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Abstract

In this article, we prove the nonlinear stability of the quartic functional equation

16f (x + 4y) + f (4x − y) =306
[
9f

(
x +

y
3

)
+ f (x + 2y)

]
+ 136f (x − y) − 1394f (x + y) + 425f (y) − 1530f (x)

in the setting of random normed spaces Furthermore, the interdisciplinary relation
among the theory of random spaces, the theory of non-Archimedean space, the
theory of fixed point theory, the theory of intuitionistic spaces and the theory of
functional equations are also presented in the article.

Keywords: generalized Hyers-Ulam stability, quartic functional equation, random
normed space, intuitionistic random normed space

1. Introduction
The study of stability problems for functional equations is related to a question of

Ulam [1] concerning the stability of group homomorphisms and affirmatively answered

for Banach spaces by Hyers [2]. Subsequently, this result of Hyers was generalized by

Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering

an unbounded Cauchy difference. The article of Rassias [4] has provided a lot of influ-

ence in the development of what we now call generalized Ulam-Hyers stability of func-

tional equations. We refer the interested readers for more information on such

problems to the article [5-17].

Recently, Alsina [18], Chang, et al. [19], Mirmostafaee et al. [20], [21], Miheţ and Radu

[22], Miheţ et al. [23], [24], [25], [26], Baktash et al. [27], Eshaghi et al. [28], Saadati et al.

[29], [30] investigated the stability in the settings of fuzzy, probabilistic, and random

normed spaces.

In this article, we study the stability of the following functional equation

16f (x + 4y) + f (4x − y) =306
[
9f

(
x +

y
3

)
+ f (x + 2y)

]
+ 136f (x − y) − 1394f (x + y) + 425f (y) − 1530f (x)

(1:1)

in the various random normed spaces via different methods. Since ax4 is a solution

of above functional equation, we say it quartic functional equation.
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2. Preliminaries
In this section, we recall some definitions and results which will be used later on in the

article.

A triangular norm (shorter t-norm) is a binary operation on the unit interval [0, 1],

i.e., a function T : [0, 1] × [0, 1] ® [0, 1] such that for all a, b, c Î [0, 1] the following

four axioms satisfied:

(i) T(a, b) = T(b, a) (commutativity);

(ii) T(a, (T(b, c))) = T(T(a, b), c) (associativity);

(iii) T(a, 1) = a (boundary condition);

(iv) T(a, b) ≤ T(a, c) whenever b ≤ c (monotonicity).

Basic examples are the Lukasiewicz t-norm TL, TL(a, b) = max (a + b - 1, 0) ∀a, b Î
[0, 1] and the t-norms TP, TM, TD, where TP (a, b) := ab, TM (a, b) := min {a, b},

TD(a, b) :=
{
min(a, b), if max(a, b) = 1;
0, otherwise.

If T is a t-norm then x(n)T
is defined for every x Î [0, 1] and n Î N ∪ {0} by 1, if n =

0 and T(x(n−1)
T , x), if n ≥ 1. A t-norm T is said to be of Hadžić-type (we denote by

T ∈ H) if the family (x(n)T )n∈N is equicontinuous at x = 1 (cf. [31]).

Other important triangular norms are (see [32]):

-the Sugeno-Weber family {TSW
λ }λ∈[−1,∞] is defined by TSW

−1 = TD, TSW
∞ = TP and

TSW
λ (x, y) = max

(
0,

x + y − 1 + λxy
1 + λ

)

if l Î (-1, ∞).

-the Domby family {TD
λ }λ∈[0,∞], defined by TD, if l = 0, TM , if l = ∞ and

TD
λ (x, y) =

1

1 + ((1−x
x )λ + (1−y

y )
λ
)
1/λ

if l Î (0, ∞).

-the Aczel-Alsina family {TAA
λ }λ∈[0,∞], defined by TD, if l = 0, TM , if l = ∞ and

TAA
λ (x, y) = e−(| log x|λ+| log y|λ)1/λ

if l Î (0, ∞).

A t-norm T can be extended (by associativity) in a unique way to an n-array opera-

tion taking for (x1, ..., xn) Î [0, 1]n the value T (x1, ..., xn) defined by

T0i=1xi = 1, Tni=1xi = T(Tn−1
i=1 xi, xn) = T(x1, . . . , xn).

T can also be extended to a countable operation taking for any sequence (xn)nÎN in

[0, 1] the value

T∞
i=1xi = lim

n→∞ Tni=1xi. (2:1)
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The limit on the right side of (2.1) exists since the sequence {Tni=1xi}n∈N is non-

increasing and bounded from below.

Proposition 2.1. [32] (i) For T ≥ TL the following implication holds:

lim
n→∞ T∞

i=1xn+i = 1 ⇔
∞∑
n=1

(1 − xn) < ∞.

(ii) If T is of Hadžić-type then

lim
n→∞ T∞

i=1xn+i = 1

for every sequence {xn}nÎN in [0, 1] such that limn®∞ xn = 1.

(iii) If T ∈ {TAA
λ }λ∈(0,∞) ∪ {TD

λ }λ∈(0,∞), then

lim
n→∞ T∞

i=1xn+i = 1 ⇔
∞∑
n=1

(1 − xn)α < ∞.

(iv) If T ∈ {TSW
λ }λ∈[−1,∞), then

lim
n→∞ T∞

i=1xn+i = 1 ⇔
∞∑
n=1

(1 − xn) < ∞.

Definition 2.2. [33] A random normed space (briefly, RN-space) is a triple (X, μ, T),

where X is a vector space, T is a continuous t-norm, and μ is a mapping from X into

D+ such that, the following conditions hold:

(RN1) μx(t) = ε0(t) for all t >0 if and only if x = 0;

(RN2) μαx(t) = μx

(
t

|α|
)
for all x Î X, a ≠ 0;

(RN3) μx+y(t + s) ≥ T (μx(t), μy(s)) for all x, y, z Î X and t, s ≥ 0.

Definition 2.3. Let (X, μ, T) be an RN-space.

(1) A sequence {xn} in X is said to be convergent to x in X if, for every ε >0 and l >0,

there exists a positive integer N such that μxn−x(ε) > 1 − λ whenever n ≥ N.

(2) A sequence {xn} in X is called Cauchy if, for every ε >0 and l >0, there exists a

positive integer N such that μxn−xm(ε) > 1 − λ whenever n ≥ m ≥ N.

(3) An RN-space (X, μ, T) is said to be complete if every Cauchy sequence in X is

convergent to a point in X.

Theorem 2.4. [34]If (X, μ, T) is an RN-space and {xn} is a sequence such that xn ® x,

then limn→∞ μxn(t) = μx(t)almost everywhere.

3. Non-Archimedean random normed space
By a non-Archimedean field we mean a field K equipped with a function (valuation) | · |

from K into [0, ∞] such that |r| = 0 if and only if r = 0, |rs| = |r| |s|, and |r + s| ≤ max{|

r|, |s|} for all r, s ∈ K. Clearly |1| = | -1| = 1 and |n| ≤ 1 for all n Î N. By the trivial

valuation we mean the mapping | · | taking everything but 0 into 1 and |0| = 0. Let X be

a vector space over a field K with a non-Archimedean non-trivial valuation | · |.
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A function || · || : X → [0,∞] is called a non-Archimedean norm if it satisfies the follow-

ing conditions:

(i) ||x|| = 0 if and only if x = 0;

(ii) for any r ∈ K, x ∈ X , ||rx|| = ||r|||x||;

(iii) the strong triangle inequality (ultrametric); namely,

||x + y|| ≤ max{||x||, ||y||} (x, y ∈ X ).

Then (X , || · ||) is called a non-Archimedean normed space. Due to the fact that

||xn − xm|| ≤ max{||xj+1 − xj|| : m ≤ j ≤ n − 1} (n > m),

a sequence {xn} is Cauchy if and only if {xn+1 - xn} converges to zero in a non-

Archimedean normed space. By a complete non-Archimedean normed space we

mean one in which every Cauchy sequence is convergent.

In 1897, Hensel [35] discovered the p-adic numbers as a number theoretical analo-

gue of power series in complex analysis. Fix a prime number p. For any non-zero

rational number x, there exists a unique integer nx Î ℤ such that x = a
b p

nx, where a

and b are integers not divisible by p. Then |x|p := p−nx defines a non-Archimedean

norm on Q. The completion of Q with respect to the metric d(x, y) = |x - y|p is

denoted by Qp, which is called the p-adic number field.

Throughout the article, we assume that X is a vector space and Y is a complete non-

Archimedean normed space.

Definition 3.1. A non-Archimedean random normed space (briefly, non-Archime-

dean RN-space) is a triple (X ,μ,T), where X is a linear space over a non-Archimedean

field K, T is a continuous t-norm, and μ is a mapping from X into D+ such that the

following conditions hold:

(NA-RN1) μx(t) = ε0(t) for all t >0 if and only if x = 0;

(NA-RN2) μαx(t) = μx

(
t

|α|
)
for all x ∈ X , t >0, a ≠ 0;

(NA-RN3) μx+y(max{t, s}) ≥ T (μx(t), μy(s)) for all x, y, z ∈ X and t, s ≥ 0.

It is easy to see that if (NA-RN3) holds then so is

(RN3) μx+y(t + s) ≥ T (μx(t), μy(s)).

As a classical example, if (X , ||.||) is a non-Archimedean normed linear space, then

the triple (X ,μ,TM), where

μx(t) =
{
0 t ≤ ||x||
1 t > ||x||

is a non-Archimedean RN-space.

Example 3.2. Let (X , ||.||) be is a non-Archimedean normed linear space. Define

μx(t) =
t

t + ||x|| , ∀x ∈ X t > 0.

Then (X ,μ,TM) is a non-Archimedean RN-space.

Definition 3.3. Let (X ,μ,T) be a non-Archimedean RN-space. Let {xn} be a

sequence in X . Then {xn} is said to be convergent if there exists x ∈ X such that
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lim
n→∞ μxn−x(t) = 1

for all t >0. In that case, x is called the limit of the sequence {xn}.

A sequence {xn} in X is called Cauchy if for each ε >0 and each t >0 there exists n0
such that for all n ≥ n0 and all p >0 we have μxn+p−xn(t) > 1 − ε.

If each Cauchy sequence is convergent, then the random norm is said to be complete

and the non-Archimedean RN-space is called a non-Archimedean random Banach

space.

Remark 3.4. [36] Let (X ,μ,TM) be a non-Archimedean RN-space, then

μxn+p−xn(t) ≥ min{μxn+j+1−xn+j(t) : j = 0, 1, 2, . . . , p − 1}

So, the sequence {xn} is Cauchy if for each ε >0 and t >0 there exists n0 such that for

all n ≥ n0 we have

μxn+1−xn(t) > 1 − ε.

4. Generalized Ulam-Hyers stability for a quartic functional equation in non-
Archimedean RN-spaces
Let K be a non-Archimedean field, X a vector space over K and let (Y ,μ,T) be a non-

Archimedean random Banach space over K.
We investigate the stability of the quartic functional equation

16f (x + 4y) + f (4x − y) = 306
[
9f

(
x +

y
3

)
+ f (x + 2y)

]
+ 136f (x − y) − 1394f (x + y) + 425f (y) − 1530f (x),

where f is a mapping from X to Y and f(0) = 0.

Next, we define a random approximately quartic mapping. Let Ψ be a distribution

function on X × X × [0,∞] such that Ψ (x, y, ·) is symmetric, nondecreasing and

Ψ (cx, cx, t) ≥ Ψ

(
x, x,

t
|c|

)
(x ∈ X , c 
= 0).

Definition 4.1. A mapping f : X → Y is said to be Ψ-approximately quartic if

μ
16f (x+4y)+f (4x−y)−306

[
9f

(
x+
y
3

)
+f (x+2y)

]
−136f (x−y)+1394f (x+y)−425f (y)+1530f (x)

(t)

≥ Ψ (x, y, t) (x, y ∈ X , t > 0).

(4:1)

In this section, we assume that 4 ≠ 0 in K (i.e., characteristic of K is not 4). Our

main result, in this section, is the following:

Theorem 4.2. Let Kbe a non-Archimedean field, Xa vector space over Kand let

(Y ,μ,T)be a non-Archimedean random Banach space over K. Let f : X → Ybe a Ψ-

approximately quartic mapping. If for some a Î ℝ, a >0, and some integer k, k >3 with

|4k| <a,

Ψ (4−kx, 4−ky, t) ≥ Ψ (x, y,αt) (x ∈ X , t > 0) (4:2)

and

lim
n→∞ T∞

j=nM
(
x,

αjt

|4|kj
)
= 1 (x ∈ X , t > 0), (4:3)
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then there exists a unique quartic mapping Q : X → Ysuch that

μf (x)−Q(x)(t) ≥ T∞
i=1M

(
x,

αi+1t

|4|ki
)

(4:4)

for all x Î X and t >0, where

M(x, t) := T(Ψ (x, 0, t),Ψ (4x, 0, t), · · · ,Ψ (4k−1x, 0, t)) (x ∈ X , t > 0).

Proof. First, we show by induction on j that for each x ∈ X , t >0 and j ≥ 1,

μf (4jx)−256j f (x)(t) ≥ Mj(x, t) := T(Ψ (x, 0, t), · · · ,Ψ (4j−1x, 0, t)). (4:5)

Putting y = 0 in (4.1), we obtain

μf (4x)−256f (x)(t) ≥ Ψ (x, 0, t) (x ∈ X , t > 0).

This proves (4.5) for j = 1. Assume that (4.5) holds for some j ≥ 1. Replacing y by 0

and x by 4jx in (4.1), we get

μf (4j+1x)−256f (4jx)(t) ≥ Ψ (4jx, 0, t) (x ∈ X , t > 0).

Since |256| ≤ 1,

μf (4j+1x)−256j+1f (x)(t) ≥ T
(
μf (4j+1x)−256f (4jx)(t),μ256f (4jx)−256j+1f (x)(t)

)
= T

(
μf (4j+1x)−256f (4jx)(t),μf (4jx)−256j f (x)

(
t

|256|
))

≥ T
(
μf (4j+1x)−256f (4jx)(t),μf (4jx)−256j f (x) (t)

)
≥ T(Ψ (4jx, 0, t),Mj(x, t))

= Mj+1(x, t)

for all x ∈ X . Thus (4.5) holds for all j ≥ 1. In particular

μf (4kx)−256kf (x)(t) ≥ M(x, t) (x ∈ X , t > 0). (4:6)

Replacing x by 4-(kn+k)x in (4.6) and using inequality (4.2), we obtain

μ
f
( x
4kn

)
−256kf

( x
4kn+k

)(t) ≥ M
( x

4kn+k
, t

)
≥ M(x,αn+1t) (x ∈ X , t > 0, n = 0, 1, 2, . . .).

(4:7)

Then

μ
(44k)

n
f
(

x
(4k)

n

)
−(44k)

n+1
f

(
x

(4k)
n+1

)(t) ≥ M

(
x,

αn+1

|(44k)n|
t

)
(x ∈ X , t > 0, n = 0, 1, 2, . . .).

Hence,

μ
(44k)

n
f
(

x
(4k)

n

)
−(44k)

n+p
f
(

x
(4k)

n+p

)(t)

≥ Tn+p
j=n

⎛
⎜⎝μ

(44k)
j
f

(
x

(4k)
j

)
−(44k)

j+p
f

(
x

(4k)
j+p

)(t)
⎞
⎟⎠

≥ Tn+p
j=n M

(
x, αj+1

|(44k)j| t
)

≥ Tn+p
j=n M

(
x, αj+1

|(4k)j| t
)

(x ∈ X , t > 0, n = 0, 1, 2, . . .).
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Since limn→∞ T∞
j=nM

(
x, αj+1

|(4k)j| t
)
= 1 (x ∈ X , t > 0),

{
(44k)

n
f
(

x
(4k)

n

)}
n∈N

, is a

Cauchy sequence in the non-Archimedean random Banach space (Y ,μ,T). Hence, we

can define a mapping Q : X → Y such that

lim
n→∞ μ

(44k)
n
f
(

x
(4k)

n

)
−Q(x)

(t) = 1 (x ∈ X, t > 0).
(4:8)

Next, for each n ≥ 1, x ∈ X and t >0,

μ
f (x)−(44k)

n
f
(

x
(4k)

n

)(t) = μ∑n−1
i=0 (44k)

i
f

(
x

(4k)
i

)
−(44k)

i+1
f

(
x

(4k)
i+1

)(t)

≥ Tn−1
i=0

⎛
⎜⎝μ

(44k)
i
f

(
x

(4k)
i

)
−(44k)

i+1
f

(
x

(4k)
i+1

)(t)
⎞
⎟⎠

≥ Tn−1
i=0 M

(
x,

αi+1t

|44k|i
)
.

Therefore,

μf (x)−Q(x)(t) ≥ T

(
μ
f (x)−(44k)

n
f
(

x
(4k)

n

)(t),μ
(44k)

n
f
(

x
(4k)

n

)
−Q(x)

(t)

)

≥ T

(
Tn−1
i=0 M

(
x,

αi+1t

|44k|i
)
,μ

(44k)
n
f
(

x
(4k)

n

)
−Q(x)

(t)

)
.

By letting n ® ∞, we obtain

μf (x)−Q(x)(t) ≥ T∞
i=1M

(
x,

αi+1t

|4k|i
)
.

This proves (4.4).

As T is continuous, from a well-known result in probabilistic metric space (see e.g.,

[[34], Chapter 12]), it follows that

lim
n→∞ μ

(4k)
n·16f (4−kn(x+4y))+(4k)

n
f (4−kn(4x−y))−306

[
(4k)

n·9f (4−kn(x+
y
3
))+(4k)

n
f (4−kn(x+2y))

]

−136(4k)nf (4−kn(x−y))+1394(4k)nf (4−kn(x+y))−425(4k)nf (4−kny)+1530(4k)nf (4−knx)(t)

= μ
16Q(x+4y)+Q(4x−y)−306

[
9Q

(
x+
y

3

)
+Q(x+2y)

]
−136Q(x−y)+1394Q(x+y)−425Q(y)+1530Q(x)

(t)

for almost all t >0.

On the other hand, replacing x, y by 4-knx, 4-kny, respectively, in (4.1) and using (NA-

RN2) and (4.2), we get

μ
(4k)

n·16f (4−kn(x+4y))+(4k)
n
f (4−kn(4x−y))−306

[
(4k)

n·9f (4−kn(x+
y
3
))+(4k)

n
f (4−kn(x+2y))

]

−136(4k)nf (4−kn(x−y))+1394(4k)nf (4−kn(x+y))−425(4k)nf (4−kny)+1530(4k)nf (4−knx)(t)

≥ Ψ

(
4−knx, 4−kny,

t

|4k|n
)

≥ Ψ

(
x, y,

αnt

|4k|n
)

for all x, y ∈ X and all t >0. Since limn→∞ Ψ
(
x, y, αnt

|4k|n
)
= 1, we infer that Q is a

quartic mapping.
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If Q′ : X → Y is another quartic mapping such that μQ’(x)-f(x)(t) ≥ M(x, t) for all

x ∈ X and t >0, then for each n Î N, x ∈ X and t >0,

μQ(x)−Q′(x)(t) ≥ T

(
μ
Q(x)−(44k)

n
f
(

x
(4k)

n

)(t),μ
(44k)

n
f
(

x
(4k)

n

)
−Q′(x)

(t), t)

)
.

Thanks to (4.8), we conclude that Q = Q’. □
Corollary 4.3. Let Kbe a non-Archimedean field, Xa vector space over Kand let

(Y ,μ,T)be a non-Archimedean random Banach space over Kunder a t-norm T ∈ H.

Let f : X → Ybe a Ψ-approximately quartic mapping. If, for some a Î ℝ, a >0, and

some integer k, k >3, with |4k| <a,

Ψ (4−kx, 4−ky, t) ≥ Ψ (x, y,αt) (x ∈ X , t > 0),

then there exists a unique quartic mapping Q : X → Ysuch that

μf (x)−Q(x)(t) ≥ T∞
i=1M

(
x,

αi+1t
|4|ki

)

for all x ∈ Xand all t >0, where

M(x, t) := T(Ψ (x, 0, t),Ψ (4x, 0, t), · · · ,Ψ (4k−1x, 0, t)) (x ∈ X , t > 0).

Proof. Since

lim
n→∞M

(
x,

αjt

|4|kj
)
= 1 (x ∈ X , t > 0)

and T is of Hadžić type, from Proposition 2.1, it follows that

lim
n→∞ T∞

j=nM
(
x,

αjt

|4|kj
)
= 1 (x ∈ X , t > 0).

Now we can apply Theorem 4.2 to obtain the result. □
Example 4.4. Let (X ,μ,TM) non-Archimedean random normed space in which

μx(t) =
t

t + ||x|| , ∀x ∈ X , t > 0,

and (Y ,μ,TM) a complete non-Archimedean random normed space (see Example

3.2). Define

Ψ (x, y, t) =
t

1 + t
.

It is easy to see that (4.2) holds for a = 1. Also, since

M(x, t) =
t

1 + t
,

we have

lim
n→∞ T∞

M,j=nM
(
x,

αjt

|4|kj
)
= lim

n→∞

(
lim
m→∞ Tm

M,j=nM
(
x,

t

|4|kj
))

= lim
n→∞ lim

m→∞

(
t

t + |4k|n
)

= 1, ∀x ∈ X , t > 0.
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Let f : X → Y be a Ψ-approximately quartic mapping. Thus all the conditions of

Theorem 4.2 hold and so there exists a unique quartic mapping Q : X → Y such that

μf (x)−Q(x)(t) ≥ t

t + |4k| .

5. Fixed point method for random stability of the quartic functional
equation
In this section, we apply a fixed point method for achieving random stability of the

quartic functional equation. The notion of generalized metric space has been intro-

duced by Luxemburg [37], by allowing the value +∞ for the distance mapping. The fol-

lowing lemma (Luxemburg-Jung theorem) will be used in the proof of Theorem 5.3.

Lemma 5.1. [38]. Let (X, d) be a complete generalized metric space and let A : X ®
X be a strict contraction with the Lipschitz constant k such that d(x0, A(x0)) < +∞ for

some x0 Î X. Then A has a unique fixed point in the set Y := {y Î X, d(x0, y) < ∞} and

the sequence (An(x))nÎN converges to the fixed point x* for every x Î Y. Moreover, d(x0,

A(x0)) ≤ δ implies d(x∗, x0) ≤ δ
1−k.

Let X be a linear space, (Y, ν, TM ) a complete RN-space and let G be a mapping

from X × R into [0, 1], such that G(x, .) Î D+ for all x. Consider the set E := {g : X ®
Y, g(0) = 0} and the mapping dG defined on E × E by

dG(g, h) = inf{u ∈ R+, νg(x)−h(x)(ut) ≥ G(x, t) for all x ∈ X and t > 0}

where, as usual, inf ∅ = +∞. The following lemma can be proved as in [22]:

Lemma 5.2. cf. [22,39]dG is a complete generalized metric on E.

Theorem 5.3. Let X be a real linear space, t f a mapping from X into a complete RN-

space (Y, μ , TM ) with f(0) = 0 and let F : X2 ® D+ be a mapping with the property

∃α ∈ (0, 256) : Φ4x,4y(αt) ≥ Φx,y(t), ∀x, y ∈ X, ∀t > 0. (5:1)

If

μ
16f (x+4y)+f (4x−y)−306

[
9f

(
x+
y
3

)
+f (x+2y)

]
−136f (x−y)+1394f (x+y)−425f (y)+1530f (x)

(t)

≥ Φx,y(t), ∀x, y ∈ X,

(5:2)

then there exists a unique quartic mapping g : X ® Y such that

μg(x)−f (x)(t) ≥ Φx,0 (Mt) , ∀x ∈ X, ∀t > 0, (5:3)

where

M = (256 − α).

Moreover,

g(x) = lim
n→∞

f (4nx)
44n

.

Proof. By setting y = 0 in (5.2), we obtain

μf (4x)−256f (x)(t) ≥ Φx,0(t)
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for all x Î X, whence

μ 1
256 f (4x)−f (x)

(t) = μ 1
256 (f (4x)−256f (x))

(t)

= μf (4x)−256f (x) (256t)

≥ Φx,0 (256t) , ∀x ∈ X, ∀t > 0.

Let

G(x, t) := Φx,0 (256t) .

Consider the set

E := {g : X → Y, g(0) = 0}

and the mapping dG defined on E × E by

dG(g, h) = inf{u ∈ R+,μg(x)−h(x)(ut) ≥ G(x, t) for all x ∈ X and t > 0}.

By Lemma 5.2, (E, dG) is a complete generalized metric space. Now, let us consider

the linear mapping J : E ® E,

Jg(x) :=
1

256
g(4x).

We show that J is a strictly contractive self-mapping of E with the Lipschitz constant

k = a/256.
Indeed, let g, h Î E be mappings such that dG(g, h) <ε. Then

μg(x)−h(x)(εt) ≥ G(x, t), ∀x ∈ X, ∀t > 0,

whence

μJg(x)−Jh(x)(
α

256
εt) = μ 1

256 (g(4x)−h(4x))
(

α

256
εt)

= μg(4x)−h(4x)(αεt)

≥ G(4x,αt) (x ∈ X, t > 0).

Since G(4x, at) ≥ G(x, t), μJg(x)−Jh(x)( α
256εt) ≥ G(x, t), that is,

dG(g, h) < ε ⇒ dG(Jg, Jh) ≤ α

256
ε.

This means that

dG(Jg, Jh) ≤ α

256
dG(g, h)

for all g, h in E.

Next, from

μ
f (x)− 1

256 f (4x)
(t) ≥ G(x, t)

it follows that dG(f, Jf ) ≤ 1. Using the Luxemburg-Jung theorem, we deduce the exis-

tence of a fixed point of J, that is, the existence of a mapping g : X ® Y such that g(4x)

= 256g(x) for all x Î X.
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Since, for any x Î X and t >0,

dG(u, v) < ε ⇒ μu(x)−v(x)(t) ≥ G
(
x,

t
ε

)
,

from dG(J
nf, g) ® 0, it follows that limn→∞

f (4nx)
44n = g(x) for any x Î X.

Also, dG(f , g) ≤ 1
1−L d(f , Jf ) implies the inequality dG(f , g) ≤ 1

1 − α
256

from which it

immediately follows νg(x)−f (x)( 256
256−α

t) ≥ G(x, t) for all t >0 and all x Î X. This means

that

μg(x)−f (x)(t) ≥ G
(
x,

256 − α

256
t
)
, ∀x ∈ X, ∀t > 0.

It follows that

μg(x)−f (x)(t) ≥ Φx,0((256 − α)t) ∀x ∈ X, ∀t > 0.

The uniqueness of g follows from the fact that g is the unique fixed point of J with

the property: there is C Î (0, ∞) such that μg(x)-f(x)(Ct) ≥ G(x, t) for all x Î X and all t

>0, as desired. □

6. Intuitionistic random normed spaces
Recently, the notation of intuitionistic random normed space introduced by Chang et

al. [19]. In this section, we shall adopt the usual terminology, notations, and conven-

tions of the theory of intuitionistic random normed spaces as in [22], [31], [33], [34],

[40], [41], [42].

Definition 6.1. A measure distribution function is a function μ : R ® [0, 1] which is

left continuous, non-decreasing on R, inftÎR μ(t) = 0 and suptÎR μ(t) = 1.

We will denote by D the family of all measure distribution functions and by H a spe-

cial element of D defined by

H(t) =
{
0, if t ≤ 0,
1, if t > 0.

If X is a nonempty set, then μ : X ® D is called a probabilistic measure on X and μ

(x) is

denoted by μx.

Definition 6.2. A non-measure distribution function is a function ν : R ® [0, 1]

which is right continuous, non-increasing on R, inftÎR ν(t) = 0 and suptÎR ν(t) = 1.

We will denote by B the family of all non-measure distribution functions and by G a

special element of B defined by

G(t) =
(
1, if t ≤ 0,
0, if t > 0.

If X is a nonempty set, then ν : X ® B is called a probabilistic non-measure on X and

ν (x) is denoted by νx.

Lemma 6.3. [43], [44]Consider the set L* and operation ≤L∗defined by:

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},
(x1, x2)≤L∗(y1, y2) ⇔ x1 ≤ y1, x2 ≥ y2, ∀(x1, x2), (y1, y2) ∈ L∗.
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Then (L∗,≤L∗)is a complete lattice.

We denote its units by 0L∗ = (0, 1) and 1L∗ = (1, 0). In Section 2, we presented classi-

cal t-norm. Using the lattice (L∗,≤L∗), these definitions can be straightforwardly

extended.

Definition 6.4. [44] A triangular norm (t-norm) on L* is a mapping T : (L∗)2 → L∗

satisfying the following conditions:

(a) (∀x ∈ L∗)(T (x, 1L∗) = x) (boundary condition);

(b) (∀(x, y) ∈ (L∗)2)(T (x, y) = T (y, x)) (commutativity);

(c) (∀(x, y, z) ∈ (L∗)3)(T (x,T (y, z)) = T (T (x, y), z)) (associativity);

(d) (∀(x, x′, y, y′) ∈ (L∗)4)(x≤L∗ x′ and y≤L∗y′ ⇒ T (x, y)≤L∗T (x′, y′)) (monotonicity).

If (L∗,≤L∗ ,T ) is an Abelian topological monoid with unit 1L∗, then T is said to be a

continuous t-norm.

Definition 6.5. [44] A continuous t-norm T on L* is said to be continuous t-repre-

sentable if there exist a continuous t-norm * and a continuous t-conorm ◇ on [0, 1]

such that, for all x = (x1, x2), y = (y1, y2) Î L*,

T (x, y) = (x1 ∗ y1, x2♦y2).

For example,

T (a, b) = (a1b1,min{a2 + b2, 1})

and

M(a, b) = (min{a1, b1},max{a2, b2})

are continuous t-representable for all a = (a1, a2), b = (b1, b2) Î L*.

Now, we define a sequence T n recursively by T 1 = T and

T n(x(1), . . . , x(n+1)) = T (T n−1(x(1), . . . , x(n)), x(n+1)), ∀n ≥ 2, x(i) ∈ L∗.

Definition 6.6. A negator on L* is any decreasing mapping N : L∗ → L∗ satisfying

N (1L∗) = 0L∗and N (1L∗) = 0L∗. If N (N (x)) = x for all x Î L*, then N is called an invo-

lutive negator. A negator on [0, 1] is a decreasing function N : [0, 1] ® [0, 1] satisfying

N(0) = 1 and N(1) = 0. Ns denotes the standard negator on [0, 1] defined by

Ns(x) = 1 − x, ∀x ∈ [0, 1].

Definition 6.7. Let μ and ν be measure and non-measure distribution functions from

X × (0, +∞) to [0, 1] such that μx(t) + νx(t) ≤ 1 for all x Î X and t >0. The triple

(X,Pμ,ν ,T ) is said to be an intuitionistic random normed space (briefly IRN-space) if X

is a vector space, T is continuous t-representable and Pμ,ν is a mapping X × (0, +∞) ®
L* satisfying the following conditions: for all x, y Î X and t, s >0,

(a) Pμ,ν(x, 0) = 0L∗;

(b) Pμ,ν(x, t) = 1L∗ if and only if x = 0;

(c) Pμ,ν(αx, t) = Pμ,ν(x, t
|α| ) for all a ≠ 0;

(d) Pμ,ν(x + y, t + s)≥L∗ T (Pμ,ν(x, t),Pμ,ν(y, s)).
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In this case, Pμ,ν is called an intuitionistic random norm. Here,

Pμ,ν(x, t) = (μx(t), νx(t)).

Example 6.8. Let (X, || · ||) be a normed space. Let T (a, b) = (a1b1,min(a2 + b2, 1))

for all a = (a1, a2), b = (b1, b2) Î L* and let μ, ν be measure and non-measure distribu-

tion functions defined by

Pμ,ν(x, t) = (μx(t), νx(t)) =
(

t
t + ||x|| ,

||x||
t + ||x||

)
, ∀t ∈ R+.

Then (X,Pμ,ν ,T ) is an IRN-space.

Definition 6.9. (1) A sequence {xn} in an IRN-space (X,Pμ,ν ,T ) is called a Cauchy

sequence if, for any ε >0 and t >0, there exists an n0 Î N such that

Pμ,ν(xn − xm, t) >L∗(Ns(ε), ε), ∀n,m ≥ n0,

where Ns is the standard negator.

(2) The sequence {xn} is said to be convergent to a point x Î X (denoted byxn
Pμ,ν→ x) if

Pμ,ν(xn − x, t) → 1L∗ as n ® ∞ for every t >0.

(3) An IRN-space (X,Pμ,ν ,T ) is said to be complete if every Cauchy sequence in X is

convergent to a point x Î X.

7. Stability results in intuitionistic random normed spaces
In this section, we prove the generalized Ulam-Hyers stability of the quartic functional

equation in intuitionistic random normed spaces.

Theorem 7.1. Let X be a linear space and let (X,Pμ,ν ,T )be a complete IRN-space.

Let f : X ® Y be a mapping with f(0) = 0 for which there are ξ, ζ : X2 ® D+, where ξ

(x, y) is denoted by ξx,y and ζ(x, y) is denoted by ζx,y, further, (ξx,y(t), ζx,y(t)) is denoted by

Qξ,ζ (x, y, t), with the property:

Pμ,ν(16f (x + 4y) + f (4x − y) − 306[9f
(
x +

y
3

)
+ f (x + 2y)]

−136f (x − y) + 1394f (x + y) − 425f (y) + 1530f (x), t)

≥L∗Qξ ,ζ (x, y, t).

(7:1)

If

T ∞
i=1(Qξ ,ζ (4n+i−1x, 0, 44n+3i+3t)) = 1L∗ (7:2)

and

lim
n→∞Qξ ,ζ (4nx, 4ny, 44nt) = 1L∗ (7:3)

for all x, y Î X and all t >0, then there exists a unique quartic mapping Q : X ® Y

such that

Pμ,ν(f (x) − Q(x), t)≥L∗ T ∞
i=1(Qξ ,ζ (4i−1x, 0, 43i+3t)). (7:4)

Proof. Putting y = 0 in (7.1), we have

Pμ,ν

(
f (4x)
256

− f (x), t
)

≥L∗ Qξ ,ζ (x, 0, 44t). (7:5)
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Therefore, it follows that

Pμ,ν(
f (4k+1x)
44(k+1)

− f (4kx)
44k

,
t

44k
)≥L∗ Qξ ,ζ (4kx, 0, 44t), (7:6)

which implies that

Pμ,ν(
f (4k+1x)
44(k+1)

− f (4kx)
44k

, t)≥L∗ Qξ ,ζ (4kx, 0, 44(k+1)t), (7:7)

that is,

Pμ,ν

(
f (4k+1x)
44(k+1)

− f (4kx)
44k

,
t

4k+1

)
≥L∗Qξ ,ζ (4kx, 0, 44(k+1)t) (7:8)

for all k Î N and all t >0. As 1 > 1/4 + ... + 1/4n, from the triangle inequality, it fol-

lows

Pμ,ν

(
f (4nx)
256n

− f (x), t
)

≥L∗ T n−1
k=0

(
Pμ,ν

(
f (4k+1x)
44(k+1)

− f (4kx)
44k

,
n−1∑
k=0

1
4k+1

t

))

≥L∗ T n
i=1(Qξ ,ζ (4i−1x, 0, 43i+3t)).

(7:9)

In order to prove convergence of the sequence { f (4nx)256n }, replacing x with 4mx in (7.9),

we get that for m, n >0

Pμ,ν(
f (4n+mx)

256(n+m)
− f (4mx)

256m
, t)≥L∗ T n

i=1(Qξ ,ζ (4i+m−1x, 0, 43i+4m+3t)). (7:10)

Since the right-hand side of the inequality tends 1L* as m tends to infinity, the

sequence { f (4nx)44n } is a Cauchy sequence. So we may define Q(x) = limn→∞
f (4nx)
44n

for all

x Î X.

Now, we show that Q is a quartic mapping. Replacing x, y with 4nx and 4ny, respec-

tively, in (7.1), we obtain

Pμ,ν(
f (4n(x + 4y))

256n
+
f (4n(4x − y))

256n
− 306[9f (4n(x + y

3)) + f (4n(x + 2y))

256n

−136f (4n(x − y))
256n

+
1394f (4n(x + y))

256n
− 425f (4n(y))

256n
+
1530f (4n(x))

256n
, t)

≥L∗Qξ ,ζ (4nx, 4ny, 44nt).

(7:11)

Taking the limit as n ® ∞, we find that Q satisfies (1.1) for all x, y Î X.

Taking the limit as n ® ∞ in (7.9), we obtain (7.4).

To prove the uniqueness of the quartic mapping Q subject to (7.4), let us assume

that there exists another quartic mapping Q’ which satisfies (7.4). Obviously, we have x

Î X and all n Î N. Hence it follows from (7.4) that

Pμ,ν(Q(x) − Q′(x), t)

≥L∗Pμ,ν(Q(4nx) − Q′(4nx), 44nt)

≥L∗T (Pμ,ν(Q(4nx) − f (4nx), 44n−1t),Pμ,ν(f (4nx) − Q′(4nx), 44n−1t))

≥L∗T (T ∞
i=1(Qξ ,ζ (4n+i−1x, 0, 44n+3i+3t)),T ∞

i=1(Qξ ,ζ (4n+i−1x, 0, 44n+3i+3t))
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for all x Î X. By letting n ® ∞ in (7.4), we prove the uniqueness of Q. This com-

pletes the proof of the uniqueness, as desired. □
Corollary 7.2. Let (X,P ′

μ′,ν′ ,T )be an IRN-space and let (Y,Pμ,ν ,T )be a complete

IRN-space. Let f : X ® Y be a mapping such that

Pμ,ν(16f (x + 4y) + f (4x − y) − 306
[
9f

(
x +

y
3

)
+ f (x + 2y)

]
−136f (x − y) + 1394f (x + y) − 425f (y) + 1530f (x), t)

≥L∗P ′
μ′,ν′(x + y, t)

for all t >0 in which

lim
n→∞T ∞

i=1(P ′
μ′,ν′(x, 44n+3i+3t)) = 1L∗

for all x, y Î X. Then there exists a unique quartic mapping Q : X ® Y such that

Pμ,ν(f (x) − Q(x), t)≥L∗T ∞
i=1(P ′

μ′,ν′(x, 43i+3t)).

Now, we give an example to illustrate the main result of Theorem 7.1 as follows.

Example 7.3. Let (X, ||.||) be a Banach algebra, (X,Pμ,ν ,M) an IRN-space in which

Pμ,ν(x, t) =
(

t
t + ||x|| ,

||x||
t + ||x||

)

and let (Y,Pμ,ν ,M) be a complete IRN-space for all x Î X. Define f : X ® X by f (x)

= x4 + x0, where x0 is a unit vector in X. A straightforward computation shows that

Pμ,ν(16f (x + 4y) + f (4x − y) − 306
[
9f

(
x +

y
3

)
+ f (x + 2y)

]
−136f (x − y) + 1394f (x + y) − 425f (y) + 1530f (x), t)

≥L∗Pμ,ν(x + y, t), ∀t > 0.

Also

lim
n→∞M∞

i=1(Pμ,ν(4n+i−1x, 44n+3i+3t)) = lim
n→∞ lim

m→∞Mm
i=1(Pμ,ν(x, 43n+2i+4t))

= lim
n→∞ lim

m→∞Pμ,ν(x, 43n+6t)

= lim
n→∞Pμ,ν(x, 43n+6t)

= 1L∗ .

Therefore, all the conditions of 7.1 hold and so there exists a unique quartic map-

ping Q : X ® Y such that

Pμ,ν(f (x) − Q(x), t)≥L∗ Pμ,ν(x, 46t).
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