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Abstract

In this paper, a projective splitting method for solving a class of generalized mixed
variational inequalities is considered in Hilbert spaces. We investigate a general
iterative algorithm, which consists of a splitting proximal point step followed by a
suitable orthogonal projection onto a hyperplane. Moreover, in our splitting
algorithm, we only use the individual resolvent mapping (I + μk∂f)

-1 and never work
directly with the operator T +∂f, where μk is a positive real number, T is a set-valued
mapping and ∂f is the sub-differential of function f. We also prove the convergence
of the algorithm for the case that T is a pseudomonotone set-valued mapping and f
is a non-smooth convex function.
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1 Introduction
Let X be a nonempty closed convex subset of a real Hilbert space H, T : X ® 2H be a

set-valued mapping and f : H ® (- ∞, +∞] be a lower semi-continuous (l.s.c) proper

convex function. We consider a generalized mixed variational inequality problem

(GMVIP): find x* Î X such that there exists w* Î T(x*) satisfying

〈w∗, y − x∗〉 + f (y) − f (x∗) ≥ 0, ∀y ∈ X. (1:1)

The GMVIP (1.1) has enormous applications in many areas such as mechanics, opti-

mization, equilibrium, etc. For details, we refer to [1-3] and the references therein. It

has therefore been widely studies by many authors recently. For example, by Rockafel-

lar [4], Tseng [5], Xia and Huang [6] and the special case (f = 0) was studied by Crou-

zeix [7], Danniilidis and Hadjisavvas [8] and Yao [9].

A large variety of problems are special instances of the problem (1.1). For example, if

T is the sub-differential of a finite-valued convex continuous function � defined on

Hilbert space H, then the problem (1.1) reduces to the following non-differentiable

convex optimization problem:

minx∈X{f (x) + ϕ(x)}.

Furthermore, if T is single-valued and f = 0, then the problem (1.1) reduces to the

following classical variational inequality problem: find x* Î X such that, for all y Î X,
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〈T(x∗), y − x∗〉 ≥ 0. (1:2)

Many methods have been proposed to solve classical variational inequalities (1.2) in

finite and infinite dimensional spaces. The simple one among these is the projection

method which has been intensively studied by many authors (see, e.g., [10-14]). How-

ever, the classical projection method does not work for solving the GMVIP (1.1). There-

fore, it is worth studying other implementable methods for solving the problem (1.1).

Algorithms that can be applied for solving the problem (1.1) or one of its variants

are very numerous. For the case when T is maximal monotone, the most famous

method is the proximal method (see, e.g., Rockafellar [4]). Splitting methods have also

been studied to solve the problem (1.1). Here, the set-valued mapping T and ∂(f+ψX)

play separate roles, where ψX denotes the indicator function associated with X (i.e., ψX

(x) = 0 if x Î X and +∞ otherwise) and ∂(f + ψX) denotes the sub-differential of the

convex function f + ψX. The simplest splitting method is the forward-backward scheme

(see, e.g., Tseng [5]), in which the iteration is given by

xk+1 ∈ [I + μk∂(f + ψX)]−1[I − μkT](xk), (1:3)

where {μk} is a sequence of positive real numbers. Cohen [15] developed a general

algorithm framework for solving the problem (1.1) in Hilbert space H, based on the

so-called auxiliary problem principle. The corresponding method is a generalization of

the forward-backward method. Due to the auxiliary problem principle Cohen [15],

Salmon et al. [16] developed a bundle method for solving the problem (1.1).

For solving the GMVIP (1.1), some authors assumed that T is upper semi-continuous

and mono-tone(or some other stronger conditions, e.g., strictly monotone, paramono-

tone, maximal monotone, strongly monotone). Moreover, their methods fail to provide

convergence under weaker conditions than the monotonicity of T. So, it is a significant

work that how to solve the problem (1.1) when T fails to be monotone. This is one of

the main motivations of this paper.

On the other hand, the GMVIP (1.1) can be expressed as an inclusion form as

follows: find x* Î X such that

0 ∈ T(x∗) + ∂(f + ψX)(x∗).

Thus, the problem (1.1) is a special case of the following inclusion problem:

0 ∈ A(x) + B(x), (1:4)

where A and B are set-valued operators on real Hilbert space H.

The algorithms for solving the inclusion (1.4) have an extensive literature. The sim-

plest one among these is the splitting method. All splitting methods can be essentially

divided into three classes: Douglas/Peaceman-Rachford class (see, e.g., [17,18]), the

double-backward class (see, e.g., [19]), and the forward-backward class (see, e.g.,

[20,21]). Therefore, one natural problem is whether the splitting method can be devel-

oped for solving (1.1). This is another main motivation of this paper.

In this paper, we provide a projective splitting method for solving the GMVIP (1.1)

in Hilbert spaces. Our iterative algorithm consists of two steps. The first step of the

algorithm in generating a hyperplane separating zk from the solution set of problem

(1.1). The second step is then to project zk onto this hyperplane (with some relaxation
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factor). We first prove that the sequences {xk} and {zk} are weakly convergent. We also

prove that the weak limit point of {xk} is the same as the weak limit point of {zk}.

Moreover, we obtain that the weak limit point of these sequences is a solution of the

problem (1.1) under the conditions that the set-valued mapping T is pseudomonotone

with respect to f and the function f is convex.

2 Preliminaries
For a convex function f : H ® (-∞, +∞], let domf = {x Î H : f(x) <∞} denote its effec-

tive domain, and let

∂f (·) = {p ∈ H : f (y) ≥ f (·) + 〈p, y − ·〉, ∀y ∈ H}

denote its sub-differential.

Suppose that X ⊂ H is a nonempty closed convex subset and

dist(z,X) := infx∈X||z − x||

is the distance from z to X. Let PX[z] denote the projection of z onto X, that is, PX[z]

satisfies the condition

||z − PX[z]|| = dist(z,X).

The following well-known properties of the projection operator will be used later in

this paper.

Proposition 2.1. [22] Let X be a nonempty closed convex subset in H, the following

properties hold:

(i) 〈x - y, x - PX[x]〉 ≥ 0, for all x Î H and y Î X;

(ii) 〈PX[x] - x, y - PX[x]〉 ≥ 0, for all x Î H and y Î X;

(iii) ||PX[x] - PX[y]|| ≤ ||x - y||, for all x, y Î H.

Definition 2.1. Let X be a nonempty subset of a Hilbert space H, and let f : X ®
(-∞, +∞] a function. A set-valued mapping T : X ® 2H is said to be

(i) monotone if

〈u − v, x − y〉 ≥ 0, ∀x, y ∈ X, u ∈ T(x), v ∈ T(y);

(ii) pseudomonotone with respect to f if for any x, y Î X, u Î T(x), v Î T(y),

〈u, y − x〉 + f (y) − f (x) ≥ 0 ⇒ 〈v, y − x〉 + f (y) − f (x) ≥ 0.

We will use the following Lemmas.

Lemma 2.1. [23] Let D be a nonempty convex set of a topological vector space E

and let j : D × D ® ℝ∪{+∞} be a function such that

(i) for each v Î D, u ® j(v, u) is upper semi-continuous on each nonempty com-

pact subset of D;

(ii) for each nonempty finite set {v1, · · ·, vm} ⊂ D and for each

u =
∑m

i=1 λivi (λi ≥ 0,�m
i=1λi = 1), max1≤i≤mj(vi, u) ≥ 0;
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(iii) there exists a nonempty compact convex subset D0 of D and a nonempty

compact subset K of D such that, for each u Î D\K, there is v Î co(D0 ∪ {u}) with

j(v, u) <0.

Then, there exists û ∈ K such that φ(v, û) ≥ 0 for all v Î D.

Lemma 2.2. [24, p. 119] Let X, Y be two topological spaces, W : X × Y ® ℝ be an

upper semi-continuous function, and G : X ® 2Y be upper semi-continuous at x0 such

that G(x0) is compact. Then, the marginal function V defined on X by

V(x) = sup
y∈G(x)

W(x, y)

is upper semi-continuous at x0.

Lemma 2.3. [25] Let s Î [0, 1) and μ =
√
1 − (1 − σ 2)2. If v = u+ξ, where ||ξ||2 ≤

s2(||u||2+||v||2), then

(i) 〈u, v〉 ≥ (||u||2 + ||v||2)(1 - s2)/2;
(ii) (1 - μ)||v|| ≤ (1 - s2)||u|| ≤ (1 + μ)||v||.

3 Projective splitting method
ψX : H ® (- ∞, +∞] be the indicator function associated with X. Choose three positive

sequences {lk >0}, {ak} Î (0, 2) and {rk} Î (0, 2). Select a fixed relative error tolerance

s Î [0, 1). We first describe a new projective splitting algorithm for the GMVIP (1.1),

and then give some preliminary results on the algorithm.

Algorithm 3.1.

Step 0. (Initiation) Select initial z0 Î X. Set k = 0.

Step 1. (Splitting proximal step) Find xk Î X such that

xk + λkgk = zk + λkξ
k, gk ∈ ∂[f + ψX](xk) (3:5)

xk − λkwk = (1 − αk)zk + αkxk − λkξ
k, wk ∈ T(xk) (3:6)

where the residue ξk Î H is required to satisfy the following condition:

||ξ k|| ≤ σ

√
α2
k ||zk − xk||2/(4λ2

k) + ||gk + wk||2/4. (3:7)

Step 2. (Projection step) If gk + wk = 0, then STOP; otherwise, take

z̄k = zk − βk(gk + wk) with βk = 〈gk + wk, zk − xk〉/||gk + wk||2. (3:8)

Step 3. Set zk+1 = zk + ρk(z̄k − zk).

Step 4. Let k = k + 1 and return to Step 1.

In this paper, we focus our attention on obtaining general conditions ensuring the

convergence of {zk}kÎN and {xk}kÎN toward a solution of problem (1.1), under the fol-

lowing hypotheses on the parameters:

λ1 := inf
k≥0

λk > 0, λ2 := sup
k≥0

λk < ∞, (3:9)
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R1 := inf
k≥0

ρk > 0 and R2 := sup
k≥0

ρk < 2, (3:10)

To motivate Algorithm 3.1, we note that (3.1) implies xk = (I + lk∂f)-1(zk + lkξk),
and that the operator (I + lk∂f)-1 is everywhere defined and single-valued. Rearran-

ging (3.1) and (3.2), one has gk = ξ k + zk−xk

λk
and wk = 1−αk

λk
(xk − zk) + ξ k. Algorithm 3.1

is a true splitting method for problem (1.1), in that it only uses the individual resol-

vent mapping (I + lk∂f)-1, and never works directly with the operator ∂f + T. The

existence of xk Î X and wk Î T(xk) such that (3.1)-(3.2) will be proved in the follow-

ing Theorem 3.1.

Substituting (3.1) into (3.2) and simplifying, we obtain

αk(xk − zk)
/

λk + gk + wk = 2ξ k. (3:11)

This method is the so-called inexact hybrid proximal algorithm for solving problem

(1.1). Obvious that problem (3.7) is solved only approximately and the residue ξk Î H

satisfying (3.3). There are at least two reasons for dealing with the proximal algorithm

(3.7). First, it is generally impossible to find an exact value for xk given by (3.1) and

(3.2). Particularly when T is nonlinear; second, it is clearly inefficient to spend too

much effort on the computation of a given iterate zk when only the limit of the

sequence {xk} has the desired properties.

It is easy to see that (3.4) is a projection step because it can be written as z̄k = PK(zk),

where PK : H ® K is the orthogonal projection operator onto the half-space K = {z Î
H : 〈gk + wk, z - xk〉 ≤ 0}. In fact, by (3.4) we have z̄k = zk − βk(gk + wk). Then for each

y Î K, we deduce that

〈zk − z̄k, y − zk〉 = βk〈gk + wk, y − zk〉
= βk〈gk + wk, y − xk〉 + βk〈gk + wk, xk − zk〉
= βk〈gk + wk, xk − zk〉 (since 〈gk + wk, y − xk〉 ≤ 0)

≤ 0 (since βk = 〈gk + wk, zk − xk〉/||gk + wk||2).

By Proposition 2.1, we know that z̄k = PK(zk). By pseudomonotonicity of T with

respect to f and Theorem 4.1(ii) below, the hyperplane K separates the current iterate zk

from the set S = {x Î H : 0 Î ∂f(x) + T(x)}. Thus, in Algorithm 3.1, the splitting proximal

iteration is used to construct this separation hyperplane, the next iterate zk+1is then

obtained by a trivial projection of zk, which is not expensive at all from a numerical

point of view.

Now, we will prove that the sequence {xk} is well defined and so is the sequence {zk}.

Note that if xk satisfies (3.1)-(3.2) together with (3.3), with s = 0, then xk always satisfies

these conditions with any s Î [0, 1). Since s = 0 also implies that the error term ξk

vanishes, existence of xk for ξk = 0 is enough to ensure the existence of ξk ≠ 0. So in the

following theorem 3.1, we assume that ξk = 0.

Theorem 3.1. Let X be a nonempty closed convex subset of a Hilbert space H, and

let f : X ® (- ∞, + ∞] be a l.s.c proper convex function. Assume that T : X ® 2H is

pseudomonotone with respect to f and upper semi-continuous from the weak topology

to the weak topology with weakly compact convex values. If the parameter ak, lk >0
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and solution set of problem (1.1) is nonempty, then for each given zk Î X, there exist

xk Î X and wk Î T(xk) satisfying (3.1)-(3.2).

Proof. For each given zk Î X and ξk = 0, it follows from (3.1) and (3.2) that,

gk =
1
λk

[αk(zk − xk) − λkwk], (3:12)

where gk Î ∂[f + ψX](x
k) and wk Î T (xk). (3.8) is equivalent to the following inequal-

ity:

αkλ
−1
k 〈xk − zk, y − xk〉 + 〈wk, y − xk〉 + f (y) − f (xk) ≥ 0, ∀y ∈ X.

So we consider the following variational inequality problem: find xk Î X such that

for each y Î X,

αkλ
−1
k 〈xk − zk, y − xk〉 + sup

wk∈T(xk)
〈wk, y − xk〉 + f (y) − f (xk) ≥ 0. (3:13)

For the sake of simplicity, we rewrite the problem (3.9) as follows: find x̄ ∈ X such

that

αkλ
−1
k 〈x̄ − zk, y − x̄〉 + sup

w∈T(x̄)
〈w, y − x̄〉 + f (y) − f (x̄) ≥ 0, ∀y ∈ X. (3:14)

For each fixed k, define j : X × X ® (- ∞, + ∞] by

φ(y, x) = αkλ
−1
k 〈x − zk, y − x〉 + sup

w∈T(x)
〈w, y − x〉 + f (y) − f (x).

Since T is upper semi-continuous from the weak topology to weak topology with weakly

compact values, by Lemma 2.2, we know that the mapping V(x) = supwÎT(x)〈w, y - x〉 is

upper semi-continuous from the weak topology to weak topology. Noting that f is a l.s.c

convex function, for each y Î X, the function x a j(y, x) is weakly upper semi-continuous

on X. We now claim that j(y, x) satisfies condition (ii) of Lemma 2.1. If it is not, then

there exists a finite subset {y1, y2, · · ·, ym} of X and x = �m
i=1δiy

i (δi ≥ 0, i = 1, 2, · · ·, m with∑m
i=1 δi = 1) such that j(yi, x) <0 for all i = 1, 2, · · ·, m. Thus,

αkλ
−1
k 〈x − zk, yi − x〉 + sup

w∈T(x)
〈w, yi − x〉 + f (yi) − f (x) < 0, ∀i = 1, 2, · · · ,m

and so

αkλ
−1
k

m∑
i=1

δi〈x − zk, yi − x〉 +
m∑
i=1

δi sup
w∈T(x)

〈w, yi − x〉 +
m∑
i=1

δi[f (yi) − f (x)] < 0.

By the convexity of f, we get

0 = αkλ
−1
k 〈x − zk, x − x〉 + sup

w∈T(x)
〈w, x − x〉 < 0,

which is a contradiction. Hence, condition (ii) of Lemma 2.1 holds.

Now, let ŷ ∈ X be a solution of problem (1.1). Then, there exists ŵ ∈ T(ŷ) such that

〈ŵ, x − ŷ〉 + f (x) − f (ŷ) ≥ 0, ∀x ∈ X.
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By the pseudomonotonicity of T with respect to f, for all x Î X,

〈w, ŷ − x〉 + f (ŷ) − f (x) ≤ 0, ∀w ∈ T(x),

and so

sup
w∈T(x)

〈w, ŷ − x〉 + f (ŷ) − f (x) ≤ 0, ∀x ∈ X. (3:15)

On the other hand, we have

φ(ŷ, x) = αkλ
−1
k 〈x − zk, ŷ − x〉 + sup

w∈T(x)
〈w, ŷ − x〉 + f (ŷ) − f (x)

≤ αkλ
−1
k 〈x − ŷ, ŷ − x〉 + αkλ

−1
k 〈ŷ − zk, ŷ − x〉

+ sup
w∈T(x)

〈w, ŷ − x〉 + f (ŷ) − f (x)

≤ −αkλ
−1
k ||x − ŷ||2 + αkλ

−1
k (||ŷ|| + ||zk||)||x − ŷ||

+ sup
w∈T(x)

〈w, ŷ − x〉 + f (ŷ) − f (x).

We consider the following equation in ℝ:

−αkλ
−1
k x2 + αkλ

−1
k (||ŷ|| + ||zk||)x = 0. (3:16)

It is obviously that equation (3.12) has only one positive solution r = ||ŷ|| + ||zk||. If
the real number x > r, we have

−αkλ
−1
k x2 + αkλ

−1
k (||ŷ|| + ||zk||)x < 0.

Thus, when ||x − ŷ|| > r, we obtain

−αkλ
−1
k ||x − ŷ||2 + αkλ

−1
k (||ŷ|| + ||zk||)||x − ŷ|| < 0. (3:17)

Let

X0 = {x ∈ H : ||ŷ − x|| ≤ r}.

Then, D0 = {ŷ} and X0 are both weakly compact convex subsets of Hilbert space H.

By (3.11) and (3.13), we deduce that for each x Î X\X0, there exists a ŷ ∈ co(D0 ∪ {x})
such that φ(ŷ, x) < 0. Hence, all conditions of Lemma 2.1 are satisfied. Now, Lemma

2.1 implies that there exists a x̄ ∈ X such that φ(y, x̄) ≥ 0 for all y Î X. That is,

αkλ
−1
k 〈x̄ − zk, y − x̄〉 + sup

w∈T(x̄)
〈w, y − x̄〉 + f (y) − f (x̄) ≥ 0, ∀y ∈ X.

Therefore, xk = x̄ ∈ X is a solution of the problem (3.9). By the assumptions on T, we

know that there exists wk Î T(xk) such that

αkλ
−1
k 〈xk − zk, y − xkρ〉 + 〈wk, y − xk〉 + f (y) − f (xk) ≥ 0, ∀y ∈ X.

Thus, xk Î X and wk Î T(xk) such that (3.1) and (3.2) hold. This completes the

proof.

4 Preliminary results for iterative sequence
In what follows, we adopt the following assumptions (A1)-(A4):

(A1) The solution set S of the problem (1.1) is nonempty (see, for example, [24]).
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(A2) f : H ® (- ∞, + ∞] is a proper convex l.s.c function with X ⊂ int(domf).

(A3) T : X ® 2H is a pseudomonotone set-valued mapping with respect to f on X

and upper semi-continuous from the weak topology to the weak topology with

weakly compact convex values.

(A4) A fixed relative error tolerance s Î [0, 1). Three positive sequences {lk}, {rk}
satisfy (3.5),(3.6) and ak Î (0, 2).

Remark 4.1. Since f is a proper convex l.s.c function, f is also weakly l.s.c and con-

tinuous over int(dom f)(see [26]).

Remark 4.2. It is obviously that monotone mapping is pseudomonotone with respect

to a function f, but the converse is not true in general as illustrated by the following

set-valued mapping that satisfies (A3).

EXAMPLE 4.1. Let H = ℝ, T : ℝ ® 2ℝ be a set-valued mapping defined by:

T(x) =
{
[x, x + 1], x ≥ 1,

1, x < 1.

Define f(x) = x, ∀x Î ℝ. We have the following conclusions:

(1) T is upper semi-continuous with compact convex values.

(2) T is not a monotone mapping. For example, let x = 2, y = 3
2, v =

5
2 ∈ T(y) and

u = 2 Î T(x), we have 〈v - u, y - x〉 <0.

(3) T is pseudomonotone mapping with respect to f. In fact, ∀x, y Î ℝ and ∀u Î T

(x), if 〈u, y - x〉 + f(y) - f(x) ≥ 0, we have 〈u, y - x〉 + x - y ≥ 0. So, if y > x, we

obtain that 〈v, y - x〉 ≥ y - x >0 for all v ≥ 1. By the definition of T, we have 〈v, y -

x〉 + f(y) - f(x) ≥ 0, for all v Î T(y). If y < x, 〈u, y - x〉 + x - y ≥ 0 implies that u ≤

1. Since u Î T(x), we have x ≤ 1 and then y <1. By the definition of T, we deduce

that v = T(y) = 1 and then 〈v, y - x〉 +x - y ≥ 0, for all v Î T(y). That is 〈v, y - x〉 +

f(y) - f(x) ≥ 0, ∀v Î T(y). If y = x, we always have 〈v, y - x〉 + f(y) - f(x) ≥ 0, for all v

Î T(y). So, we conclude that T is a pseudomonotone mapping with respect to f.

Now, we give some preliminary results for the iterative sequence generated by Algo-

rithm 3.1 in a Hilbert space H. First, we state some useful estimates that are direct

consequences of the Lemma 2.3.

Theorem 4.1 Under (3.1)-(3.4), if μ =
√
1 − (1 − σ 2)2, then we have:

(i) lk(1 - μ)||gk + wk|| ≤ (1 - s2)ak||x
k - zk|| ≤ lk(1 + μ)||gk + wk||;

(ii) (1 − σ 2)(λ2
k ||gk + wk||2 + α2

k ||xk − zk||2)/(2αkλk) ≤ 〈gk + wk, zk − xk〉;
(iii) βk ∈ [λk(1−σ 2)

2αk
, λk(1+μ)

αk(1−σ 2) ].

Proof. We apply Lemma 2.3 to v = gk + wk, u = ak(z
k - xk)/lk to get (i) and (ii). For

(iii), using first Cauchy-Schwarz inequality and then (i), we get

βk =
〈gk + wk, zk − xk〉

||gk + wk||2 ≤ ||xk − zk||
||gk + wk|| ≤ λk(1 + μ)

αk(1 − σ 2)
.
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On the other hand, (ii) implies that

βk =
〈gk + wk, zk − xk〉

||gk + wk||2

≥ (1 − σ 2)(λ2
k ||gk + wk||2 + α2

k ||xk − zk||2)
2αkλk||gk + wk||2

=
λk(1 − σ 2)

2αk
[1 +

α2
k ||xk − zk||2

λ2
k ||gk + wk||2 ]

≥ λk(1 − σ 2)
/
(2αk),

this leads to (iii).

Remark 4.4. Suppose that gk + wk = 0 in Step 2. As -wk Î ∂f(xk), this implies that

〈wk, y − xk〉 + f (y) − f (xk) ≥ 0, ∀y ∈ X.

That is, xk is a solution of problem (1.1). On the other hand, assuming gk + wk ≠ 0,

Theorem 4.1(ii) yields 〈gk + wk, zk - xk〉 >0. By the pseudomonotonicity of T with

respect to f, it is easy to see that for all x* Î S (S denotes the solution set of problem

(1.1)),

〈wk, x∗ − xk〉 + f (x∗) − f (xk) ≤ 0, ∀wk ∈ T(xk).

Using the fact that gk Î ∂f(xk), we deduce

0 ≥ 〈wk, x∗ − xk〉 + f (x∗) − f (xk) ≥ 〈gk + wk, x∗ − xk〉. (4:18)

Thus, the hyperplane {z Î H : 〈gk + wk, z - xk〉 = 0} strictly separates zk from S. The

latter is the geometric motivation for the projection step (3.4).

Theorem 4.2. Suppose that x* Î S and the sequence {rk} satisfy (3.6), then

||x∗ − zk+1||2 ≤ ||x∗ − zk||2 − (2
/
ρk − 1)||zk+1 − zk||2, (4:19)

and so the sequence {||x* - zk||2} is convergent (not necessarily to 0). Moreover,

∞∑
k=0

||zk+1 − zk||2 < ∞ and
∞∑
k=0

||z̄k − zk||2 < ∞. (4:20)

Proof. By Step 3, we have

||x∗ − zk+1||2 = ||x∗ − zk − ρk(z̄k − zk)||2
= ||x∗ − zk||2 − 2ρk〈x∗ − zk, z̄k − zk〉 + ρ2

k ||z̄k − zk||2
= ||x∗ − zk||2 − 2ρk〈zk − z̄k, zk − z̄k〉 − 2ρk〈z̄k − x∗, zk − z̄k〉 + ρ2

k ||z̄k − zk||2
= ||x∗ − zk||2 − 2ρk〈z̄k − x∗, zk − z̄k〉 + (ρ2

k − 2ρk)||z̄k − zk||2
= ||x∗ − zk||2 − 2ρk〈z̄k − x∗, zk − z̄k〉 + (1 − 2

/
ρk)||zk+1 − zk||2.

It follows from (4.1) and x* Î S that

x∗ ∈ K = {z ∈ H : 〈gk + wk, z − xk〉 ≤ 0}.

Since z̄k = PK(zk), by Proposition 2.1(ii), we deduce that

〈z̄k − x∗, zk − z̄k〉 ≥ 0.
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So

||x∗ − zk+1||2 ≤ ||x∗ − zk||2 − (2
/
ρk − 1)||zk+1 − zk||2.

By (3.6), we obtain that

0 ≤ ||x∗ − zk+1||2 ≤ ||x∗ − zk||2, ∀k ≥ 0.

Thus, the sequence {||x* - zk||2} is convergent. Let L∞ be the limit of {||x* - zk||2}.

Now, we prove that (4.3) holds. It follows from (3.6) and (4.2) that

0 ≤ (2
/
R2 − 1)||zk+1 − zk||2 ≤ (2

/
ρk − 1)||zk+1 − zk||2 ≤ ||x∗ − zk||2 − ||x∗ − zk+1||2.(4:21)

(4.4) implies that

0 ≤ (2
/
R2−1)

∞∑
k=0

||zk+1 − zk||2 ≤
∞∑
k=0

[||x∗ − zk||2 − ||x∗ − zk+1||2] = ||x∗−z0||2−L∞,

and then
∑∞

k=0 ||zk+1 − zk||2 < ∞ holds. On the other hand,

0 ≤ R1||z̄k − zk|| ≤ ρk||z̄k − zk|| = ||zk+1 − zk||, so that we obtain∑∞
k=0 ||z̄k − zk||2 < ∞. This completes the proof.

Theorem 4.3. Suppose that assumption (A4) holds, then there exists some constant ζ

>0 such that

〈zk − xk, gk + wk〉 ≥ ζ ||gk + wk||2. (4:22)

Proof. By Theorem 4.1(ii), we have

〈gk + wk, zk − xk〉 ≥ (1 − σ 2)(λ2
k ||gk + wk||2 + α2

k ||xk − zk||2)/(2αkλk)

≥ (1 − σ 2)λk||gk + wk||2/(2αk).

Since lk Î [l1, l2] and ak Î (0, 2),

〈gk + wk, zk − xk〉 ≥ λ1(1 − σ 2)
4

||gk + wk||2.

This completes the proof.

Theorem 4.4. Suppose that assumption (A4) holds, then

lim
k→∞

||gk + wk|| = 0. (4:23)

Proof. It follows from (3.4) and (4.5) that, for all k for which gk + wk ≠ 0,

||z̄k − zk|| = ||βk(gk + wk)||
= 〈gk + wk, zk − xk〉/||gk + wk||
≥ ζ ||gk + wk||,

(4:24)

which clearly also holds for k satisfying gk + wk = 0. By (4.3) and (4.7), we have

lim
k→∞

||gk + wk|| = 0.

This completes the proof.

5 Convergence analysis
We now study the convergence of Algorithm 3.1.
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Theorem 5.1. Suppose that the sequence {xk} generated by Algorithm 3.1 is finite.

Then, the last term is a solution of the problem (1.1).

Proof. If the sequence is finite, then it must stop at Step 2 for some xk. In this case,

we have gk + wk = 0. By Remark 4.4, we know that xk Î X is a solution of problem

(1.1). This completes the proof.

From now on, we assume that the sequence {xk} generated by Algorithm 3.1 is infi-

nite and so is the sequence {zk}.

Theorem 5.2. Let {xk} and {zk} be sequences generated by Algorithm 3.1 under

assumptions (A1)-(A4). Then, {x
k} and {zk} are bounded. Moreover, {xk} and {zk} have

the same weak accumulation points.

Proof. It follows from Theorem 4.2 that the sequence {zk} is bounded. Using

Theorem 4.4 and Theorem 4.1(i), we know that

lim
k→∞

||zk − xk|| = 0,

and so

lim
k→∞

(zk − xk) = 0. (5:25)

By the boundedness of the sequence {zk}, we obtain that the sequence {xk} is

bounded. Moreover, (5.1) implies that the two sequences {xk} and {zk} have the same

weak accumulation points. This completes the proof.

Theorem 5.3. Suppose that assumptions (A1)-(A4) hold. Then, every weak accumula-

tion point of the sequence {xk} generated by Algorithm 3.1 is a solution of problem

(1.1). Moreover, every weak accumulation point of the sequence {zk} generated by

Algorithm 3.1 is also a solution of problem (1.1)

Proof. Let x̂ be a weak accumulation point of {xk}, we can extract a subsequence that

weakly converges to x̂. Without loss of generality, let us suppose that limk→∞xk = x̂. It

is obvious that x̂ ∈ X. By (5.1), we have limk→∞zk = x̂.

Now, we prove each weak accumulation point of {xk} is a solution of the problem

(1.1). By z̄k = zk − βk(gk + wk) and gk Î ∂f(xk), we deduce that for each y Î X,

〈wk, y − xk〉 + f (y) − f (xk) ≥ 1
βk

〈zk − z̄k, y − xk〉,

where wk Î T(xk). It follows that

sup
wk∈T(xk)

[〈wk, y − xk〉 + f (y) − f (xk)] ≥ 1
βk

〈zk − z̄k, y − xk〉, ∀y ∈ X. (5:26)

By Theorem 4.1(iii) and (A4), we have

0 <
αk(1 − σ 2)
λk(1 + μ)

≤ 1
βk

≤ 2αk

λk(1 − σ 2)
≤ 4

λ1(1 − σ 2)
. (5:27)

For each fixed y Î X, (5.3) implies that

| 1
βk

〈zk − z̄k, y − xk〉| ≤ 4
λ1(1 − σ 2)

||zk − z̄k|| ||y − xk||. (5:28)
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It follows from (5.4), (4.3) and the boundedness of {xk} that

lim
k→∞

[
1
βk

〈zk − z̄k, y − xk〉] = 0. (5:29)

On the other hand, by assumptions (A2) and (A3), Lemma 2.2 implies that V(x): =

supwÎT(x)[〈w, y - x〉 + f(y) - f(x)] is a weak upper semi-continuous function. Using the

fact limk→∞xk = x̂ (weakly), we have

V(x̂) ≥ lim
k→∞

V(xk)

and so

sup
w∈T(x̂)

[〈w, y − x̂〉 + f (y) − f (x̂)] ≥ lim
k→∞

sup
wk∈T(xk)

[〈wk, y − xk〉 + f (y) − f (xk)]. (5:30)

By (5.2), (5.5) and (5.6),

sup
w∈T(x̂)

[〈w, y − x̂〉 + f (y) − f (x̂)] ≥ 0, ∀y ∈ X.

Using assumption (A3), we know that there exists ŵ ∈ T(x̂) such that

〈ŵ, y − x̂〉 + f (y) − f (x̂) ≥ 0, ∀y ∈ X.

That is, x̂ ∈ X is a solution of problem (1.1). This completes the proof.

The following uniqueness argument just given closely follows the one of Martinet

[27] (also see Rockafellar [4]), but we give the proof for the convenience of the reader.

Theorem 5.4. Suppose that assumptions (A1)-(A4) hold. Then, the sequence {zk} gen-

erated by Algorithm 3.1 has a unique weak accumulation point, thus, {zk} is weakly

convergent and so does the sequence {xk}.

Proof. For each x* Î S, it follows from Theorem 4.2 that the sequence {||zk - x*||2}

converges (not necessarily to 0). Now, we prove that the sequence {zk} has a unique

weak accumulation point and so does the sequence {xk}. Existence of weak accumula-

tion points of {zk} follows from Theorem 5.2. Let ẑ and z̄ be two weak accumulation

points of {zk} and {zkj}, {zki} be two subsequences of {zk} that weakly converge to ẑ, z̄

respectively. By Theorem 5.3, we know that ẑ, z̄ ∈ S. Then, the sequences {||zk − ẑ||2}
and {||zk − z̄||2} are convergent. Let ξ = limk→∞||zk − ẑ||2, η = limk→∞||zk − z̄||2 and

γ = ||ẑ − z̄||2. Then,
||zkj − z̄||2 = ||zkj − ẑ||2 + ||ẑ − z̄||2 + 2〈zkj − ẑ, ẑ − z̄〉 (5:31)

and

||zki − ẑ||2 = ||zki − z̄||2 + ||ẑ − z̄||2 + 2〈zki − z̄, z̄ − ẑ〉. (5:32)

Take limit in (5.7) as j ® ∞ and (5.8) as i ® ∞, observing that the inner products in

the right hand sides of (5.7) and (5.8) converge to 0 because ẑ, z̄ are weak limits of

{zki}, {zki} respectively, and get, using the definitions of ξ, h, g,

ξ = η + γ , (5:33)

η = ξ + γ . (5:34)
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From (5.9) and (5.10), we get ξ - h = g = h - ξ, which implies g = 0, i.e., ẑ = z̄. It

follows that all weak accumulation points of {zk} coincide, i.e., {zk} is weakly conver-

gent. This completes the proof.
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