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Abstract
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1 Introduction
It is well known that the probability inequality plays an important role in various

proofs of limit theorems. In particular, it provides a measure of convergence rate for

the strong law of large numbers. The main purpose of the article is to provide some

probability inequalities for extended negatively dependent (END) sequence, which con-

tains independent sequence, NA sequence, and NOD sequence as special cases. These

probability inequalities for END random variables are mainly inspired by Fakoor and

Azarnoosh [1] and Asadian et al. [2]. Using the probability inequalities, we can further

study the moment inequalities and asymptotic approximation of inverse moment for

END sequence.

First, we will recall the definitions of NOD and END sequences.

Definition 1.1 (cf. Joag-Dev and Proschan [3]). A finite collection of random variables

X1, X2, ..., Xn is said to be negatively upper orthant dependent (NUOD) if for all real

numbers x1, x2, ..., xn,

P(Xi > xi, i = 1, 2, . . . ,n) ≤
n∏
i=1

P(Xi > xi), (1:1)

and negatively lower orthant dependent (NLOD) if for all real numbers x1, x2, ..., xn,

P(Xi ≤ xi, i = 1, 2, . . . ,n) ≤
n∏
i=1

P(Xi ≤ xi). (1:2)
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A finite collection of random variables X1, X2, ..., Xn is said to be negatively orthant

dependent (NOD) if they are both NUOD and NLOD.

An infinite sequence {Xn, n ≥ 1} is said to be NOD if every finite subcollection is NOD.

Definition 1.2 (cf. Liu [4]). We call random variables {Xn, n ≥ 1} END if there exists

a constant M > 0 such that both

P(X1 > x1,X2 > x2, . . . ,Xn > xn) ≤ M
n∏
i=1

P(Xi > xi) (1:3)

and

P(X1 ≤ x1,X2 ≤ x2, . . . ,Xn ≤ xn) ≤ M
n∏
i=1

P(Xi ≤ xi) (1:4)

hold for each n ≥ 1 and all real numbers x1, x2, ..., xn.

The concept of END sequence was introduced by Liu [4]. Some applications for

END sequence have been found. See, for example, Liu [4] obtained the precise large

deviations for dependent random variables with heavy tails. Liu [5] studied the suffi-

cient and necessary conditions of moderate deviations for dependent random variables

with heavy tails. It is easily seen that independent random variables and NOD random

variables are END. Joag-Dev and Proschan [3] pointed out that NA random variables

are NOD. Thus, NA random variables are END. Since END random variables are

much weaker than independent random variables, NA random variables and NOD

random variables, studying the limit behavior of END sequence is of interest.

Throughout the article, let {Xn, n ≥ 1} be a sequence of END random variables

defined on a fixed probability space (�, F , P) with respective distribution functions

F1, F2, .... Denote X+ = max{0, X}. cn ~ dn means cnd−1
n → 1 as n ® ∞, and cn = o(dn)

means cnd−1
n → 0 as n ® ∞. Let M and C be positive constants which may be different

in various places. Set

Mt,n =
n∑
i=1

E|Xi|t , Sn =
n∑
i=1

Xi, n ≥ 1.

The following lemma is useful.

Lemma 1.1 (cf. Liu [5]). Let random variables X1, X2, ..., Xn be END.

(i) If f1, f2, ..., fn are all nondecreasing (or nonincreasing) functions, then random

variables f1(X1), f2(X2), ..., fn(Xn) are END.

(ii) For each n ≥ 1, there exists a constant M > 0 such that

E

⎛
⎝ n∏

j=1

X+
j

⎞
⎠ ≤ M

n∏
j=1

EX+
j . (1:5)

Lemma 1.2. Let {Xn, n ≥ 1} be a sequence of END random variables and {tn, n ≥ 1}

be a sequence of nonnegative numbers (or nonpositive numbers), then for each n ≥ 1,

there exists a constant M > 0 such that

E

(
n∏
i=1

etiXi

)
≤ M

n∏
i=1

EetiXi . (1:6)
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As a byproduct, for any t Î ℝ,

E

(
n∏
i=1

etXi

)
≤ M

n∏
i=1

EetXi . (1:7)

Proof. The desired result follows from Lemma 1.1 (i) and (ii) immediately. □
The organization of this article is as follows: The probability inequalities for END

sequence are provided in Section 2, the moment inequalities for END sequence are

presented in Section 3, and the asymptotic approximation of inverse moment for non-

negative END sequence is studied in Section 4.

2 Probability inequalities for sums of END sequence
In this section, we will give some probability inequalities for END random variables,

which can be applied to obtain the moment inequalities and strong law of large num-

bers. The proofs of the probability inequalities for END random variables are mainly

inspired by Fakoor and Azarnoosh [1] and Asadian et al. [2]. Let x, y be arbitrary posi-

tive numbers.

Theorem 2.1. Let 0 <t ≤ 1. Then, there exists a positive constant M such that

P(Sn ≥ x) ≤
n∑
i=1

P(Xi ≥ y) +M exp
{
x

y
− x

y
log

(
1 +

xyt−1

Mt,n

)}
. (2:1)

If xyt-1 >Mt, n, then

P(Sn ≥ x) ≤
n∑
i=1

P(Xi ≥ y) +M exp
{
x

y
− Mt,n

yt
− x

y
log

(
xyt−1

Mt,n

)}
. (2:2)

Proof. For y > 0, denote Yi = min(Xi, y), i = 1, 2, ..., n and Tn =
∑n

i=1 Yi, n ≥ 1. It is

easy to check that

{Sn ≥ x} ⊂ {Tn �= Sn}
⋃

{Tn ≥ x},
which implies that for any positive number h,

P(Sn ≥ x) ≤ P(Tn �= Sn) + P(Tn ≥ x) ≤
n∑
i=1

P(Xi ≥ y) + e−hxEehTn . (2:3)

Lemma 1.1 (i) implies that Y1, Y2, ..., Yn are still END random variables. It follows

from (2.3) and Lemma 1.2 that

P(Sn ≥ x) ≤
n∑
i=1

P(Xi ≥ y) +Me−hx
n∏
i=1

EehYi , (2:4)

where M is a positive constant. For 0 <t ≤ 1, the function (ehu - 1)/ut is increasing on

u > 0. Thus,

EehYi =
∫ y

−∞
(ehu − 1)dFi(u) +

∫ ∞

y
(ehy − 1)dFi(u) + 1

≤
∫ y

0
(ehu − 1)dFi(u) +

∫ ∞

y
(ehy − 1)dFi(u) + 1

≤ ehy − 1
yt

∫ y

0
utdFi(u) +

ehy − 1
yt

∫ ∞

y
utdFi(u) + 1

≤ 1 +
ehy − 1

yt
E|Xi|t ≤ exp

{
ehy − 1

yt
E|Xi|t

}
.
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Combining the inequality above and (2.4), we can get that

P(Sn ≥ x) ≤
n∑
i=1

P(Xi ≥ y) +M exp
{
ehy − 1

yt
Mt,n − hx

}
. (2:5)

Taking h = 1
y log

(
1 + xyt−1

Mt,n

)
in the right-hand side of (2.5), we can get (2.1) immedi-

ately. If xyt-1 >Mt, n, then the right-hand side of (2.5) attains a minimum value when

h = 1
y log

(
1 + xyt−1

Mt,n

)
. Substitute this value of h to the right-hand side of (2.5), we can

get (2.2) immediately. This completes the proof of the theorem.

By Theorem 2.1, we can get the following Theorem 2.2 immediately.

Theorem 2.2. Let 0 <t ≤ 1. Then, there exists a positive constant M such that

P(|Sn| ≥ x) ≤
n∑
i=1

P(|Xi| ≥ y) + 2M exp
{
x

y
− x

y
log

(
1 +

xyt−1

Mt,n

)}
. (2:6)

If xyt-1 >Mt, n, then

P(|Sn| ≥ x) ≤
n∑
i=1

P(Xi ≥ y) + 2M exp
{
x

y
− Mt,n

yt
− x

y
log

(
xyt−1

Mt,n

)}
. (2:7)

Theorem 2.3. Assume that EXi = 0 for each i ≥ 1, then for any h, x, y > 0, there

exists a positive constant M such that

P(|Sn| ≥ x) ≤
n∑
i=1

P(|Xi| ≥ y) + 2M exp
{
ehy − 1 − hy

y2
M2,n − hx

}
. (2:8)

If we take h = 1
y log

(
1 + xy

M2,n

)
, then

P(|Sn| ≥ x) ≤
n∑
i=1

P(|Xi| ≥ y) + 2M exp
{
x

y
− x

y
log

(
1 +

xy

M2,n

)}
. (2:9)

Proof. We use the same notations as that in Theorem 2.1. It is easy to see that (ehu -

1 - hu)/u2 is nondecreasing on the real line. Therefore,

EehYi ≤ 1 + hEXi +
∫ y

−∞
(ehu − 1 − hu)dFi(u) +

∫ ∞

y
(ehy − 1 − hy)dFi(u)

= 1 +
∫ y

−∞

ehu − 1 − hu

u2
u2dFi(u) +

∫ ∞

y
(ehy − 1 − hy)dFi(u)

≤ 1 +
ehy − 1 − hy

y2

(∫ y

−∞
u2dFi(u) +

∫ ∞

y
y2dFi(u)

)

≤ 1 +
ehy − 1 − hy

y2
EX2

i ≤ exp
{
ehy − 1 − hy

y2
EX2

i

}
,

which implies that

P(Sn ≥ x) ≤
n∑
i=1

P(Xi ≥ y) +M exp
{
ehy − 1 − hy

y2
M2,n − hx

}
.

Replacing Xi by -Xi, we have

P(−Sn ≥ x) ≤
n∑
i=1

P(−Xi ≥ y) +M exp
{
ehy − 1 − hy

y2
M2,n − hx

}
.
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Therefore, (2.8) follows from statements above immediately, which yields the desired

result (2.9). The proof is completed.

Theorem 2.4. Assume that EXi = 0 and |Xi| ≤ C for each i ≥ 1, where C is a positive

constant. Denote Bn =
∑n

i=1 EX
2
i for each n ≥ 1. Then, for any x > 0, there exists a

positive constant M such that

P(Sn ≥ x) ≤ M exp
{
− x
2C

arcsin h
(

Cx
2Bn

)}
(2:10)

and

P(|Sn| ≥ x) ≤ 2M exp
{
− x
2C

arcsin h
(

Cx
2Bn

)}
. (2:11)

Proof. It is easily seen that

ex − x − 1 ≤ ex + e−x − 2 = 2(cosh x − 1) = 2(cosh |x| − 1), x ∈ R

and

2(cosh x − 1) ≤ x sinh x, x ≥ 0.

Thus, for all a > 0 and i = 1, 2, ..., n, we can get that

E(eαXi − 1) = E(eαXi − αXi − 1) ≤ 2E(cosh αXi − 1)

= 2E(cosh α|Xi| − 1) ≤ E(α|Xi| sinh α|Xi|)

= E
(

α2X2
i
sinh α|Xi|

α|Xi|
)

≤ αEX2
i

C
sinh αC.

The last inequality above follows from the fact that the function sinh x
x is nondecreas-

ing on the half-line (0, ∞).

Since x = x - 1 + 1 ≤ ex-1 for all x Î ℝ, we have by Lemma 1.2 that

E

(
n∏
i=1

eαXi

)
≤ M

n∏
i=1

EeαXi ≤ M
n∏
i=1

exp(EeαXi − 1) ≤ M exp
(

αBn
sinh αC

C

)
,

where C is a positive constant. Therefore, for all a > 0 and x > 0, we have

P(Sn ≥ x) ≤ e−αxEeαSn ≤ M exp
{
α

(
Bn

sinh αC
C

− x
)}

. (2:12)

Taking α = 1
C arcsin h

(
Cx
2Bn

)
in the right-hand side of (2.12), we can see that

Bn
sinh αC

C = x
2 and (2.10) follows.

Since {-Xn, n ≥ 1} is still a sequence of END random variables from Lemma 1.1, we

have by (2.10) that

P(−Sn ≥ x) ≤ M exp
{
− x
2C

arcsin h
(

Cx
2Bn

)}
. (2:13)

Hence, (2.11) follows from (2.10) and (2.13) immediately. This completes the proof

of the theorem.

Theorem 2.5. Assume that EXi = 0 and |Xi| ≤ C for each i ≥ 1, where C is a positive con-

stant. If Bn =
∑n

i=1 EX
2
i = O(n), then n-1Sn ® 0 completely and in consequence n-1Sn ® 0

a.s.
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Proof. For any ε > 0, we have by Theorem 2.4 that

P(Sn ≥ nε) ≤ M exp
{
− nε
2C

arcsin h
(
Cnε
2Bn

)}
≤ M exp {−nD},

where D is a positive constant. Therefore,
∞∑
n=1

P(Sn ≥ nε) < ∞,

which implies that n-1Sn ® 0 completely and in consequence n-1Sn ® 0 a.s. by

Borel-Cantelli Lemma. The proof is completed.

Theorem 2.6. Assume that EX2
n < ∞and ESn ≤ 0 for each n ≥ 1. Denote sn = ES2n. If

there exists a nondecreasing sequence of positive numbers {cn, n ≥ 1} such that P(Sn ≤ cn) =

1, then for any x > 0,

P(Sn ≥ x) ≤ exp
{
− x2

2(sn + xcn)

[
1 +

2
3
log

(
1 +

xcn
sn

)]}
. (2:14)

In order to prove Theorem 2.6, the following lemma is useful.

Lemma 2.1 (cf. Shao [6]). For any x ≥ 0,

log(1 + x) ≥ x
1 + x

+
x2

2(1 + x)2

[
1 +

2
3
log(1 + x)

]
.

Proof of Theorem 2.6. Noting that (ex - 1 - x)/x2 is nondecreasing on the real line, for

any h > 0 and n ≥ 1, we have

EehSn = 1 + hESn + E
[
ehSn − 1 − hSn

(hSn)
2 (hSn)

2
]

≤ 1 + E
[
ehcn − 1 − hcn

(hcn)
2 (hSn)

2
]

= 1 +
(
ehcn − 1 − hcn

c2n

)
sn

≤ exp
{(

ehcn − 1 − hcn
c2n

)
sn

}
.

Hence,

P(Sn ≥ x) ≤ e−hxEehSn ≤ exp
{(

ehcn − 1 − hcn
c2n

)
sn − hx

}
. (2:15)

Taking h = 1
cn
log

(
1 + xcn

sn

)
in the right-hand side of (2.15), we can obtain that

P(Sn ≥ x) ≤ exp
{
x
cn

− x
cn

(
1 +

sn
xcn

)
log

(
1 +

xcn
sn

)}
. (2:16)

By Lemma 2.1, we can get that

x
cn

(
1 +

sn
xcn

)
log

(
1 +

xcn
sn

)

≥ x
cn

(
1 +

sn
xcn

) {
xcn

sn + xcn
+
1
2

(
xcn

sn + xcn

)2 [
1 +

2
3
log

(
1 +

xcn
sn

)]}

=
x

cn
+

x2

2(sn + xcn)

[
1 +

2
3
log

(
1 +

xcn
sn

)]
.
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The desired result (2.14) follows from the above inequality and (2.16) immediately.

3 Moment inequalities for END sequence
In this section, we will present some moment inequalities, especially the Rosenthal-

type inequality for END sequence by means of the probability inequalities that

obtained in Section 2. The proofs are also inspired by Asadian et al. [2]. The

Rosenthal-type inequality can be applied to prove the asymptotic approximation of

inverse moment for nonnegative END random variables in Section 4.

Theorem 3.1. Let 0 <t ≤ 1 and g(x) be a nonnegative even function and nondecreas-

ing on the half-line [0, ∞). Assume that g(0) = 0 and Eg(Xi) < ∞ for each i ≥ 1, then for

every r > 0, there exists a positive constant M such that

Eg(Sn) ≤
n∑
i=1

Eg(rXi) + 2Mer
∫ ∞

0

(
1 +

xt

rt−1Mt,n

)−r

dg(x). (3:1)

Proof. Taking y = x
r in Theorem 2.2, we have

P(|Sn| ≥ x) ≤
n∑
i=1

P
(
|Xi| ≥ x

r

)
+ 2Mer

(
1 +

xt

rt−1Mt,n

)−r

,

which implies that∫ ∞

0
P(|Sn| ≥ x)dg(x) ≤

n∑
i=1

∫ ∞

0
P(r|Xi| ≥ x)dg(x)+2Mer

∫ ∞

0

(
1 +

xt

rt−1Mt,n

)−r

dg(x).

Therefore, the desired result (3.1) follows from the inequality above and Lemma 2.4

in Petrov [7] immediately. This completes the proof of the theorem.

Corollary 3.1. Let 0 <t ≤ 1, p ≥ t, and E|Xi|
p < ∞ for each i ≥ 1. Then, there exists a

positive constant C(p, t) depending only on p and t such that

E|Sn|p ≤ C(p, t)
(
Mp,n +Mp/t

t,n

)
. (3:2)

Proof. Taking g(x) = |x|p, p ≥ t in Theorem 3.1, we can get that

E|Sn|p ≤ rp
n∑
i=1

E|Xi|p + 2pMer
∫ ∞

0
xp−1

(
1 +

xt

rt−1Mt,n

)−r

dx. (3:3)

It is easy to check that

I .=
∫ ∞

0
xp−1

(
1 +

xt

rt−1Mt,n

)−r

dx

=
∫ ∞

0
xp−1

(
rt−1Mt,n

rt−1Mt,n + xt

)r

dx

=
∫ ∞

0
xp−1

(
1 − xt

rt−1Mt,n + xt

)r

dx.

If we set y = xt

rt−1Mt,n+xt
in the last equality above, then we have for r >p/t that

I =
rp−p/tMp/t

t,n

t

∫ 1

0
y
p
t −1(1 − y)r−

p
t −1dy

=
rp−p/tMp/t

t,n

t
B

(
p
t
, r − p

t

)
,

Shen Journal of Inequalities and Applications 2011, 2011:98
http://www.journalofinequalitiesandapplications.com/content/2011/1/98

Page 7 of 12



where

B(α,β) =
∫ 1

0
xα−1(1 − x)β−1dx, α,β > 0

is the Beta function. Substitute I to (3.3) and choose

C(p, t) = max

{
rp, 2pMer

B
( p
t , r − p

t

)
rp−p/t

t

}
,

we can obtain the desired result (3.2) immediately. The proof is completed.

Similar to the proofs of Theorem 3.1 and Corollary 3.1, we can get the following

Theorem 3.2 and Corollary 3.2 using Theorem 2.3. The details are omitted.

Theorem 3.2. Let EXi = 0 for each i ≥ 1. Assume that the conditions of Theorem 3.1

are satisfied, then for every r > 0, there exists a positive constant M such that

Eg(Sn) ≤
n∑
i=1

Eg(rXi) + 2Mer
∫ ∞

0

(
1 +

x2

rM2,n

)−r

dg(x). (3:4)

Corollary 3.2 (Rosenthal-type inequality). Let p ≥ 2, EXi = 0, and E|Xi|
p < ∞ for each

i ≥ 1. Then, there exists a positive constant Cp depending only on p such that

E|Sn|p ≤ Cp

⎡
⎣ n∑

i=1

E|Xi|p +
(

n∑
i=1

E|Xi|2
)p/2

⎤
⎦ . (3:5)

4 Asymptotic approximation of inverse moment for nonnegative END
random variables
Recently, Wu et al. [8] studied the asymptotic approximation of inverse moment for

nonnegative independent random variables by means of the truncated method and

Berstein’s inequality, and obtained the following result:

Theorem A. Let {Zn, n ≥ 1} be a sequence of independent, nonnegative, and non-

degenerated random variables. Suppose that

(i) EZ2
n < ∞, ∀ n ≥ 1;

(ii) EXn ® ∞ as n ® ∞, where

Xn =
n∑
i=1

Zi
/
Bn, B2

n =
n∑
i=1

VarZi;

(iii) there exists a finite positive constant C1 not depending on n such that sup1≤i≤n
EZi/Bn ≤ C1;

(iv) for some h > 0,

B−2
n

n∑
i=1

EZ2
i I(Zi > ηBn) → 0, n → ∞. (4:1)

Then, for all real numbers a > 0 and a > 0,

E(a + Xn)−α ∼ (a + EXn)−α , n → ∞. (4:2)
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Wang et al. [9] pointed out that the condition (iii) in Theorem A can be removed

and extended the result for independent random variables to the case of NOD random

variables. Shi et al. [10] obtained (4.2) for Bn = 1 and pointed out that the existence of

finite second moments is not required. Sung [11] studied the asymptotic approxima-

tion of inverse moments for nonnegative random variables satisfying a Rosenthal-type

inequality. For more details about asymptotic approximation of inverse moment, one

can refer to Garcia and Palacios [12], Kaluszka and Okolewski [13], and Hu et al. [14],

and so on.

The main purpose of this section is to show that (4.2) holds under very mild condi-

tions. Our results will extend and improve the results of Wu et al. [8], Wang et al. [9],

and Sung [11].

Now, we state and prove the results of asymptotic approximation of inverse

moments for nonnegative END random variables.

Theorem 4.1. Let {Zn, n ≥ 1} be a sequence of nonnegative END random variables

and {Bn, n ≥ 1} be a sequence of positive constants. Suppose that

(i) EZn < ∞, ∀n ≥ 1;

(ii) μn
.= EXn → ∞as n ® ∞, where Xn = B−1

n
∑n

k=1 Zk;

(iii) there exists some b > 0 such that∑n
k=1 EZkI(Zk > bBn)∑n

k=1 EZk
→ 0, n → ∞. (4:3)

Then, for all real numbers a > 0 and a > 0, (4.2) holds.

Proof. It is easily seen that f(x) = (a + x)-a is a convex function of x on [0, ∞), by

Jensen’s inequality, we have

E(a + Xn)−α ≥ (a + EXn)−α , (4:4)

which implies that

lim inf
n→∞ (a + EXn)αE(a + Xn)−α ≥ 1. (4:5)

To prove (4.2), it is enough to show that

lim sup
n→∞

(a + EXn)αE(a + Xn)−α ≤ 1. (4:6)

In order to prove (4.6), we need only to show that for all δ Î (0, 1),

lim sup
n→∞

(a + EXn)αE(a + Xn)−α ≤ (1 − δ)−α . (4:7)

By (iii), we can see that for all δ Î (0, 1), there exists n(δ) > 0 such that

n∑
k=1

EZkI(Zk > bBn) ≤ δ

4

n∑
k=1

EZk, n ≥ n(δ). (4:8)

Let

Un = B−1
n

n∑
k=1

[
ZkI(Zk ≤ bBn) + bBnI(Zk > bBn)

]

Shen Journal of Inequalities and Applications 2011, 2011:98
http://www.journalofinequalitiesandapplications.com/content/2011/1/98

Page 9 of 12



and

E(a + Xn)−α = E(a + Xn)−αI(Un ≥ μn − δμn) + E(a + Xn)−αI(Un < μn − δμn)
.= Q1 +Q2.

(4:9)

For Q1, since Xn ≥ Un, we have

Q1 ≤ E(a + Xn)−αI(Xn ≥ μn − δμn) ≤ (a + μn − δμn)−α . (4:10)

By (4.8), we have for n ≥ n(δ) that

|μn − EUn| =
∣∣∣∣∣B−1

n

n∑
k=1

EZkI(Zk > bBn) − B−1
n

n∑
k=1

bBnEI(Zk > bBn)

∣∣∣∣∣
≤ B−1

n

n∑
k=1

EZkI(Zk > bBn) + B−1
n

n∑
k=1

bBnEI(Zk > bBn)

≤ B−1
n

n∑
k=1

EZkI(Zk > bBn) + B−1
n

n∑
k=1

EZkI(Zk > bBn)

= 2B−1
n

n∑
k=1

EZkI(Zk > bBn) ≤ δμn/2.

(4:11)

For each n ≥ 1, it is easy to see that {ZkI(Zk ≤ bBn) + bBnI(Zk >bBn), 1 ≤ k ≤ n} are

END random variables by Lemma 1.1. Therefore, by (4.11), Markov’s inequality, Corol-

lary 3.2, and Cr’s inequality, for any p > 2 and n ≥ n(δ),

Q2 ≤ a−αP (Un < μn − δμn)

= a−αP(EUn − Un > δμn − (μn − EUn))

≤ a−αP(EUn − Un > δμn/2)

≤ a−αP(|Un − EUn| > δμn/2) ≤ Cμ
−p
n E|Un − EUn|p

≤ Cμ
−p
n

(
B−2
n

n∑
k=1

EZ2
k I(Zk ≤ bBn) + B−2

n

n∑
k=1

b2B2
nEI(Zk > bBn)

)p/2

+ Cμ
−p
n

[
B−p
n

n∑
k=1

EZp
kI(Zk ≤ bBn) + B−p

n

n∑
k=1

bpBp
nEI(Zk > bBn)

]

≤ Cμ
−p
n

(
B−1
n

n∑
k=1

EZkI(Zk ≤ bBn) + B−1
n

n∑
k=1

EZkI(Zk > bBn)

)p/2

+ Cμ
−p
n B−1

n

n∑
k=1

EZkI(Zk ≤ bBn) + Cμ
−p
n B−1

n

n∑
k=1

EZkI(Zk > bBn)

= Cμ
−p
n

(
μ
p/2
n + μn

)
= C

(
μ

−p/2
n + μ

1−p
n

)
.

(4:12)

Taking p > max {2, 2a, a +1}, we have by (4.9), (4.10), and (4.12) that

lim sup
n→∞

(a + μn)αE(a + Xn)−α

≤ lim sup
n→∞

(a + μn)α(a + μn − δμn)−α + lim sup
n→∞

(a + μn)α
(
Cμ

−p/2
n + Cμ

1−p
n

)
= (1 − δ)−α ,

which implies (4.7). This completes the proof of the theorem.
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Remark 4.1. Theorem 4.1 in this article generalizes and improves the corresponding

results of Wu et al. [8], Wang et al. [9], and Sung [11]. First, Theorem 4.1 in this arti-

cle is based on the condition EZn < ∞, ∀ n ≥ 1, which is weaker than the condition

EZ2
n < ∞, ∀ n ≥ 1 in the above cited references. Second, {Bn, n ≥ 1} is an arbitrary

sequence of positive constants in Theorem 4.1, while B2
n =

∑n
i=1 VarZi in the above

cited references. If we take Bn ≡ 1, we can get the asymptotic approximation of inverse

moments for the partial sums of nonnegative END random variables. Third, (4.3) is

weaker than (4.1). Actually, by the condition (4.1), we can see that

B−1
n

n∑
i=1

EZiI(Zi > ηBn) ≤ η−1B−2
n

n∑
i=1

EZ2
i I(Zi > ηBn) → 0, n → ∞,

which implies that∑n
i=1 EZiI(Zi > ηBn)∑n

i=1 EZi
=
B−1
n

∑n
i=1 EZiI(Zi > ηBn)

μn
→ 0, n → ∞,

since μn ® ∞, i.e. (4.3) holds.
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