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Abstract

In this article, we introduce an iterative algorithm for finding a common element of
the set of common fixed points of an infinite family of closed and uniformly quasi-
�-asymptotically nonexpansive mappings, the set of the variational inequality for an
a-inverse-strongly monotone operator, and the set of solutions of the generalized
equilibrium problems. We obtain a strong convergence theorem for the sequences
generated by this process in a 2-uniformly convex and uniformly smooth Banach
space. The results presented in this article improve and extend the recent results of
Zegeye [Nonlinear Anal. 72, 2136-2146 (2010)], Wattanawitoon and Kumam
[Nonlinear Anal. Hybrid Syst. 3(1), 11-20 (2009)] and many others.
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1 Introduction and preliminaries
Let C be a nonempty closed convex subset of a real Banach space E with || · || and E* the

dual space of E. Recall that a mapping T : C ® C is said to be L-Lipschitz continuous if ||

Tx - Ty|| ≤ L|| x - y||, ∀x, y Î C, and a mapping T is said to be nonexpansive if ||Tx - Ty||

≤ ||x - y||, ∀x, y Î C. A point x Î C is a fixed point of T provided Tx = x. Denote by F(T)

the set of fixed points of T; that is, F(T) = {x Î C : Tx = x}. Let A : C ® E* be a mapping.

Then, A is called

(i) monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C,

(ii) a-inverse-strongly monotone if there exists a constant a >0 such that

〈Ax − Ay, x − y〉 ≥ α||Ax − Ay||2, ∀x, y ∈ C.

Remark 1.1. It is easy to see that an a-inverse-strongly monotone is monotone and
1
α
-Lipschitz continuous.
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Let f be a bifunction of C × C into ℝ and B : C ® E* be a monotone mapping. The

generalized equilibrium problem, denoted by GEP, is to find x Î C such that

f (x, y) + 〈Bx, y − x〉 ≥ 0, ∀y ∈ C. (1:1)

The set of solutions for the problem (1.1) is denoted by GEP(f, B), that is,

GEP(f ,B) := {x ∈ C : f (x, y) + 〈Bx, y − x〉 ≥ 0,∀y ∈ C}.

If B ≡ 0, the problem (1.1) reduce into the equilibrium problem for f, denoted by EP

(f), is to find x Î C such that

f (x, y) ≥ 0, ∀y ∈ C. (1:2)

If f ≡ 0, the problem (1.1) reduce into the classical variational inequality problem,

denoted by V I(B, C), is to find x* Î C such that

〈Bx∗, y − x∗〉 ≥ 0, ∀y ∈ C. (1:3)

The above formulation (1.1) is more general than equilibrium problem (1.2) and

cover monotone inclusion problems, saddle point problems, variational inequality pro-

blems, minimization problems, vector equilibrium problems, and Nash equilibria in

noncooperative games. In addition, there are several other problems, for example, the

complementarity problem, fixed point problem, and optimization problem, which can

also be written in the form of an GEP(f, B). In other words, the EP(f) is an unifying

model for several problems arising in physics, engineering, science, optimization, eco-

nomics, etc. In the last two decades, many articles have appeared in the literature on

the existence of solutions of EP(f); see, for example, [1,2] and references therein. Some

solution methods have been proposed to solve the GEP(f, B) and EP(f); see, for exam-

ple, [1,3-13] and references therein.

Consider the functional defined by

φ(x, y) = ||x||2 − 2〈x, Jy〉 + ||y||2, ∀x, y ∈ E. (1:4)

As well known that if C is a nonempty closed convex subset of a Hilbert space H

and PC : H ® C is the metric projection of H onto C, then PC is nonexpansive. This

fact actually characterizes Hilbert spaces and consequently, it is not available in more

general Banach spaces. It is obvious from the definition of function � that

(||x|| − ||y||)2 ≤ φ(x, y) ≤ (||x|| + ||y||)2, ∀x, y ∈ E. (1:5)

If E is a Hilbert space, then �(x, y) = ||x - y||2, for all x, y Î E. On the other hand,

the generalized projection [14] ΠC : E ® C is a map that assigns to an arbitrary point x

Î E the minimum point of the functional �(x, y), that is, �Cx = x̄, where x̄ is the solu-

tion to the minimization problem

φ(x̄, x) = inf
y∈C

φ(y, x), (1:6)

existence and uniqueness of the operator ΠC follows from the properties of the func-

tional �(x, y) and strict monotonicity of the mapping J (see, for example, [14-18]).

Recall that a point p in C is said to be an asymptotic fixed point of T [19] if C con-

tains a sequence {xn} which converges weakly to p such that limn®∞ ||xn -Txn|| = 0.
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The set of asymptotic fixed points of T will be denoted by F̃(T). A mapping T is said

to be �-nonexpansive, if �(Tx, Ty) ≤ �(x, y) for x, y Î C.

A mapping T from C into itself is said to be relatively nonexpansive mapping [20-22]

if

(R1) F(T) is nonempty;

(R2) �(p, Tx) ≤ �(p, x) for all x Î C and p Î F(T);

(R3) F̃(T) = F(T).

A mapping T is said to be relatively quasi-nonexpansive (or quasi-�-nonexpansive) if

the conditions (R1) and (R2) are satisfied. The asymptotic behavior of a relatively non-

expansive mapping was studied in [23-25].

A mapping T is said to be quasi-�-asymptotically nonexpansive if F(T) ≠ ∅ and there

exists a real sequence {kn} ⊂ [1, ∞) with kn ® 1 such that �(p, Tnx) ≤ kn�(p, x) for all

n ≥ 1 x Î C and p Î F(T). We note that the class of relatively quasi-nonexpansive

mappings is more general than the class of relatively nonexpansive mappings [23-27]

which requires the strong restriction: F(T) = F̃(T).

A mapping T is said to be closed if for any sequence {xn} ⊂ C with xn ® x and Txn ® y,

then Tx = y. It is easy to know that each relatively nonexpansive mapping is closed.

A Banach space E is said to be strictly convex if || x+y2 || < 1 for all x, y Î E with ||x|| =

||y|| = 1 and x ≠ y. Let U = {x Î E : ||x|| = 1} be the unit sphere of E. Then, a Banach

space E is said to be smooth if the limit limt→0
‖x+ty‖−‖x‖

t exists for each x, y Î U. It is

also said to be uniformly smooth if the limit is attained uniformly for x, y Î U. Let E

be a Banach space. The modulus of convexity of E is the function δ : [0, 2] ® [0, 1]

defined by δ(ε) = inf{1− ‖ x+y
2 ‖: x, y ∈ E, ‖ x ‖=‖ y ‖= 1, ‖ x − y ‖≥ ε}. A Banach space

E is uniformly convex if and only if δ(ε) >0 for all ε Î (0, 2]. Let p be a fixed real num-

ber with p ≥ 2. A Banach space E is said to be p-uniformly convex if there exists a con-

stant c >0 such that δ(ε) ≥ cε p for all ε Î [0, 2]; see [28,29] for more details. Observe

that every p-uniform convex is uniformly convex. One should note that no a Banach

space is p-uniform convex for 1 < p <2. It is well known that a Hilbert space is 2-uni-

formly convex, uniformly smooth. For each p >1, the generalized duality mapping

Jp : E → 2E
∗
is defined by Jp>(x) = {x* Î E* : 〈x, x*〉 = ||x||p, ||x*|| = ||x||p-1} for all x Î

E. In particular, J = J2 is called the normalized duality mapping. If E is a Hilbert space,

then J = I, where I is the identity mapping.

Remark 1.2. If E is a reflexive, strictly convex, and smooth Banach space, then for x, y Î
E, �(x, y) = 0 if and only if x = y. It is sufficient to show that if �(x, y) = 0, then x = y. From

(1.4), we have ||x|| = ||y||. This implies that 〈x, Jy〉 = ||x||2 = ||Jy||2. From the definition of

J, one has Jx = Jy. Therefore, we have x = y; see [16,18] for more details.

Remark 1.3. The following basic properties can be found in Cioranescu [16].

(i) If E is a uniformly smooth Banach space, then J is uniformly continuous on each

bounded subset of E.

(ii) If E is a reflexive and strictly convex Banach space, then J-1 is norm-weak*-

continuous.

(iii) If E is a smooth, strictly convex, and reflexive Banach space, then the normalized

duality mapping J : E → 2E
∗ is single-valued, one-to-one, and onto.

(iv) A Banach space E is uniformly smooth if and only if E* is uniformly convex.
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(v) Each uniformly convex Banach space E has the Kadec-Klee property, that is, for

any sequence {xn} ⊂ E, if xn ⇀ x Î E and ||xn|| ® ||x||, then xn ® x.

In 2004, Matsushita and Takahashi [30] introduced the following iteration:

a sequence {xn} is defined by

xn+1 = �CJ
−1(αnJxn + (1 − αn)JTxn), (1:7)

where the initial guess element x0 Î C is arbitrary, {an} is a real sequence in [0, 1],

T is a relatively nonexpansive mapping, and ΠC denotes the generalized projection

from E onto a closed convex subset C of E. They proved that the sequence {xn} con-

verges weakly to a fixed point of T . Later, in year 2005, Matsushita and Takahashi

[26] proposed the following hybrid iteration method with generalized projection for

relatively nonexpansive mapping T in a Banach space E:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x0 ∈ C chosen arbitrarily,
yn = J−1(αnJxn + (1 − αn)JTxn),
Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = �Cn∩Qnx0.

(1:8)

They proved that {xn} converges strongly to ΠF(T)x0, where ΠF(T) is the generalized

projection from C onto F(T).

In 2008, Iiduka and Takahashi [31] introduced the following iterative scheme for

finding a solution of the variational inequality problem for an inverse-strongly mono-

tone operator A in a 2-uniformly convex and uniformly smooth Banach space E : x1 =

x Î C and

xn+1 = �CJ
−1(Jxn − λnAxn), (1:9)

for every n = 1, 2, 3,..., where ΠC is the generalized metric projection from E onto C,

J is the duality mapping from E into E*, and {ln} is a sequence of positive real num-

bers. They proved that the sequence {xn} generated by (1.9) converges weakly to some

element of V I(A, C).

In [32,33], Takahashi and Zembayashi studied the problem of finding a common ele-

ment of the set of fixed points of a nonexpansive mapping and the set of solutions of

an equilibrium problem in the framework of Banach spaces. Wattanawitoon and

Kumam [34] using the idea of Takahashi and Zembayashi [32] extend the notion from

relatively nonexpansive mappings or �-nonexpansive mappings to two relatively quasi-

nonexpansive mappings and also proved some strong convergence theorems to

approximate a common fixed point of relatively quasi-nonexpansive mappings and the

set of solutions of an equilibrium problem in the framework of Banach spaces.

On the other hand, the block iterative method is a method which often used by

many authors to solve the convex feasibility problem (see, [11,35,36], etc.). In 2008,

Plubtieng and Ungchittrakool [37] established strong convergence theorems of block

iterative methods for a finite family of relatively nonexpansive mappings in a Banach

space by using the hybrid method in mathematical programming. In 2010, Chang et al.

[38] proposed the modified block iterative algorithm for solving the convex feasibility

problems for an infinite family of closed and uniformly quasi-�-asymptotically nonex-

pansive mapping, they obtain the strong convergence theorems in a Banach space.
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In this article, motivated and inspired by the study of Chang et al. [38], Qin et al. [9],

Takahashi and Zembayashi [32], Wattanawitoon and Kumam [34], and Zegeye [39], we

introduce a new modified block hybrid projection algorithm for finding a common ele-

ment of the set of the variational inequality for an a-inverse-strongly monotone opera-

tor, the set of solutions of the generalized equilibrium problems, and the set of

common fixed points of an infinite family of closed and uniformly quasi-�-asymptoti-

cally nonexpansive mappings which more general than closed quasi-�-nonexpansive

mappings in the framework Banach spaces. The results presented in this article

improve and generalize the main results of Chang et al. [38], Zegeye [39], Wattanawi-

toon and Kumam [34], and some well-known results in the literature.

2 Basic results
We also need the following lemmas for the proof of our main results.

Lemma 2.1. (Beauzamy [40] and Xu [41]). If E be a 2-uniformly convex Banach

space. Then, for all x, y Î E, we have

‖ x − y ‖≤ 2
c2

‖ Jx − Jy ‖,

where J is the normalized duality mapping of E and 0 < c ≤ 1.

The best constant 1
c in lemma is called the p-uniformly convex constant of E.

Lemma 2.2. (Beauzamy [40] and Zalinescu [42]). If E be a p-uniformly convex

Banach space and let p be a given real number with p ≥ 2. Then, for all x, y Î E, jx Î
Jp(x), and jy Î Jp(y)

〈x − y, jx − jy〉 ≥ cp

2p−2p
‖ x − y‖p,

where Jp is the generalized duality mapping of E, and 1
cis the p-uniformly convexity

constant of E.

Lemma 2.3. (Kamimura and Takahashi [17]). Let E be a uniformly convex and

smooth Banach space and let {xn} and {yn} be two sequences of E. If �(xn, yn) ® 0 and

either {xn} or {yn} is bounded, then ||xn - yn|| ® 0.

Lemma 2.4. (Alber [14]). Let C be a nonempty closed convex subset of a smooth

Banach space E and × Î E. Then, x0 = ΠCx if and only if

〈x0 − y, Jx − Jx0〉 ≥ 0, ∀y ∈ C.

Lemma 2.5. (Alber [14]). Let E be a reflexive, strictly convex, and smooth Banach

space, let C be a nonempty closed convex subset of E and let × Î E. Then,

φ(y,�Cx) + φ(�Cx, x) ≤ φ(y, x), ∀y ∈ C.

For solving the equilibrium problem for a bifunction f : C × C ® ℝ, let us assume

that f satisfies the following conditions:

(A1) f(x, x) = 0 for all x Î C;

(A2) f is monotone, i.e., f(x, y) + f(y, x) ≤ 0 for all x, y Î C;

(A3) for each x, y, z Î C,

lim
t↓0

f (tz + (1 − t)x, y) ≤ f (x, y);
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(A4) for each x Î C, y a f(x, y) is convex and lower semi-continuous.

Lemma 2.6. (Blum and Oettli [1]). Let C be a closed convex subset of a smooth,

strictly convex, and reflexive Banach space E, let f be a bifunction from C × C to ℝ

satisfying (A1)-(A4), and let r >0 and × Î E. Then, there exists z Î C such that

f (z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

Replacing x with J-1(Jx - rBx), where B is a monotone mapping from C into E*, then

there exists z Î C such that

f (z, y) + 〈Bz, y − z〉 + 1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

Lemma 2.7. (Zegeye [39]). Let C be a closed convex subset of a uniformly smooth,

strictly convex, and reflexive Banach space E, and let f be a bifunction from C × C to ℝ

satisfying (A1)-(A4), and let B be a monotone mapping from C into E*. For r >0 and ×

Î E, define a mapping Tr : C ® C as follows:

Trx =
{
z ∈ C : f (z, y) + 〈Bx, y − z〉 + 1

r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C

}
for all × Î C. Then, the following hold:

(1) Tr is single-valued;

(2) Tr is a firmly nonexpansive-type mapping, for all x, y Î E,

〈Trx − Try, JTrx − JTry〉 ≤ 〈Trx − Try, Jx − Jy〉;

(3) F(Tr) = GEP(f, B);

(4) GEP(f, B) is closed and convex.

Lemma 2.8. (Zegeye [39]). Let C be a closed convex subset of a smooth, strictly con-

vex, and reflexive Banach space E, let f be a bifunction from C × C to ℝ satisfying (A1)-

(A4), and let B be a monotone mapping from C into E*. For r >0, × Î E, and q Î F(Tr),

we have that

φ(q,Trx) + φ(Trx, x) ≤ φ(q, x).

Let E be a reflexive, strictly convex, smooth Banach space and J is the duality map-

ping from E into E*. Then, J-1 is also single value, one-to-one, surjective, and it is the

duality mapping from E* into E. We make use of the following mapping V studied in

Alber [14]

V(x, x∗) = ‖ x‖2 − 2〈x, x∗〉 + ‖ x∗‖2 (2:1)

for all x Î E and x* Î E*, that is, V(x, x*) = �(x, J-1(x*)).

Lemma 2.9. (Alber [14]). Let E be a reflexive, strictly convex, smooth Banach space

and let V be as in (2.1). Then,

V(x, x∗) + 2〈J−1(x∗) − x, y∗〉 ≤ V(x, x∗ + y∗)

for all × Î E and x*, y* Î E*.

An operator M ⊂ E × E∗ is said to be monotone if 〈x - y, x* - y*〉 ≥ 0 whenever (x,

x*), (y, y*) Î T. We denote the set {x Î E : 0 Î Tx} by M−10. A monotone M is said

to be maximal if its graph G(M) = {(x, y) : y ∈ Mx} is not property contained in the
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graph of any other monotone operator. If M is maximal monotone, then the solution

set M−10 is closed and convex. Let E be a reflexive, strictly convex, and smooth

Banach space, it is known that M is a maximal monotone if and only if

R(J + rM) = E∗ for all r > 0. Define the resolvent of M by Jrx = xr. In other words,

Jr = (J + rM)−1J for all r > 0. Jr is a single-valued mapping from E to D(M). Also,

M−1(0) = F(Jr) for all r > 0, where F(Jr) is the set of all fixed points of Jr. Define, for

r > 0, the Yosida approximation of M by Mr = (J − JJr)/r. We know that

Mrx ∈ M(Jrx) for all r > 0 and x Î E.

Let A be an inverse-strongly monotone mapping of C into E* which is said to be

hemicontinuous if for all x, y Î C, the mapping F of [0, 1] into E*, defined by F(t) = A

(tx + (1 -t)y), is continuous with respect to the weak* topology of E*. We define by NC

(v) the normal cone for C at a point v Î C, that is,

NC(v) = {x∗ ∈ E∗ : 〈v − y, x∗〉 ≥ 0,∀y ∈ C}. (2:2)

Lemma 2.10. (Rockafellar [43]). Let C be a nonempty, closed convex subset of a

Banach space E, and A is a monotone, hemicontinuous operator of C into E*. Let

M ⊂ E × E∗be an operator defined as follows:

Mv =
{
Av +NC(v), v ∈ C;
∅otherwise. (2:3)

Then, Mis maximal monotone and M−10 = VI(A,C).

Lemma 2.11. (Chang et al. [38]). Let E be a uniformly convex Banach space, r >0 be

a positive number and Br(0) be a closed ball of E. Then, for any given sequence

{xi}∞i=1 ⊂ Br(0)and for any given sequence {λi}∞i=1of positive number with
∑∞

n=1 λn = 1,

there exists a continuous, strictly increasing, and convex function g : [0, 2r) ® [0, ∞)

with g(0) = 0 such that, for any positive integer i, j with i < j,∥∥∥∥∥
∞∑
n=1

λnxn

∥∥∥∥∥
2

≤
∞∑
n=1

λn ‖ xn‖2 − λiλjg(‖ xi − xj ‖). (2:4)

Lemma 2.12. (Chang et al. [38]). Let E be a real uniformly smooth and strictly convex

Banach space, and C be a nonempty closed convex subset of E. Let T : C ® C be a closed

and quasi-�-asymptotically nonexpansive mapping with a sequence {kn} ⊂ [1, ∞), kn ® 1.

Then, F (T ) is a closed convex subset of C.

3 Main results
Definition 3.1. (Chang et al. [38]) (1) Let {Si}∞i=1 : C → C be a sequence of mapping.
{Si}∞i=1 is said to be a family of uniformly quasi-�-asymptotically nonexpansive map-

pings, if F := ∩∞
n=1F(Sn) �= ∅, and there exists a sequence {kn} ⊂ [1, ∞) with kn ® 1

such that for each i ≥ 1

φ(p, Sni x) ≤ knφ(p, x), ∀p ∈ F , x ∈ C, ∀n ≥ 1. (3:1)

(2) A mapping S : C ® C is said to be uniformly L-Lipschitz continuous, if there

exists a constant L >0 such that

‖ Snx − Sny ‖≤ L ‖ x − y ‖, ∀x, y ∈ C. (3:2)

In this section, we prove the new convergence theorems for finding the set of solu-

tions of a general equilibrium problems, the common fixed point set of a family of
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closed and uniformly quasi-�-asymptotically nonexpansive mappings, and the solution

set of variational inequalities for an a-inverse strongly monotone mapping in a 2-uni-

formly convex and uniformly smooth Banach space.

Theorem 3.2. Let C be a nonempty closed and convex subset of a 2-uniformly convex

and uniformly smooth Banach space E. Let A be an a-inverse-strongly monotone map-

ping of C into E* satisfying ||Ay|| ≤ ||Ay - Au||, ∀y Î C and u Î V I(A, C) ≠ ∅. Let f

be a bifunction from C × C to ℝ satisfying (A1)-(A4) and B be a continuous monotone

mapping of C into E*. Let {Si}∞i=1 : C → Cbe an infinite family of closed uniformly Li-

Lipschitz continuous and uniformly quasi-�-asymptotically nonexpansive mappings

with a sequence {kn} ⊂ [1, ∞), kn ® 1 such that F := ∩∞
i=1F(Si) ∩ GEP(f ,B) ∩ VI(A,C)is

a nonempty and bounded subset in C. For an initial point x0 Î E with x1 = �C1x0and

C1 = C, we define the sequence {xn} as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zn = �CJ−1(Jxn − λnAxn),
yn = J−1(αn,0Jxn +

∑∞
i=1 αn,iJSni zn),

f (un, y) + 〈Byn, y − un〉 + 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,
Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + ζn},
xn+1 = �Cn+1x0, ∀n ≥ 1,

(3:3)

where ζn = supqÎF (kn -1)�(q, xn), {an,i} is sequence in [0, 1], {rn} ⊂ [d, ∞) for some d

> 0 and {ln} ⊂ [a, b] for some a,b with 0 <a <b <c2a/2, where 1
cis the 2-uniformly con-

vexity constant of E. If
∑∞

i=0 αn,i = 1for all n ≥ 0 and lim infn®∞ an,0an,i > 0 for all i ≥

1, then {xn} converges strongly to p Î F, where p = ΠFx0.

Proof. We first show that Cn+1 is closed and convex for each n ≥ 0. Clearly, C1 = C

is closed and convex. Suppose that Cn is closed and convex for each n Î N. Since for

any z Î Cn, we know that �(z, un) ≤ �(z, xn) + ζn is equivalent to 2〈z, Jxn - Jun〉 ≤ ||

xn||
2 - ||un||

2 + ζn . Hence, Cn+1 is closed and convex. Next, we show that F ⊂ Cn for

all n ≥ 0. Indeed, put un = Trn yn for all n ≥ 0. On the other hand, from Lemma 2.7, one

has Trnis relatively quasi-nonexpansive mappings and F ⊂ C1 = C. Suppose F ⊂ Cn for

n Î N, by the convexity of || · ||2, property of �, Lemma 2.11 and by uniformly quasi-

�-asymptotically nonexpansive of Sn for each q Î F ⊂ Cn, we have

φ(q, un) = φ(q,Trnyn)

≤ φ(q, yn)

= φ

(
q, J−1

(
αn,0Jxn +

∞∑
i=1

αn,iJSni zn

))

=‖ q‖2 − 2

〈
q,αn,0Jxn +

∞∑
i=1

αn,iJSni zn

〉
+

∥∥∥∥∥αn,0Jxn +
∞∑
i=1

αn,iJSni zn

∥∥∥∥∥
2

=‖ q‖2 − 2αn,0〈q, Jxn〉 − 2
∞∑
i=1

αn,i〈q, JSni zn〉 +
∥∥∥∥∥αn,0Jxn +

∞∑
i=1

αn,iJS
n
i zn)

∥∥∥∥∥
2

≤‖ q‖2 − 2αn,0〈q, Jxn〉 − 2
∞∑
i=1

αn,i〈q, JSni zn〉 + αn,0 ‖ Jxn‖2 +
∞∑
i=1

αn,i ‖ JSni zn‖2

− αn,0αn,jg ‖ Jzn − JSnj zn ‖

=‖ q‖2 − 2αn,0〈q, Jxn〉 + αn,0 ‖ Jxn‖2 − 2
∞∑
i=1

αn,i〈q, JSni zn〉

+
∞∑
i=1

αn,i ‖ JSni zn‖2 − αn,0αn,jg ‖ Jzn − JSnj zn ‖

= αn,0φ(q, xn) +
∞∑
i=1

αn,iφ(q, Sni zn) − αn,0αn,jg ‖ Jzn − JSnj zn ‖

≤ αn,0φ(q, xn) +
∞∑
i=1

αn,iknφ(q, zn) − αn,0αn,jg ‖ Jzn − JSnj zn ‖ .

(3:4)
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It follows from Lemma 2.9 that

φ(q, zn) = φ(q,�CJ−1(Jxn − λnAxn))

≤ φ(q, J−1(Jxn − λnAxn))

= V(q, Jxn − λnAxn)

≤ V(q, (Jxn − λnAxn) + λnAxn) − 2〈J−1(Jxn − λnAxn) − q,λnAxn〉
= V(q, Jxn) − 2λn〈J−1(Jxn − λnAxn) − q,Axn〉
= φ(q, xn) − 2λn〈xn − q,Axn〉 + 2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉.

(3:5)

Since q Î V I(A, C) and A is an a-inverse-strongly monotone mapping, we have

−2λn〈xn − q,Axn〉 = −2λn〈xn − q,Axn − Aq〉 − 2λn〈xn − q,Aq〉
≤ −2λn〈xn − q,Axn − Aq〉
= −2αλn ‖ Axn − Aq‖2.

(3:6)

From Lemma 2.1 and A is an a-inverse-strongly monotone mapping, we also have

2〈J−1(Jxn − λnAxn) − xn,−λnAxn〉 = 2〈J−1(Jxn − λnAxn) − J−1(Jxn),−λnAxn〉
≤ 2 ‖ J−1(Jxn − λnAxn) − J−1(Jxn) ‖‖ λnAxn ‖
≤ 4

c2 ‖ JJ−1(Jxn − λnAxn) − JJ−1(Jxn) ‖‖ λnAxn ‖
= 4

c2 ‖ Jxn − λnAxn − Jxn ‖‖ λnAxn ‖
= 4

c2 ‖ λnAxn‖2
= 4

c2 λ
2
n ‖ Axn‖2

≤ 4
c2 λ

2
n ‖ Axn − Aq‖2.

(3:7)

Substituting (3.6) and (3.7) into (3.5), we obtain

φ(q, zn) ≤ φ(q, xn) − 2αλn ‖ Axn − Aq‖2 + 4
c2 λ

2
n ‖ Axn − Aq‖2

= φ(q, xn) + 2λn( 2
c2 λn − α) ‖ Axn − Aq‖2

≤ φ(q, xn).

(3:8)

Substituting (3.8) into (3.4), we also have

φ(q, un) ≤ αn,0φ(q, xn) +
∞∑
i=1

αn,iknφ(q, xn) − αn,0αn,jg ‖ Jzn − JSnj zn ‖

≤ αn,0knφ(q, xn) +
∞∑
i=1

αn,iknφ(q, xn) − αn,0αn,jg ‖ Jzn − JSnj zn ‖

≤ knφ(q, xn) − αn,0αn,jg ‖ Jzn − JSnj zn ‖
≤ φ(q, xn) + sup

q∈F
(kn − 1)φ(q, xn) − αn,0αn,jg ‖ Jzn − JSnj zn ‖

= φ(q, xn) + ζn − αn,0αn,jg ‖ Jzn − JSnj zn ‖
≤ φ(q, xn) + ζn.

(3:9)

This shows that q Î Cn+1 implies that F ⊂ Cn+1 and hence, F ⊂ Cn for all n ≥ 0. This

implies that the sequence {xn} is well defined. From definition of Cn+1 that xn = �Cnx0
and xn+1 = �Cn+1x0 ∈ Cn+1 ⊂ Cn, we have

φ(xn, x0) ≤ φ(xn+1, x0), ∀n ≥ 0. (3:10)
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By Lemma 2.5, we get

φ(xn, x0) = φ(�Cnx0, x0)

≤ φ(q, x0) − φ(q, xn)

≤ φ(q, x0), ∀q ∈ F.

(3:11)

From (3.10) and (3.11), then {�(xn, x0)} are nondecreasing and bounded. Hence, we

obtain that limn®∞ �(xn, x0) exists. In particular, by (1.5), the sequence {(||xn|| - ||x0||)
2} is

bounded. This implies {xn} is also bounded. Denote

K = sup
n≥0

{‖ xn ‖} < ∞. (3:12)

Moreover, by the definition of {ζn} and (3.12), it follows that

ζn → 0 as n → ∞. (3:13)

Next, we show that {xn} is a Cauchy sequence in C. Since xm = �Cmx0 ∈ Cm ⊂ Cn, for

m > n, by Lemma 2.5, we have

φ(xm, xn) = φ(xm,�Cnx0)

≤ φ(xm, x0) − φ(�Cnx0, x0)

= φ(xm, x0) − φ(xn, x0).

Since limn®∞ �(xn, x0) exists and we taking m, n ® ∞, then we get �(xm, xn) ® 0.

From Lemma 2.3, we have limn®∞ ||xm -xn|| = 0. Thus, {xn} is a Cauchy sequence and

by the completeness of E and there exist a point p Î C such that xn ® p as n ® ∞.

Now, we claim that ||Jun - Jxn|| ® 0, as n ® ∞. By definition of �Cnx0, we have

φ(xn+1, xn) = φ(xn+1,�Cnx0)

≤ φ(xn+1, x0) − φ(�Cnx0, x0)

= φ(xn+1, x0) − φ(xn, x0).

Since limn®∞ �(xn, x0) exists, we also have

lim
n→∞ φ(xn+1, xn) = 0. (3:14)

Again from Lemma 2.3 that

lim
n→∞ ‖ xn+1 − xn ‖= 0. (3:15)

From J is uniformly norm-to-norm continuous on bounded subsets of E, we obtain

lim
n→∞ ‖ Jxn+1 − Jxn ‖= 0. (3:16)

Since xn+1 = �Cn+1x0 ∈ Cn+1 ⊂ Cn and the definition of Cn+1, we have

φ(xn+1, un) ≤ φ(xn+1, xn) + ζn.

By (3.14) and (3.13) that

lim
n→∞ φ(xn+1, un) = 0. (3:17)

Again applying Lemma 2.3, we have

lim
n→∞ ‖ xn+1 − un ‖= 0. (3:18)
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Since

‖ un − xn ‖ =‖ un − xn+1 + xn+1 − xn ‖
≤‖ un − xn+1 ‖ + ‖ xn+1 − xn ‖ .

It follows that

lim
n→∞ ‖ un − xn ‖= 0. (3:19)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we also

have

lim
n→∞ ‖ Jun − Jxn ‖= 0. (3:20)

Next, we will show that p ∈ F := GEP(f ,B) ∩ (∩∞
i=1F(Si)) ∩ VI(A,C).

(a) First, we show that p Î GEP(f, B). From (3.4) and (3.8), we get �(p, yn) ≤ �(p, xn).

By Lemma 2.8 and un = Trn yn, we observe that

φ(un, yn) = φ(Trnyn, yn)

≤ φ(q, yn) − φ(q,Trnyn)

≤ φ(q, xn) − φ(q,Trnyn)

= φ(q, xn) − φ(q, un)

=‖ q‖2 − 2〈q, Jxn〉+ ‖ xn‖2 − (‖ q‖2 − 2〈q, Jun〉+ ‖ un‖2)
=‖ xn‖2− ‖ un‖2 − 2〈q, Jxn − Jun〉
≤‖ xn − un ‖ (‖ xn ‖ + ‖ un ‖) + 2 ‖ q ‖‖ Jxn − Jun ‖ .

(3:21)

From (3.19), (3.20), and Lemma 2.3, we have

lim
n→∞ ‖ un − yn ‖= 0. (3:22)

Again since J is uniformly norm-to-norm continuous, we also have

lim
n→∞ ‖ Jun − Jyn ‖= 0. (3:23)

From (A2), we note that

〈Byn, y − un〉 + 1
rn

〈y − un, Jun − Jyn〉 ≥ −f (un, y) ≥ f (y, un), ∀y ∈ C,

and hence

〈Byn, y − un〉 +
〈
y − un,

Jun−Jyn
rn

〉
≥ f (y, un), ∀y ∈ C. (3:24)

For t with 0 < t <1 and y Î C, let yt = ty + (1 -t)p. Then, yt Î C and hence

0 ≥ −〈Byn, yt − un〉 −
〈
yt − un,

Jun−Jyn
rn

〉
+ f (yt, un), ∀yt ∈ C.

It follows that

〈Byt, yt − un〉 ≥ 〈Byt, yt − un〉 − 〈Byn, yt − un〉 −
〈
yt − un,

Jun−Jyn
rn

〉
+ f (yt, un), ∀yt ∈ C

= 〈Byt, yt − un〉 − 〈Bun, yt − un〉 + 〈Bun, yt − un〉
− 〈Byn, yt − un〉 −

〈
yt − un,

Jun−Jyn
rn

〉
+ f (yt, un), ∀yt ∈ C

= 〈Byt − Bun, yt − un〉 + 〈Bun − Byn, yt − un〉 −
〈
yt − un,

Jun−Jyn
rn

〉
+ f (yt, un), ∀yt ∈ C.
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By the continuity of B, J, and from (3.22) and (3.23), we obtain that Bun - Byn ® 0 as

n ® ∞. From rn > 0 then ‖Jun−Jyn‖
rn

→ 0 as n ® ∞. Since B is monotone, we know that

〈Byt - Bun, yt - un〉 ≥ 0. Thus, it follows from (A4) that

f (yt, p) ≤ lim inf
n→∞

f (yt, un)

≤ lim
n→∞〈Byt, yt − un〉

= 〈Byt, yt − p〉.

From the conditions (A1) and (A4) we have

0 = f (yt, yt)

≤ tf (yt, y) + (1 − t)f (yt, p)

≤ tf (yt, y) + (1 − t)〈Byt, yt − p〉
≤ tf (yt, y) + (1 − t)t〈Byt, y − p〉,

and hence

0 ≤ f (yt, y) + (1 − t)〈Byt, y − p〉.

Letting t ® 0, we have

0 ≤ f (p, y) + 〈Bp, y − p〉, ∀y ∈ C.

This implies that p Î GEP(f, B).

(b) We show that p ∈ ∩∞
i=1F(Si). From (3.4) and (3.8), for q Î F, we have

lim
n→∞ φ(q, yn) = φ(q, p). (3:25)

We note that

φ(un, zn) = φ(Trnyn, zn)

≤ φ(q, xn) − φ(q,Trnyn)

≤ φ(q, xn) − φ(q, yn)

→ 0 as n → ∞.

From Lemma 2.3, we get

lim
n→∞ ‖ un − zn ‖= 0. (3:26)

By using the triangle inequality, we have

‖ xn − zn ‖≤‖ xn − un ‖ + ‖ un − zn ‖ .

It follows from (3.19) and (3.26) that

lim
n→∞ ‖ xn − zn ‖= 0, (3:27)

and J is uniformly norm-to-norm continuous, we also have

lim
n→∞ ‖ Jzn − Jxn ‖= 0. (3:28)

By using the triangle inequality, we obtain

‖ xn+1 − yn ‖≤‖ xn+1 − un ‖ + ‖ un − yn ‖ . (3:29)
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By (3.18) and (3.22), we get

lim
n→∞ ‖ xn+1 − yn ‖= 0. (3:30)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞ ‖ Jxn+1 − Jyn ‖= 0. (3:31)

From (3.3), we note that

‖ Jxn+1 − Jyn ‖ =

∥∥∥∥∥Jxn+1 − (αn,0Jxn +
∞∑
i=1

αn,iJSni zn)

∥∥∥∥∥
=

∥∥∥∥∥αn,0Jxn+1 − αn,0Jxn +
∞∑
i=1

αn,iJxn+1 −
∞∑
i=1

αn,iJS
n
i zn

∥∥∥∥∥
=

∥∥∥∥∥αn,0(Jxn+1 − Jxn) +
∞∑
i=1

αn,i(Jxn+1 − JSni zn)

∥∥∥∥∥
=

∥∥∥∥∥
∞∑
i=1

αn,i(Jxn+1 − JSni zn) − αn,0(Jxn − Jxn+1)

∥∥∥∥∥
≥

∞∑
i=1

αn,i ‖ Jxn+1 − JSni zn ‖ −αn,0 ‖ Jxn − Jxn+1 ‖,

and hence

‖ Jxn+1 − JSni zn ‖≤ 1∑∞
i=1 αn,i

(‖ Jxn+1 − Jyn ‖ +αn,0 ‖ Jxn − Jxn+1 ‖). (3:32)

From (3.16), (3.31), and lim inf n→∞
∑∞

i=1 αn,i > 0, for each i ≥ 1, we obtain that

lim
n→∞ ‖ Jxn+1 − JSni zn ‖= 0. (3:33)

Since J-1 is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞ ‖ xn+1 − Sni zn ‖= 0. (3:34)

Again by using the triangle inequality, for each i ≥ 1, we get

‖ zn − Sni zn ‖≤‖ zn − xn ‖ + ‖ xn − xn+1 ‖ + ‖ xn+1 − Sni zn ‖ .

From (3.15), (3.27), and (3.34), for each i ≥ 1, it follows that

lim
n→∞ ‖ zn − Sni zn ‖= 0. (3:35)

Since limn®∞ ||xn - zn|| = 0 and xn ® p as n ® ∞, imply that zn ® p as n ® ∞. By

using the triangle inequality, for each i ≥ 1

‖ Sni zn − p ‖≤‖ Sni zn − zn ‖ + ‖ zn − p ‖ .

For each i ≥ 1, we have

lim
n→∞ ‖ Sni zn − p ‖= 0. (3:36)

Moreover, by the assumption that for each i ≥ 1, Si is uniformly Li-Lipschitz continu-

ous, hence we have
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‖ Sn+1i zn − Sni zn ‖ ≤‖ Sn+1i zn − Sn+1i zn+1 ‖ + ‖ Sn+1i zn+1 − zn+1 ‖ + ‖ zn+1 − zn ‖ + ‖ zn − Sni zn ‖
≤ (Li + 1) ‖ zn+1 − zn ‖ + ‖ Sn+1i zn+1 − zn+1 ‖ + ‖ zn − Sni zn ‖ .

(3:37)

By (3.15) and (3.35), it yields that ‖ Sn+1i zn − Sni zn ‖→ 0. From Sni zn → p, we have

Sn+1i zn → p, that is, SiSni zn → p. In view of closeness of Si, we have Sip = p, for all i ≥

1. This imply that p ∈ ∩∞
i=1F(Si)

(c) We show that p Î V I(A, C). Indeed, define M ⊂ E × E∗ by

Mv =
{
Av +NC(v), v ∈ C;
∅, v /∈ C.

(3:38)

By Lemma 2.10, M is maximal monotone and M−10 = VI(A,C). Let (v,w) ∈ G(M).

Since w ∈ Mv = Av +NC(v), we get w - Av Î NC(v).

From zn Î C, we have

〈v − zn,w − Av〉 ≥ 0. (3:39)

On the other hand, since zn = ΠCJ
-1(Jxn - lnAxn). Then, by Lemma 2.4, we have

〈v − zn, Jzn − (Jxn − λnAxn)〉 ≥ 0,

and thus〈
v − zn,

Jxn−Jzn
λn

− Axn
〉
≤ 0. (3:40)

It follows from (3.39) and (3.40) that

〈v − zn,w〉 ≥ 〈v − zn,Av〉
≥ 〈v − zn,Av〉 +

〈
v − zn,

Jxn−Jzn
λn

− Axn
〉

= 〈v − zn,Av − Axn〉 +
〈
v − zn,

Jxn−Jzn
λn

〉
= 〈v − zn,Av − Azn〉 + 〈v − zn,Azn − Axn〉 +

〈
v − zn,

Jxn−Jzn
λn

〉
≥ − ‖ v − zn ‖ ‖zn−xn‖

α
− ‖ v − zn ‖ ‖Jxn−Jzn‖

a

≥ −M
(

‖zn−xn‖
α

+ ‖Jxn−Jzn‖
a

)
,

where M = supn≥1 ||v - zn||. Take the limit as n ® ∞ and (3.28), we obtain 〈v - p, w〉

≥ 0. By the maximality of M, we have p ∈ M−10, that is, p Î V I(A, C).

Finally, we show that p = ΠFx0. From xn = �Cnx0, we have 〈Jx0 - Jxn, xn - z〉 ≥ 0, ∀z Î
Cn. Since F ⊂ Cn, we also have

〈Jx0 − Jxn, xn − y〉 ≥ 0, ∀y ∈ F.

Taking limit n ® ∞, we obtain

〈Jx0 − Jp, p − y〉 ≥ 0, ∀y ∈ F.

By Lemma 2.4, we can conclude that p = ΠFx0 and xn ® p as n ® ∞. This com-

pletes the proof. □
If Si = S for each i Î N, then Theorem 3.2 is reduced to the following corollary.

Corollary 3.3. Let C be a nonempty closed and convex subset of a 2-uniformly convex

and uniformly smooth Banach space E. Let A be an a-inverse-strongly monotone map-

ping of C into E* satisfying ||Ay|| ≤ ||Ay - Au||, ∀y Î C and u Î V I(A, C) ≠ ∅. Let f
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be a bifunction from C × C to ℝ satisfying (A1)-(A4) and B be a continuous monotone

mapping of C into E*. Let S : C ® C be a closed uniformly L-Lipschitz continuous and

quasi-�-asymptotically nonexpansive mappings with a sequence {kn} ⊂ [1, ∞), kn ® 1

such that F := F(S)∩GEP(f, B)∩V I(A, C) is a nonempty and bounded subset in C. For

an initial point x0 Î E with x1 = �C1x0and C1 = C, we define the sequence {xn} as fol-

lows: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zn = �CJ−1(Jxn − λnAxn),
yn = J−1(αnJxn + (1 − αn)JSnzn),
f (un, y) + 〈Byn, y − un〉 + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + ζn},
xn+1 = �Cn+1x0, ∀n ≥ 1,

(3:41)

where ζn = supqÎF (kn - 1)�(q, xn), {an} is sequence in [0, 1], {rn} ⊂ [d, ∞) for some d

>0 and {ln} ⊂ [a, b] for some a, b with 0 < a < b < c2a/2, where 1
cis the 2-uniformly

convexity constant of E. If lim infn®∞ an(1 - an) >0, then {xn} converges strongly to p Î
F, where p = ΠF x0.

For a special case that i = 1, 2, we can obtain the following results on a pair of quasi-

�-asymptotically nonexpansive mappings immediately from Theorem 3.2.

Corollary 3.4. Let C be a nonempty closed and convex subset of a 2-uniformly convex

and uniformly smooth Banach space E. Let A be an a-inverse-strongly monotone map-

ping of C into E* satisfying ||Ay|| ≤ ||Ay - Au||, ∀y Î C and u Î V I(A, C) ≠ ∅. Let f

be a bifunction from C × C to ℝ satisfying (A1)-(A4) and B be a continuous monotone

mapping of C into E*. Let S, T : C ® C be two closed quasi-�-asymptotically nonexpan-

sive mappings and uniformly LS, LT -Lipschitz continuous, respectively, with a sequence

{kn} ⊂ [1, ∞), kn ® 1 such that F := F(S) ∩ F (T ) ∩ GEP(f, B) ∩ V I(A, C) is a none-

mpty and bounded subset in C. For an initial point x0 Î E with x1 = �C1x0and C1 = C,

we define the sequence {xn} as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zn = �CJ−1(Jxn − λnAxn),
yn = J−1(αnJxn + βnJSnzn + γnJTnzn),
f (un, y) + 〈Byn, y − un〉 + 1

rn
〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + ζn},
xn+1 = �Cn+1x0, ∀n ≥ 1,

(3:42)

where ζn = supqÎF (kn - 1)�(q, xn), {an}, {bn} and {gn} are sequences in [0, 1], {rn} ⊂
[d, ∞) for some d >0 and {ln} ⊂ [a, b] for some a, b with 0 < a < b < c2a/2, where 1

cis

the 2-uniformly convexity constant of E. If an + bn + gn = 1 for all n ≥ 0 and lim

infn®∞ anbn > 0 and lim infn®∞ angn > 0, then {xn} converges strongly to p Î F, where

p = ΠFx0.

Corollary 3.5. Let C be a nonempty closed and convex subset of a 2-uniformly convex

and uniformly smooth Banach space E. Let A be an a-inverse-strongly monotone map-

ping of C into E* satisfying ||Ay|| ≤ ||Ay - Au||, ∀y Î C and u Î V I(A, C) ≠ ∅. Let f

be a bifunction from C × C to ℝ satisfying (A1)-(A4) and B be a continuous monotone

mapping of C into E*. Let {Si}∞i=1 : C → Cbe an infinite family of closed quasi-�-nonex-

pansive mappings such that F := ∩∞
i=1F(Si) ∩ GEP(f ,B) ∩ VI(A,C) �= ∅.For an initial

point x0 Î E with x1 = �C1x0and C1 = C, we define the sequence {xn} as follows:
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zn = �CJ−1(Jxn − λnAxn),
yn = J−1(αn,0Jxn +

∑∞
i=1 αn,iJSizn),

f (un, y) + 〈Byn, y − un〉 + 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,
Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = �Cn+1x0, ∀n ≥ 1,

(3:43)

where {an,i} is sequence in [0, 1], {rn} ⊂ [d, ∞) for some d > 0 and {ln} ⊂ [a, b] for

some a, b with 0 <a <b <c2a/2, where 1
cis the 2-uniformly convexity constant of E. If∑∞

i=0 αn,i = 1for all n ≥ 0 and lim infn®∞ an,0an,i > 0 for all i ≥ 1, then {xn} converges

strongly to p Î F, where p = ΠFx0.

Proof Since {Si}∞i=1 : C → C is an infinite family of closed quasi-�-nonexpansive map-

pings, it is an infinite family of closed and uniformly quasi-�-asymptotically nonexpan-

sive mappings with sequence kn = 1. Hence, the conditions appearing in Theorem 3.2

F is a bounded subset in C and for each i ≥ 1, Si is uniformly Li-Lipschitz continuous

are of no use here. By virtue of the closeness of mapping Si for each i ≥ 1, it yields

that p Î F(Si) for each i ≥ 1, that is, p ∈ ∩∞
i=1F(Si). Therefore, all the conditions in The-

orem 3.2 are satisfied. The conclusion of Corollary 3.5 is obtained from Theorem 3.2

immediately. □
Corollary 3.6. [39, Theorem 3.2] Let C be a nonempty closed and convex subset of a

2-uniformly convex and uniformly smooth Banach space E. Let A be an a-inverse-
strongly monotone mapping of C into E* satisfying ||Ay|| ≤ ||Ay - Au||, ∀y Î C and u

Î V I(A, C) ≠ ∅. Let f be a bifunction from C × C to ℝ satisfying (A1)-(A4) and B be a

continuous monotone mapping of C into E*. Let {Si}Ni=1 : C → Cbe a finite family of

closed quasi-�-nonexpansive mappings such that

F := ∩N
i=1F(Si) ∩ GEP(f ,B) ∩ VI(A,C) �= ∅. For an initial point x0 Î E with

x1 = �C1x0and C1 = C, we define the sequence {xn} as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zn = �CJ−1(Jxn − λnAxn),
yn = J−1(αn,0Jxn +

∑N
i=1 αn,iJSizn),

f (un, y) + 〈Byn, y − un〉 + 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,
Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = �Cn+1x0, ∀n ≥ 1,

(3:44)

where {an,i} is sequence in [0, 1], {rn} ⊂ [d, ∞) for some d >0 and {ln} ⊂ [a, b] for

some a, b with 0 < a < b < c2a/2, where 1
cis the 2-uniformly convexity constant of E. If

ai Î (0, 1) such that
∑N

i=0 αi = 1, then {xn} converges strongly to p Î F, where p = ΠFx0.

Remark 3.7. Theorem 3.2, Corollaries 3.5 and 3.6 improve and extend the corre-

sponding results in Wattanawitoon and Kumam [34] and Zegeye [39] in the following

senses:

• from a solution of the classical equilibrium problem to the generalized equili-

brium problem with an infinite family of quasi-�-asymptotically mappings;

• for the mappings, we extend the mappings from nonexpansive mappings, rela-

tively quasi-nonexpansive mappings or quasi-�-nonexpansive mappings and a finite

family of closed relatively quasi-nonexpansive mappings to an infinite family of

quasi-�-asymptotically nonexpansive mappings.
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4 Deduced theorems
Corollary 4.1. Let C be a nonempty closed and convex subset of a uniformly convex

and uniformly smooth Banach space E. Let f be a bifunction from C × C to ℝ satisfying

(A1)-(A4). Let B be a continuous monotone mapping of C into E*. Let {Si}∞i=1 : C → Cbe

an infinite family of closed and uniformly quasi-�-asymptotically nonexpansive map-

pings with a sequence {kn} ⊂ [1, ∞), kn ® 1 and uniformly Li-Lipschitz continuous such

that F := ∩∞
i=1F(Si) ∩ GEP(f ,B)is a nonempty and bounded subset in C. For an initial

point x0 Î E with x1 = �C1x0and C1 = C, we define the sequence {xn} as follows:⎧⎪⎪⎨⎪⎪⎩
yn = J−1(αn,0Jxn +

∑∞
i=1 αn,iJSni xn),

f (un, y) + 〈Byn, y − un〉 + 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,
Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + ζn},
xn+1 = �Cn+1x0, ∀n ≥ 0,

(4:1)

where ζn = supqÎF (kn - 1)�(q, xn), {an,i} is sequence in [0, 1], {rn} ⊂ [a, ∞) for some a

> 0. If
∑∞

i=0 αn,i = 1for all n ≥ 0 and lim infn®∞ an,0an,i > 0 for all i ≥ 1, then {xn} con-

verges strongly to p Î F, where p = ΠFx0.

Proof Put A ≡ 0 in Theorem 3.2. Then, we get that zn = xn. Thus, the method of

proof of Theorem 3.2 gives the required assertion without the requirement that E be

2-uniformly convex. □
If setting B ≡ 0 in Corollary 4.1, then we have the following corollary.

Corollary 4.2. Let C be a nonempty closed and convex subset of a uniformly convex

and uniformly smooth Banach space E. Let f be a bifunction from C × C to ℝ satisfying

(A1)-(A4). Let {Si}∞i=1 : C → Cbe an infinite family of closed and uniformly quasi-

�-asymptotically nonexpansive mappings with a sequence {kn} ⊂ [1, ∞), kn ® 1 and

uniformly Li-Lipschitz continuous such that F := ∩∞
i=1F(Si) ∩ EP(f )is a nonempty and

bounded subset in C. For an initial point x0 Î E with x1 = �C1x0and C1 = C, we define

the sequence {xn} as follows:⎧⎪⎪⎨⎪⎪⎩
yn = J−1(αn,0Jxn +

∑∞
i=1 αn,iJSni xn),

f (un, y) + 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,
Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + ζn},
xn+1 = �Cn+1x0, ∀n ≥ 0,

(4:2)

where ζn = supqÎF (kn - 1)�(q, xn), {an,i} is sequence in [0, 1], {rn} ⊂ [a, ∞) for some a

>0. If
∑∞

i=0 αn,i = 1for all n ≥ 0 and lim infn®∞ an,0an,i > 0 for all i ≥ 1, then {xn} con-

verges strongly to p Î F, where p = ΠFx0.

If setting f ≡ 0 in Corollary 4.1, then we obtain the following corollary.

Corollary 4.3. Let C be a nonempty closed and convex subset of a uniformly convex

and uniformly smooth Banach space E. Let B be a continuous monotone mapping of C

into E*. Let {Si}∞i=1 : C → Cbe an infinite family of closed and uniformly quasi-�-asymp-

totically nonexpansive mappings with a sequence {kn} ⊂ [1, ∞), kn ® 1 and uniformly

Li-Lipschitz continuous such that F := ∩∞
i=1F(Si) ∩ VI(B,C)is a nonempty and bounded

subset in C. For an initial point x0 Î E with x1 = �C1x0and C1 = C, we define the

sequence {xn} as follows:
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⎧⎪⎪⎨⎪⎪⎩
yn = J−1(αn,0Jxn +

∑∞
i=1 αn,iJSni zn),

〈Byn, y − un〉 + 1
rn

〈y − un, Jun − Jyn〉 ≥ 0, ∀y ∈ C,
Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn) + ζn},
xn+1 = �Cn+1x0, ∀n ≥ 0,

(4:3)

where ζn = supqÎF (kn - 1)�(q, xn), {an,i} is sequence in [0, 1], {rn} ⊂ [a, ∞) for some a

>0. If
∑∞

i=0 αn,i = 1for all n ≥ 0 and lim infn®∞ an,0an,i > 0 for all i ≥ 1, then {xn} con-

verges strongly to p Î F, where p = ΠFx0.

Remark 4.4. Corollaries 4.1{4.3 improve and extend the corresponding results in

Zegeye [39] and Wattanawitoon and Kumam [34] in the sense from a finite family of

closed relatively quasi-nonexpansive mappings and closed relatively quasi-nonexpansive

mappings to more general than an infinite family of closed and uniformly quasi-

�-asymptotically nonexpansive mappings.

5 Application to Hilbert spaces
If E = H, a Hilbert space, then E is 2-uniformly convex (we can choose c = 1) and uni-

formly smooth real Banach space and closed relatively quasi-nonexpansive map

reduces to closed quasi-nonexpansive map. Moreover, J = I, identity operator on H

and ΠC = PC, projection mapping from H into C. Thus, the following corollaries hold.

Theorem 5.1. Let C be a nonempty closed and convex subset of a Hilbert space H.

Let f be a bifunction from C × C to ℝ satisfying (A1)-(A4). Let A be an a-inverse-
strongly monotone mapping of C into H satisfying ||Ay|| ≤ ||Ay - Au||, ∀y Î C and u

Î V I(A, C) ≠ ∅ and B be a continuous monotone mapping of C into H. Let
{Si}∞i=1 : C → Cbe an infinite family of closed and uniformly quasi-�-asymptotically

nonexpansive mappings with a sequence {kn} ⊂ [1, ∞), kn ® 1 and uniformly Li-

Lipschitz continuous such that F := ∩∞
i=1F(Si) ∩ GEP(f ,B) ∩ VI(A,C)is a nonempty and

bounded subset in C. For an initial point x0 Î H with x1 = �C1x0and C1 = C, we define

the sequence {xn} as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zn = PC(xn − λnAxn),
yn = αn,0xn +

∑∞
i=1 αn,iSni zn,

f (un, y) + 〈Byn, y − un〉 + 1
rn

〈y − un, un − yn〉 ≥ 0, ∀y ∈ C,
Cn+1 = {z ∈ Cn :‖ z − un ‖≤‖ z − xn ‖ +ζn},
xn+1 = PCn+1x0, ∀n ≥ 0,

(5:1)

where ζn = supqÎF (kn - 1)||q - xn||, {an,i} is sequence in [0, 1], {rn} ⊂ [a, ∞) for some

a >0 and {ln} ⊂ [a, b] for some a, b with 0 < a < b < a/2. If
∑∞

i=0 αn,i = 1for all n ≥ 0

and lim infn®∞ an,0an,i > 0 for all i ≥ 1, then {xn} converges strongly to p Î F, where p

= ΠFx0.

Remark 5.2. Theorem 5.1 improve and extend the Corollary 3.7 in Zegeye [39] in

the aspect for the mappings, we extend the mappings from a finite family of closed

relatively quasi-nonexpansive mappings to more general an infinite family of closed

and uniformly quasi-�-asymptotically nonexpansive mappings.
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