let us observe the inequalities () and (). Motivated by them, we define two functionals

�(x, y; f ) =H(y) –H(x), x ≤ y, ()

�(x, y; f ) = H̄(x) – H̄(y), x ≤ y, ()

where x, y ∈ [a,b] and the functions H and H̄ are as in () and () respectively. If f is
a differentiable convex function defined on [a,b], then Theorems . and . imply that
�i(x, y; f )≥ , i = , . Now, we give mean value theorems for the functionals �i, i = , .

Theorem . Let f ∈ C[a,b] and x, y ∈ [a,b] be such that x ≤ y. Let � and � be linear
functionals defined as in () and (). Then there exists ξ, ξ ∈ [a,b] such that

�i(x, y; f ) =
f ′′(ξi)


�i(x, y; f), i = , , ()

where f(z) = z.

Proof Analogous to the proof of Theorem . in []. �

Theorem . Let f , g ∈ C[a,b] and x, y ∈ [a,b] be such that x ≤ y, where g ′′(x) �=  for
every x ∈ [a,b]. Let � and � be linear functionals defined as in () and (). If � and
� are positive, then there exists ξ, ξ ∈ [a,b] such that

�i(x, y; f )
�i(x, y; g)

=
f ′′(ξi)
g ′′(ξi)

, i = , . ()
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Proof Analogous to the proof of Theorem . in []. �

Remark . If the inverse of the function f ′′
g′′ exists, then () gives

ξi =
(
f ′′

g ′′

)–(
�i(x, y; f )
�i(x, y; g)

)
, i = , . ()

3 n-exponential convexity and log-convexity of the Hermite-Hadamard
differences

We begin this section by recollecting the definitions and properties which are going to be
explored here and also some useful characterizations of these properties. Throughout the
paper, I is an open interval in R.

Definition  A function h : I →R is n-exponentially convex in the Jensen sense on I if

n∑
i,j=

αiαjh
(
xi + xj


)
≥ 

holds for every αi ∈R and xi ∈ I , i = , . . . ,n (see []).

Definition  A function h : I → R is n-exponentially convex on I if it is n-exponentially
convex in the Jensen sense and continuous on I .

Remark . From the above definition it is clear that -exponentially convex functions in
the Jensen sense are nonnegative functions. Also, n-exponentially convex functions in the
Jensen sense are k-exponentially convex functions in the Jensen sense for all k ∈ N, k ≤ n.

By definition of positive semi-definite matrices and some basic linear algebra, we have
the following proposition.

Proposition . If h is n-exponentially convex in the Jensen sense, then the matrix
[h( xi+xj )]ki,j= is a positive semi-definite matrix for all k ∈N, k ≤ n. Particularly,

det

[
h
(
xi + xj


)]k

i,j=
≥  for every k ∈ N, k ≤ n, xi ∈ I, i = , . . . ,n.

Definition  A function h : I → R is exponentially convex in the Jensen sense if it is
n-exponentially convex in the Jensen sense for all n ∈N.

Definition  A function h : I →R is exponentially convex if it is exponentially convex in
the Jensen sense and continuous.

Lemma . A function h : I → (,∞) is log-convex in the Jensen sense, that is, for every
x, y ∈ I,

h
(
x + y


)
≤ h(x)h(y)
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holds if and only if the relation

αh(x) + αβh
(
x + y


)
+ βh(y) ≥ 

holds for every α,β ∈ R and x, y ∈ I.

Remark . It follows that a function is log-convex in the Jensen sense if and only if it
is -exponentially convex in the Jensen sense. Also, by using the basic convexity theory, a
function is log-convex if and only if it is -exponentially convex.

The following result will be useful further (see [, p.]).

Lemma . If f is a convex function defined on an interval I and x ≤ y, x ≤ y, x �= x,
y �= y, then the following inequality is valid

f (x) – f (x)
x – x

≤ f (y) – f (y)
y – y

.

If the function f is concave, the inequality reverses.

Definition  The second order divided difference of a function f : [a,b]→R at mutually
distinct points y, y, y ∈ [a,b] is defined recursively by

[yi, yi+; f ] =
f (yi+) – f (yi)

yi+ – yi
, i = , ,

[y, y, y; f ] =
[y, y; f ] – [y, y; f ]

y – y
.

()

Remark . The value [y, y, y; f ] is independent of the order of the points y, y and y.
This definition may be extended to include the case in which some or all the points coin-
cide (see [, p.]). Namely, taking the limit y → y in (), we get

lim
y→y

[y, y, y; f ] = [y, y, y; f ] =
f (y) – f (y) – f ′(y)(y – y)

(y – y)
, y �= y,

provided that f ′ exists; and furthermore, taking the limits yi → y, i = , , in (), we get

lim
y→y

lim
y→y

[y, y, y; f ] = [y, y, y; f ] =
f ′′(y)


,

provided that f ′′ exists.

The following definition of a real valued convex function is characterized by second
order divided difference (see [, p.]).

Definition  A function f : [a,b] → R is said to be convex if and only if for all choices of
three distinct points y, y, y ∈ [a,b], [y, y, y; f ] ≥ .

Next, we study the n-exponential convexity and log-convexity of the functions associ-
ated with the linear functionals �i (i = , ) defined in () and ().
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Theorem. Let� = {fs : s ∈ I ⊆R} be a family of differentiable functions defined on [a,b]
such that the function s 
→ [y, y, y; fs] is n-exponentially convex in the Jensen sense on I for
every three mutually distinct points y, y, y ∈ [a,b]. Let �i (i = , ) be linear functionals
defined as in () and (). Then the following statements hold.

(i) The function s 
→ �i(x, y; fs) is n-exponentially convex in the Jensen sense on I .
(ii) If the function s 
→ �i(x, y; fs) is continuous on I , then it is n-exponentially convex

on I .

Proof The idea of the proof is the same as in [].
(i) Let αj ∈R (j = , . . . ,n) and consider the function

g(y) =
n∑

j,k=

αjαkf sj+sk


(y),

where sj ∈ I and f sj+sk


∈ �. Then

[y, y, y; g] =
n∑

j,k=

αjαk[y, y, y; f sj+sk


]

and since [y, y, y; f sj+sk


] is n-exponentially convex in the Jensen sense on I by
assumption, it follows that

[y, y, y; g] =
n∑

j,k=

αjαk[y, y, y; f sj+sk


] ≥ .

And so by using Definition , we conclude that g is a convex function. Hence

�i(x, y; g) ≥ , i = , ,

which is equivalent to

n∑
j,k=

αjαk�i(x, y; f sj+sk


) ≥ , i = , ,

and so we conclude that the function s 
→ �i(x, y; fs) is n-exponentially convex in the
Jensen sense on I .

(ii) If the function s 
→ �i(x, y; fs) is continuous on I , then from (i) and by Definition  it
follows that it is n-exponentially convex on I .

�

Corollary . Let� = {fs : s ∈ I ⊆R} be a family of differentiable functions defined on [a,b]
such that the function s 
→ [y, y, y; fs] is exponentially convex in the Jensen sense on I for
every three mutually distinct points y, y, y ∈ [a,b]. Let �i (i = , ) be linear functionals
defined as in () and (). Then the following statements hold.

(i) The function s 
→ �i(x, y; fs) is exponentially convex in the Jensen sense on I .
(ii) If the function s 
→ �i(x, y; fs) is continuous on I , then it is exponentially convex on I .

http://www.journalofinequalitiesandapplications.com/content/2012/1/155
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Corollary . Let � = {fs : s ∈ I ⊆ R} be a family of differentiable functions defined on
[a,b] such that the function s 
→ [y, y, y; fs] is -exponentially convex in the Jensen sense
on I for every three mutually distinct points y, y, y ∈ [a,b]. Let �i (i = , ) be linear func-
tionals defined as in () and (). Further, assume �i(x, y; fs) (i = , ) is strictly positive for
fs ∈ �. Then the following statements hold:

(i) If the function s 
→ �i(x, y; fs) is continuous on I , then it is -exponentially convex on
I and so, it is log-convex.

(ii) If the function s 
→ �i(x, y; fs) is differentiable on I , then for every s,q,u, v ∈ I such
that s≤ u and q ≤ v, we have

μs,q(x, y,�i,�) ≤ μu,v(x, y,�i,�), i = , , ()

where

μs,q(x, y,�i,�) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
�i(x, y; fs)
�i(x, y; fq)

) 
s–q

, s �= q,

exp

( d
ds�i(x, y; fs)
�i(x, y; fs)

)
, s = q,

()

for fs, fq ∈ �.

Proof The idea of the proof is the same as in [].
(i) The claim is an immediate consequence of Theorem . and Remark ..
(ii) Since by (i) the function s 
→ �i(x, y; fs) is log-convex on I , that is, the function

s 
→ log�i(x, y; fs) is convex on I . Applying Lemma . with setting
f (z) = log�i(x, y; fz) (i = , ), we get

log�i(x, y; fs) – log�i(x, y; fq)
s – q

≤ log�i(x, y; fu) – log�i(x, y; fv)
u – v

()

for s ≤ u, q ≤ v, s �= q,u �= v; and therefore conclude that

μs,q(x, y,�i,�) ≤ μu,v(x, y,�i,�), i = , .

If s = q, we consider the limit when q → s in () and conclude that

μs,s(x, y,�i,�) ≤ μu,v(x, y,�i,�), i = , .

The case u = v can be treated similarly.
�

Remark . Note that the results from Theorem ., Corollary . and Corollary .
still hold when two of the points y, y, y ∈ [a,b] coincide, say y = y, for a family of dif-
ferentiable functions fs such that the function s 
→ [y, y, y; fs] is n-exponentially convex
in the Jensen sense (exponentially convex in the Jensen sense, log-convex in the Jensen
sense on I); and furthermore, they still hold when all three points coincide for a family of
twice differentiable functions with the same property. The proofs are obtained by recalling
Remark . and by using suitable characterizations of convexity.

http://www.journalofinequalitiesandapplications.com/content/2012/1/155
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4 Examples
In this section, we present several families of functions which fulfill the conditions of The-
orem., Corollary . andCorollary . (Remark .). In this way, we can construct large
families of functions which are exponentially convex.

Example . Consider the family of functions

� =
{
gs :R → [,∞) : s ∈ R

}
defined by

gs(x) =

⎧⎪⎨
⎪⎩


s
esx, s �= ,



x, s = .

We have d
dx gs(x) = esx >  which shows that gs is convex on R for every s ∈ R and s 
→

d
dx gs(x) is exponentially convex by Example . given in []. From [], we then also have
that s 
→ [y, y, y; gs] is exponentially convex and so s 
→ [y, y, y; gs] is exponentially
convex in Jensen sense. Now, by using Corollary ., we have s 
→ �i(x, y; gs) (i = , ) are
exponentially convex in Jensen sense. Since these mappings are continuous (although the
mapping s 
→ gs is not continuous for s = ), s 
→ �i(x, y; gs) (i = , ) are exponentially
convex.
For this family of functions, by taking � = � in (), �i

s,q; := μs,q(x, y,�i,�) (i = , )
are of the form

�
s,q; =

(
q

s
·

esy–esx
s + esy(b – y) – esx(b – x) + (b – a)(esx̂ – esŷ)

eqy–eqx
q + eqy(b – y) – eqx(b – x) + (b – a)(eqx̂ – eqŷ)

) 
s–q

, s �= q �= ,

�
s,; =

(

s

·
esy–esx

s + esy(b – y) – esx(b – x) + (b – a)(esx̂ – esŷ)
y–x

 + y(b – y) – x(b – x) + (b – a)(x̂ – ŷ)

) 
s
, s �= ,

�
s,s; = exp

(

s

·
esx( s – x – (b – x)(sx – )) + esy(y – 

s + (b – y)(sy – ))
+ (b – a)(esx̂(sx̂ – ) – esŷ(sŷ – ))

esy–esx
s + esy(b – y) – esx(b – x) + (b – a)(esx̂ – esŷ)

)
, s �= ,

�
,; = exp

(



·
y–x

 + y(b – y) – x(b – x) + (b – a)(x̂ – ŷ)
y–x

 + y(b – y) – x(b – x) + (b – a)(x̂ – ŷ)

)
,

�
s,q; =

(
q

s
·

esy–esx
s + esx(x – a) – esy(y – a) + (b – a)(esỹ – esx̃)

eqy–eqx
q + eqx(x – a) – eqy(y – a) + (b – a)(eqỹ – eqx̃)

) 
s–q

, s �= q �= ,

�
s,; =

(

s

·
esy–esx

s + esx(x – a) – esy(y – a) + (b – a)(esỹ – esx̃)
y–x

 + x(x – a) – y(y – a) + (b – a)(ỹ – x̃)

) 
s
, s �= ,

�
s,s; = exp

(

s

·
esx( s – x + (x – a)(sx – )) + esy(y – 

s – (y – a)(sy – ))
+ (b – a)(esỹ(sỹ – ) – esx̃(sx̃ – ))

esy–esx
s + esx(x – a) – esy(y – a) + (b – a)(esỹ – esx̃)

)
, s �= ,

�
,; = exp

(



·
y–x

 + x(x – a) – y(y – a) + (b – a)(ỹ – x̃)
y–x

 + x(x – a) – y(y – a) + (b – a)(ỹ – x̃)

)
,

http://www.journalofinequalitiesandapplications.com/content/2012/1/155
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where

x̂ =
bx – x – a

(b – a)
, ŷ =

by – y – a

(b – a)
,

x̃ =
x + b – ax

(b – a)
, ỹ =

y + b – ay
(b – a)

.
()

By using Theorem ., it can be seen that

Ms,q(x,�i,�) = logμs,q(x,�i,�), i = , ,

satisfy min{a,b} ≤ Ms,q(x,�i,�) ≤ max{a,b}, showing that Ms,q(x,�i,�) (i = , ) are
means.

Example . Consider the family of functions

� =
{
fs : (,∞)→R : s ∈R

}
defined by

fs(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xs

s(s – )
, s �= , ,

– lnx, s = ,

x lnx, s = .

Here, d
dx fs(x) = xs– = e(s–) lnx > which shows that fs is convex for x >  and s 
→ d

dx fs(x)
is exponentially convex by Example . given in []. From [], we have s 
→ [y, y, y; fs]
is exponentially convex. Arguing as in Example ., we have s 
→ �i(x, y; fs) (i = , ) are
exponentially convex.
By taking � = � in (), �i

s,q; := μs,q(x, y,�i,�) (i = , ) for x, y > , where x, y ∈ [a,b],
are of the form

�
s,q; =

(
q(q – )
s(s – )

·
ys+–xs+

s+ + ys(b – y) – xs(b – x)+(b – a)(x̂s – ŷs)
yq+–xq+

q+ + yq(b – y) – xq(b – x)+(b – a)(x̂q – ŷq)

) 
s–q

,

s �= q �= –, , ,

�
s,; =

(


s(s – )
·

ys+–xs+
s+ + ys(b – y) – xs(b – x)+(b – a)(x̂s – ŷs)
y – x + b(lnx – ln y) + (b – a)(ln ŷ – ln x̂)

) 
s

, s �= –, , ,

�
s,; =

(


s(s – )
·

ys+–xs+
s+ + ys(b – y) – xs(b – x) + (b – a)(x̂s – ŷs)
x – y + [y ln y(b – y) – x lnx(b – x)]

+ (b – a)(x̂ ln x̂ – ŷ ln ŷ)

) 
s–

, s �= –, , ,

�
,; =

x – y+[y ln y(b – y) – x lnx(b – x)] + (b – a)(x̂ ln x̂ – ŷ ln ŷ)
[y – x + b(lnx – ln y) + (b – a)(ln ŷ – ln x̂)]

,

�
s,s; = exp

( 
b–a [

ys+ ln y–xs+ lnx
s+ + (–s)(ys+–xs+)

s(s–)(s+) + ys(b – y)( –s
s(s–) + ln y)

– xs(b – x)( –s
s(s–) + lnx)] + –s

s(s–) (x̂
s – ŷs) + x̂s ln x̂ – ŷs ln ŷ


b–a (

ys+–xs+
s+ + ys(b – y) – xs(b – x) + (b – a)(x̂s – ŷs))

)
, s �= –, , ,
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�
,; = exp

( lnx[xlnx + (b – x)( + lnx)] – lny[y ln y – (b – y)( + ln y)]
+ (b – a)[ln ŷ( + ln ŷ) – ln x̂( + ln x̂)]
[y – x + b(lnx – ln y) + (b – a)(ln ŷ – ln x̂)]

)
,

�
,; = exp

( [y ln y{y ln y – y + (b – y)(ln y – )} – x lnx(x lnx – x)] + (y – x)
– x lnx(b – x)(lnx – ) + (b – a)[x̂ ln x̂(ln x̂ – ) – ŷ ln ŷ(ln ŷ – )]

[x – y + {y ln y(b – y) – x lnx(b – x)} + (b – a)(x̂ ln x̂ – ŷ ln ŷ)]

)
,

�
s,q; =

(
q(q – )
s(s – )

·
ys+–xs+

s+ + xs(x – a) – ys(y – a)+(b – a)(ỹs – x̃s)
yq+–xq+

q+ + xq(x – a) – yq(y – a) + (b – a)(ỹq – x̃q)

) 
s–q

,

s �= q �= –, , ,

�
s,; =

(


s(s – )
·

ys+–xs+
s+ + xs(x – a) – ys(y – a)+(b – a)(ỹs – x̃s)
y – x + a(lnx – ln y) + (b – a)(ln x̃ – ln ỹ)

) 
s

, s �= –, , ,

�
s,; =

(


s(s – )
·

ys+–xs+
s+ + xs(x – a) – ys(y – a)+(b – a)(ỹs – x̃s)
x – y + [y ln y(a – y) – x lnx(a – x)]

+ (b – a)(ỹ ln ỹ – x̃ ln x̃)

) 
s–

, s �= –, , ,

�
,; =

x – y + [y ln y(a – y) – x lnx(a – x)] + (b – a)(ỹ ln ỹ – x̃ ln x̃)
[y – x + a(lnx – ln y) + (b – a)(ln x̃ – ln ỹ)]

,

�
s,s; = exp

( 
b–a [

ys+ ln y–xs+ lnx
s+ + (–s)(ys+–xs+)

s(s–)(s+) + xs(x – a)( –s
s(s–) + lnx)

– ys(y – a)( –s
s(s–) + ln y)] + –s

s(s–) (ỹ
s – x̃s) + ỹs ln ỹ – x̃s ln x̃


b–a (

ys+–xs+
s+ + xs(x – a) – ys(y – a) + (b – a)(ỹs – x̃s))

)
, s �= –, , ,

�
,; = exp

( lnx[xlnx – (x – a)( + lnx)] – ln y[ylny – (y – a)( + ln y)]
+ (b – a)[ln x̃( + ln x̃) – ln ỹ( + ln ỹ)]
[y – x + a(lnx – ln y) + (b – a)(ln x̃ – ln ỹ)]

)
,

�
,; = exp

( [y ln y{y ln y – y – (y – a)(ln y – )} – x lnx(x lnx – x)] + (y – x)
+ x lnx(x – a)(lnx – )+(b – a)[ỹ ln ỹ(ln ỹ – ) – x̃ ln x̃(ln x̃ – )]

[x – y + {y ln y(a – y) – x lnx(a – x)} + (b – a)(ỹ ln ỹ – x̃ ln x̃)]

)
,

where x̂, ŷ, x̃ and ỹ are the same as in (). If �i (i = , ) are positive, then Theorem .
applied for f = fs ∈ � and g = fq ∈ � yields that there exists ξi ∈ [a,b] such that

ξ
s–q
i =

�i(x, y; fs)
�i(x, y; fq)

, i = , .

Since the functions ξi 
→ ξ
s–q
i (i = , ) are invertible for s �= q, we then have

min{a,b} ≤
(

�i(x, y; fs)
�i(x, y; fq)

) 
s–q

≤ max{a,b}, i = , , ()

which, together with the fact that μs,q(x, y,�i,�) (i = , ) are continuous, symmetric and
monotonous (by ()), shows that μs,q(x, y,�i,�) (i = , ) are means.

http://www.journalofinequalitiesandapplications.com/content/2012/1/155
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Now, by the substitutions x → xt , y → yt , s → s
t , q → q

t (t �= , s �= q), where x, y ∈ [a,b],
from () we get

min{at ,bt} ≤
(

�i(xt , yt ; fs/t
�i(xt , yt ; fq/t

) t
s–q

≤ max{at ,bt}.

We define a new mean (for i = , ) as follows:

μs,q;t(x, y,�i,�) =

⎧⎨
⎩

(
μ s

t ,
q
t

(
xt , yt ,�i,�

)) 
t , t �= ,

μs,q(lnx, ln y,�i,�), t = .

These new means are also monotonous. More precisely, for s,q,u, v ∈ R such that s ≤ u,
q ≤ v, s �= q, u �= v, we have

μs,q;t(x, y,�i,�) ≤ μu,v;t(x, y,�i,�), i = , .

We know that

μ s
t ,

q
t

(
xt , yt ,�i,�

) ≤ μ u
t ,

v
t

(
xt , yt ,�i,�

)
, i = , ,

equivalently

(
�i(xt , yt ; fs/t)
�i(xt , yt ; fq/t)

) t
s–q

≤
(

�i(xt , yt ; fu/t)
�i(xt , yt ; fv/t)

) t
u–v

, i = , ,

for s,q,u, v ∈ I such that s/t ≤ u/t, q/t ≤ v/t and t �= , since μs,q(x, y,�i,�) (i = , ) are
monotonous in both parameters, the claim follows. For t = , we obtain the required result
by taking the limit t → .

Remark . If we make the substitutions x → a, y → b, s → s –  and t → t –  in our
meansμs,q(x, y,�i,�) andμs,q;t(x, y,�i,�) (i = , ), then the results for the E(r, t) means
and the generalized E means given in [] are recaptured. In this way our results for means
are the generalizations of the above mentioned means.

Example . Consider the family of functions

� =
{
hs : (,∞) → (,∞) : s ∈ (,∞)

}
defined by

hs(x) =

⎧⎪⎨
⎪⎩

s–x

ln s
, s �= ,

x
 , s = .

We have d
dx hs(x) = s–x >  which shows that hs is convex for all s > . Exponential con-

vexity of s 
→ d
dx hs(x) = s–x on (,∞) is given by Example . in []. Arguing as in Exam-

ple ., we have s 
→ �i(x, y;hs) (i = , ) are exponentially convex.
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In this case by taking � = � in (), �i
s,q; := μs,q(x, y,�i,�) (i = , ) for x, y > , where

x, y ∈ [a,b], are of the form

�
s,q; =

(
lnq
lns

·
s–x–s–y

ln s + s–y(b – y) – s–x(b – x) + (b – a)(s–x̂ – s–ŷ)
q–x–q–y

lnq + q–y(b – y) – q–x(b – x) + (b – a)(q–x̂ – q–ŷ)

) 
s–q

, s �= q �= ,

�
s,; =

(


lns
·

s–x–s–y
ln s + s–y(b – y) – s–x(b – x) + (b – a)(s–x̂ – s–ŷ)
y–x

 + y(b – y) – x(b – x) + (b – a)(x̂ – ŷ)

) 
s–

, s �= ,

�
s,s; = exp

( 
b–a [ys

–y – xs–x + 
ln s (s

–y – s–x) – s–y(b – y)( + y ln s)
+ s–x(b – x)( + x ln s)] – s–x̂( + x̂ ln s) + s–ŷ( + ŷ ln s)

s ln s
b–a (

s–x–s–y
ln s + s–y(b – y) – s–x(b – x) + (b – a)(s–x̂ – s–ŷ))

)
, s �= ,

�
,; = exp

(
–



·
y–x

 + y(b – y) – x(b – x) + (b – a)(x̂ – ŷ)
y–x

 + y(b – y) – x(b – x) + (b – a)(x̂ – ŷ)

)
,

�
s,q; =

(
lnq
lns

·
s–x–s–y

ln s + s–x(x – a) – s–y(y – a) + (b – a)(s–ỹ – s–x̃)
q–x–q–y

lnq + q–x(x – a) – q–y(y – a) + (b – a)(q–ỹ – q–x̃)

) 
s–q

, s �= q �= ,

�
s,; =

(


lns
·

s–x–s–y
ln s + s–x(x – a) – s–y(y – a) + (b – a)(s–ỹ – s–x̃)
y–x

 + x(x – a) – y(y – a) + (b – a)(ỹ – x̃)

) 
s–

, s �= ,

�
s,s; = exp

( 
b–a [ys

–y – xs–x + 
ln s (s

–y – s–x) – s–x(x – a)( + x ln s)
+ s–y(y – a)( + y ln s)] – s–ỹ( + ỹ ln s) + s–x̃( + x̃ ln s)

s ln s
b–a (

s–x–s–y
ln s + s–x(x – a) – s–y(y – a) + (b – a)(s–ỹ – s–x̃))

)
, s �= ,

�
,; = exp

(
–



·
y–x

 + x(x – a) – y(y – a) + (b – a)(ỹ – x̃)
y–x

 + x(x – a) – y(y – a) + (b – a)(ỹ – x̃)

)
,

where x̂, ŷ, x̃ and ỹ are the same as in (). By using Theorem ., it follows that

Ms,q(x,�i,�) = –L(s,q) logμs,q(x,�i,�), i = , ,

satisfy min{a,b} ≤ Ms,q(x,�i,�) ≤ max{a,b} and so Ms,q(x,�i,�) (i = , ) are means,
where L(s,q) is a logarithmic mean defined by L(s,q) = s–q

log s–logq , s �= q, L(s, s) = s.

Example . Consider the family of functions

� =
{
ks : (,∞)→ (,∞) : s ∈ (,∞)

}
defined by

ks(x) =
e–x

√
s

s
.

Here, d
dx ks(x) = e–x

√
s >  which shows that ks is convex for all s > . Exponential con-

vexity of s 
→ d
dx ks(x) = e–x

√
s on (,∞) is given by Example . in []. Arguing as in Ex-

ample ., we have s 
→ �i(x, y;ks) (i = , ) are exponentially convex.
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In this case by taking � = � in (), �i
s,q; := μs,q(x, y,�i,�) (i = , ) for x, y > , where

x, y ∈ [a,b], are of the form

�
s,q; =

(
q
s

·
e–x

√
s–e–y

√
s√

s + e–y
√
s(b – y) – e–x

√
s(b – x) + (b – a)(e–x̂

√
s – e–ŷ

√
s)

e–x
√q–e–y

√q√q + e–y
√q(b – y) – e–x

√q(b – x) + (b – a)(e–x̂
√q – e–ŷ

√q)

) 
s–q

,

s �= q,

�
s,s; = exp

( ye–y
√
s – xe–x

√
s + √

s (e
–y

√
s – e–x

√
s) – e–y

√
s(b – y)( + y

√
s)

+ e–x
√
s(b – x)( + x

√
s) + (b – a)(e–ŷ

√
s( + ŷ

√
s) – e–x̂

√
s( + x̂

√
s))

s( e–x
√
s–e–y

√
s√

s + e–y
√
s(b – y) – e–x

√
s(b – x) + (b – a)(e–x̂

√
s – e–ŷ

√
s))

)
,

�
s,q; =

(
q
s

·
e–x

√
s–e–y

√
s√

s + e–x
√
s(x – a) – e–y

√
s(y – a) + (b – a)(e–ỹ

√
s – e–x̃

√
s)

e–x
√q–e–y

√q√q + e–x
√q(x – a) – e–y

√q(y – a) + (b – a)(e–ỹ
√q – e–x̃

√q)

) 
s–q

,

s �= q,

�
s,s; = exp

( ye–y
√
s – xe–x

√
s + √

s (e
–y

√
s – e–x

√
s) – e–x

√
s(x – a)( + x

√
s)

+ e–y
√
s(y – a)( + y

√
s) + (b – a)(e–x̃

√
s( + x̃

√
s) – e–ỹ

√
s( + ỹ

√
s))

s( e–x
√
s–e–y

√
s√

s + e–x
√
s(x – a) – e–y

√
s(y – a) + (b – a)(e–ỹ

√
s – e–x̃

√
s))

)
,

where x̂, ŷ, x̃ and ỹ are the same as in (). By using Theorem ., it is easy to see that

Ms,q(x,�i,�) = –(
√
s +

√
q) logμs,q(x,�i,�), i = , ,

satisfy min{a,b} ≤ Ms,q(x,�i,�) ≤ max{a,b}, showing that Ms,q(x,�i,�) (i = , ) are
means.

Remark . From (), it is clear that μs,q(x, y,�i,�) (i = , ) for � = �,�,� and �

are monotonous functions in parameters s and q.
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