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1 Introduction

Variational inequality problems in finite-dimensional and infinite-dimensional spaces
appear in many fields of applied mathematics such as convex programming, nonlinear
equations, equilibrium models in economics, and engineering (see [1-3]). Therefore,
methods for solving variational inequalities and related problems have wide applicabil-
ity. In this paper, we consider the mixed variational inequality: for a given fe X*, find
an element xy € X such that

(Axo — f,% = x0) + 9(x) = p(%0) = 0, VxeX, )

where A : X - X* is a monotone-bounded hemicontinuous operator with domain D
(A) = X, ¢ : X > R is a proper convex lower semicontinuous functional and X is a real
reflexive Banach space with its dual space X*. For the sake of simplicity, the norms of
X and X* are denoted by the same symbol || - ||. We write (x*, x) instead of x*(x) for
x*e X*andx e X.

By Sy we denote the solution set of the problem (1). It is easy to see that Sy is closed
and convex whenever it is not empty. For the existence of a solution to (1), we have
the following well-known result (see [4]):

Theorem 1.1. If there exists u € dom ¢ satisfying the coercive condition

(Ax, x — u) + ¢(x) _ o, ©

im
[|x]|— 00 [1x]

then (1) has at least one solution.
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Many standard extremal problems can be considered as special cases of (1). Denote
¢ by the indicator function of a closed convex set K in X,

0 ifxek,
+00 otherwise.

o) = Ik(x) = {

Then, the problem (1) is equivalent to that of finding xo € K such that
(Axo — f,x —x0) >0, VxeK. 3)

In the case K is the whole space X, the later variational inequality is of the form of
the following operator equation:

Axo =f. (4)

When A is the Gateaux derivative of a finite-valued convex function F defined on X,
the problem (1) becomes the nondifferentiable convex optimization problem (see [4]):

I;IEI)?{F(JC) +o(x)}. (5)

Some methods have been proposed for solving problem (1), for example, the proxi-
mal point method (see [5]), and the auxiliary subproblem principle (see [6]). However,
the problem (1) is in general ill-posed, as its solutions do not depend continuously on
the data (4, f; ¢), we used stable methods for solving it. A widely used and efficient
method is the regularization method introduced by Liskovets [7] using the perturbative
mixed variational inequality:

(Apxl, + aU(xl — x4) — fs, x —x5) + e (x) — @e(x}) =0, VxeX, (6)

where A, is a monotone operator, & is a regularization parameter, U is the duality
mapping of X, x:« X and (A, f5 ¢.) are approximations of (4, f, ¢), T = (h, 9, ¢). The
convergence rates of the regularized solutions defined by (6) are considered by Buong
and Thuy [8].

In this paper, we do not require Aj : x, € X to be monotone. In this case, the regu-
larized variational inequality (6) may be unsolvable. In order to avoid this fact, we
introduce the regularized problem of finding x, € X such that

(Anxg, + alP (x5, — x,) — f5, % — x3,) + 0o (x) — @a (%)

7)
> —ug(llxg Dl — x5, YxeX, uw=>h,

where u is positive small enough, U* is the generalized duality mapping of X (see
Definition 1.3) and X« is in X which plays the role of a criterion of selection, g is
defined below.

Assume that the solution set Sy of the inequality (1) is non-empty, and its data A4, f,
¢ are given by Ay, f5, ¢, satisfying the conditions:

M f-fs1l <600

(2) Aj, : X —> X* is not necessarily monotone, D(4,) = D(A) = X, and

[[Anx — Ax|| < hg(lIx]]), VxeX, h—0, 8)
with a non-negative function g(¢) satisfying the condition

g(t) <go+gmt’, v=s—1,8, >0
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(3) ¢. : X —> R is a proper convex lower semicontinuous functional for which there
exist positive numbers ¢, and r, such that

@e(x) = —cellxll  as [Ix]| >

and

e (x) — @(x)| < ed(llx]]), VxeX, & -0, )

lpe (%) — @e(¥)l < Collx—yll, Vx,yeX, (10)

where C, is some positive constant, d(f) has the same properties as g(z).

In the next section we consider the existence and uniqueness of solutions x, of (7),
for every o >0. Then, we show that the regularized solutions x, converge to xy € Sy,
the xx-minimal norm solution defined by

llxo — x[| = argmin [lx — x,][.
x€8y

The convergence rate of the regularized solutions x}, to x, will be established under
the condition of inverse-strongly monotonicity for A and the regularization parameter
choice based on the generalized discrepancy principle.

We now recall some known definitions (see [9-11]).

Definition 1.1. An operator A : D(A) = X — X* is said to be

(a) hemicontinuous if A(x + t,y) ~ Ax as £, — 0", x, y € X, and demicontinuous if x,,
— x implies Ax, —~ Ax;

(b) monotone if (Ax - Ay, x - y) 20, Vx, y € X;

(c) inverse-strongly monotone if

(Ax — Ay, x —y) = mal||Ax — Ay||?, VYxyeX, (11)

where m, is a positive constant.

It is well-known that a monotone and hemicontinuous operator is demicontinuous
and a convex and lower semicontinuous functional is weakly lower semicontinuous
(see [9]). And an inverse-strongly monotone operator is not strongly monotone (see
[10]).

Definition 1.2. It is said that an operator A : X — X* has S-property if the weak
convergence x, — x and (Ax,, - Ax, x,, - x) > 0 imply the strong convergence x,, — x
as 1 — oo,

Definition 1.3. The operator I : X — X* is called the generalized duality mapping
of X if

WP(x) = {(x" € X* o @, x) = [l Il Jla(] = [l s> 2. (12)

When s = 2, we have the duality mapping U. If X and X* are strictly convex spaces,
LP is single-valued, strictly monotone, coercive, and demicontinuous (see [9]).
Let X = IP(Q) with p € (1, =) and Q € R” measurable, we have

U(p) = llelliy o) le (DI 20(0), teQ.

Assume that the generalized duality mapping U satisfies the following condition:

(WP(x) = W(@y),x—y) = milx—yl’, Vx, yeX, (13)
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where m1, is a positive constant. It is well-known that when X is a Hilbert space, then
U =1, s =2 and m, = 1, where I denotes the identity operator in the setting space
(see [12]).

2 Main result
Lemma 2.1. Let X* be a strictly convex Banach space. Assume that A is a monotone-
bounded hemicontinuous operator with D(A) = X and conditions (2) and (3) are satis-
fied. Then, the inequality (7) has a non-empty solution set S, for each a >0 and f; € X*.
Proof. Let x, € dom ¢,. The monotonicity of A and assumption (3) imply the fol-
lowing inequality:
(Ax + U (x — x4), X — Xe) + @ (%) - ol — x| [STH( e = x| — |12 — X ]|)

ol B |1]]

X,
—[1Ax, || (1 + '|'| j'") —c, $=>2,
X

for ||x|| > r,. Consequently, (2) is fulfilled for the pair (A + olF’, ¢,). Thus, for each
o >0 and f5 € X*, there exists a solution of the following inequality:

(Ax+alPF(x —x) — fs,2— ) + 0e(2) —@e(x) =0, VzeX, xeX. (14)

Observe that the unique solvability of this inequality follows from the monotonicity
of A and the strict monotonicity of I°. Indeed, let x; and x, be two different solutions
of (14). Then,

(Axy + alP(x; —x4) —fs,2—x1) + @ (2) — @e(x1) =0, VzeX (15)
and

(Axy + alP(x3 — x4) — f5,2 — X2) + 0e(2) — @e(x2) >0, VzeX (16)
Putting z = x, in (15) and z = x; in (16) and add the obtained inequalities, we obtain

(Axy — Axp, xp — x1) + (U (x1 — x) — UP (02 — 2x4), %2 — 1) > 0.
Due to the monotonicity of A and the strict monotonicity of IF¥, the last inequality

occurs only if x; = x,.
Let x5 be a solution of (14), that is,

(Axi’g + aUs(ng —X) — f5,2— x‘;"s) + e (2) — @5 (xi’a) >0,
Vz € X.

For all 2 >0, making use of (8), from (17) one gets

(Apxsf + alP(K0F — x,) — f5,2 — 25°) + 0 (2) — 0 (20F)

(18)
> —hg(IIx3 1)1z — x%¢]|, VzeX.

Since y > h, we can conclude that each x2 is a solution of (7).

O

Let x;, be a solution of (7). We have the following result.

Theorem 2.1. Let X and X* be strictly convex Banach spaces and A be a monotone-
bounded hemicontinuous operator with D(A) = X. Assume that conditions (1)-(3) are
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satisfied, the operator U satisfies condition (13) and, in addition, the operator A has
the S-property. Let

1)
lim 0T Co. (19)

a—0 o

Then {x, Jconverges strongly to the X«-minimal norm solution xy € S.
Proof. By (1) and (7), we obtain

(Apxg, + alP (x5, — X4) — f5, %0 — xg,) + @e (X0) — @e(x7,)
+(Axo — f, x5 — x0) + @ (x5) — @(x0) = —ug(llxg|Nllxo — x5 |-

This inequality is equivalent to the following

a(lP(xg, —x) — UP(x0 — xx), X5, — x0) < a(U*(x0 — Xx), X0 — Xg,)
+ (Apxl — Ax, x0 — x,)
+ (Axog — Ax}, X}, — xo) + (f — fs, %0 — x,) (20)
+ @e(x0) — @(x0) + (%) — @ (%)
+ ug(llxg [Dlxo — x5 1.

The monotonicity of A, assumption (1), and the inequalities (8), (9), (13) and (20)
yield the relation

h+ 8
ms||x;—x0||‘§[ M8(||x;||)+ ]HXO—XEH
osz o (21)
* [d(l1xoll) +d(lIxg IN] + (U (x0 — x4), %0 — X5,).

Since p/oc — 0 as o« — 0 (and consequently, i/ — 0), it follows from (19) and the
last inequality that the set x are bounded. Therefore, there exists a subsequence of
which we denote by the same x;, weakly converges to x € X.

We now prove the strong convergence of {x}} to x. The monotonicity of A and I
implies that

0 < (Ax;, — AX, x;, — X)
< (Ax], + P (x, — %) — AX — aUP (X — x4), x5, — X) (22)
(Ax] + U’ (X}, — x4), x5, — X) — (AX + o« UP (X — x), X, — X).

In view of the weak convergence of {x}} to x, we have

lim (AX + «UP (X — x,), x;, — X) = 0. (23)
a—0

By virtue of (8),
(Axy, + aUP(x;, — %), x, — X)
= (Ax], — Apxl, + Apxl + aUF (x5 — x,), &%, — X) (24)

(Apxl, + alP(x], — x4), x5, — X) + hg(lIx[)1x, — X]|.

IA

Using further (7), we deduce

(Apxy, + aUP (x5, — x4), %, — X)
(Apx, + aUP (X%, — x4) — fs, X5 — X) + (fs, x5 — X) (25)
(s xg — X) + @e (X) — @e (x,) + g (l1xg 111X — x5 |-

IA
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Since x, — X and ¢, is proper convex weakly lower semicontinuous, we have from
(25) that

lin})(Ahx; +olP(x), —x.),x;, —X) < 0. (26)

By (22)-(24) and (26), it results that

lirr(l)(Ax; — AX,x;, —X) = 0.

Finally, the S property of A implies the strong convergence of {x}} to x € X.
We show that x € Sq. By (8) and take into account (7) we obtain

(AX], + aUF (x], — X.) — f3, 0 — X5) + e (%) — @ (x7)

(27)
= —(h+ p)g(llg Dlx —xg 1l VxeX.
Since the functional ¢ is weakly lower semicontinuous,
o(x) < il_l’)l’g) info(x;). (28)
Since {x}} is bounded, by (9), there exists a positive constant ¢, such that
o(x2) < @e(x) + a6 (29)

By letting & — 0 in the inequality (7), provided that A is demicontinuous, from (8),
(9), (28), (29) and condition (1) imply that

(Ax—f,x—X) +p(x) —p(x) >0, VxeX.

This means that x € S,,.
We show that X = xo. Applying the monotonicity of U° and the inequalities (8), (9)
and (13), we can rewrite (17) as

h 8
(US(x—x*),xé—x)i[ +ptg(||x;||)+ ]I|x—x;||
(o4 o
&
+ LAl + d(1<EID], - Vx € So.

Since o0 — 0, ¢/a;, o/0, p/ov — 0 (and h/oc — 0), the last inequality becomes
(UP(x —x4),x—x) <0, VxeSp.

Replacing x by tx + (1 — t)x, £ € (0, 1) in the last inequality, dividing by (1 - ¢) and
then letting £ to 1, we get

(UP(x—x4),x—x) <0, VxeS§
or
(P (% — x), X — xy) < (UP(X —x4), 6 — x4), Vx€Sp.

Using the property of U, we have that ||Xx — x.|| < [|x — x.||, Vx € So. Because of the
convexity and the closedness of Sy, and the strictly convexity of X, we can conclude
that x = xo. The proof is complete.

o

Now, we consider the problem of choosing posteriori regularization parameter
a = a(u, 8, ¢) such that
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+8+¢
lim «(w,6,¢)=0and lim -
n,8,e—>0 w,8,e—0 O[(/l,, (S, 8)
To solve this problem, we use the function for selecting & = (1, §, ¢) by generalized
discrepancy principle, i.e. the relation & = «(u, 8, €) is constructed on the basis of the

following equation:
o(@)=(u+8+e)fa, pq>0, (30)

with p(a@) =& (c + [|xf — x*||“1), where x7 is the solution of (7) with ¢ = &, ¢ is some
positive constant.

Lemma 2.2. Let X and X* be strictly convex Banach spaces and A : X — X* be a
monotone-bounded hemicontinuous operator with D(A) = X. Assume that conditions
(1), (2) are satisfied, the operator U’ satisfies condition (13). Then, the function
pla) =«a (c +|lxl — x*||5’1) is single-valued and continuous for o > g >0, where xjis
the solution of (7).

Proof. Single-valued solvability of the inequality (7) implies the continuity property
of the function p(@). Let a3, o, = 0 be arbitrary (o >0). It follows from (7) that

o (WP (g, — X), 3G, — X, ) + ao(UP(xg, — X4), X5, — %5,)

+ (Anxg, — AnXg, Xy, — Xg,) (31)

ay

> —p (gl 1) + 8UIxG, 1)) 1%, — % 11,

where 3, and X, are solutions of (7) with @ = 04 and @ = o,. Using the condition

(2) and the monotonicity of A, we have

o (U (xg, — x4) — U (g, — X)), X, — X))

< (a2 — ozl)(Us(x;2 — Xi), X, — X))

+ (h+ ) (g, 1) +8(I1xg, 1D) g, — g, 11.
It follows from (13) and the last inequality that

|y — oo _
msllxg, — xg, |I° < » x5, — el 71+ (h+ ) (8(IXE, 1) + 8(I1xE, 1)) -

Obviously, X3, = X, as 4 — 0 and @; —> . It means that the function [|x7 — x,|[*"!
is continuous on [0; +o0). Therefore, p(cx) is also continuous on [; +0).

Theorem 2.2. Let X and X* be strictly convex Banach spaces and A : X — X* be a
monotone-bounded hemicontinuous operator with D(A) = X. Assume that conditions
(1)-(3) are satisfied, the operator LI satisfies condition (13). Then

(i) there exists at least a solution aof the equation (30),
(ii) let u, 6, ¢ > 0. Then
1)a— 0
(2 if0<p< qthen“+§+8
a
exist constants Cy, Cy >0 such that for sufficiently small u, J, € >0 the relation

— 0, X;, = Xo € Sowith X«-minimal norm and there

Ci<(u+s+e)fa71<C, (32)

holds.
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Proof.
(i) For 0 < « <1, it follows from (7) that
(Apxg, + U (x5, — X4) — f5, X0 — X5) + @ (%) — @ (x7,)
> — g (Il IN2s — xg 1]

Hence,

a (U (x5 — x:), x5 — x) < g (g 1D — 211+ @ (x) — @ (%)
+ (Apxy, — Ax] + Ax}, — Axy + A — f +f — f5, 00 — X0).

We invoke the condition (1), the monotonicity of A, (8), (10), (12), and the last
inequality to deduce that

allcg =%l < (h+ w)g(IIxg 1) + Co + || Ax, — f1] +6. (33)
It follows from (33) and the form of p(cx) that

1 -1
alp(a) =a'(c+||x — x|
= ca™ + o x a|xl, — x|

< ca' + a[(h+ wn)g(1x51]) + Co + ||Axs — f1] +8].

Therefore, lim,_,,o o/p(a) = 0.
On the other hand,

lim afp(a) > ¢ lim a'* = +o00.
a— +00 a— +00

Since p(a) is continuous, there exists at leat one & which satisfies (30).
(ii) It follows from (30) and the form of p(&) that

G < VO (g 4§ 4 )P0

Therefore, @ — 0 as ¢, J, ¢ > 0.
If 0 < p < g, it follows from (30) and (32) that

[M+5+8

p
i| =[(n+8+&)aal?
o
= [ca@ +a||xg — x, ][ &P

<@ + &I P[2g(11xE 1) + Co + [|Ax. — f1] + 8.

So,

+8+e7
lim [M . :| =0
n,8,e—>0 o

By Theorem 2.1 the sequence X, converges to xo € Sp with Xx-minimal norm as g, J,
e — 0.

Clearly,
(+8+e)a T =ap(@) = (c+ [|x% — XY,

therefore, there exists a positive constant C, such that (32). On the other hand, because

¢ >0 so there exists a positive constant C; satisfied (32). This finishes the proof.
O
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Theorem 2.3. Let X be a strictly convex Banach space and A be a monotone-
bounded hemicontinuous operator with D(A) = X. Suppose that

(i) for each h, o, ¢ >0 conditions (1)-(3) are satisfied;

(ii) LE satisfies condition (13);

(iii) A is an inverse-strongly monotone operator from X into X*, Fréchet differenti-
able at some neighborhood of xo € Sy and satisfies

[|A(x) — A(x0) — A"(x0)(x — x0)I| < TI|A(x) — A(x0)Il; (34)

(iv) there exists z € X such that
Al(x0)"z = U (xo — x);
then, if the parameter o = o (u, 9, €) is chosen by (30) with 0 < p < g, we have

L+q—p p}

T 1 .
15 (i5.6) — Xoll = O((n +8+€)), 1= 144 mm{ o o

Proof. By an argument analogous to that used for the proof of the first part of Theo-
rem 2.1, we have (21). The boundedness of the sequence {x},} follows from (21) and the
properties of g(¢), d(t) and . On the other hand, based on (20), the property of U and
the inverse-strongly monotone property of A we get that

IAGE) — Axo)I? < mAl[[(h G + 8 + el — x ™ Jlvo — x|
eld(iool) + g 01 .
Hence,
A(XE) — A(xo)l| = O(V/8 + p+ £ + ).

Further, by virtue of conditions (iii), (iv) and the last estimate, we obtain

(U (x0 — %), X0 — %5,) = (2, A(x0) (x0 — x3,))
[1I1(7 + )IIA(xg) — A(xo)ll
l1z]|(F + 1)O(V/8 + i + & + ).

IA

A

Consequently, (21) has the form

2 xL|])+ 8
mS”x;_xO“SS lu’g(”aa”)

[0 — x|
+||z||(f+1)O(\/8+pL+€+a) (35)

e
* [d(l1xoll) +d(llxz D]
When « is chosen by (30), it follows from Theorem 2.1 that

a(p d,e) < Cfl/(lm)(u +8 +g)P/(1+a)
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and

nw+dé+e 1
<C 8 Pod /81
(i, 8,) = 2 +8+e) Pal(p,é,€)

< CzCl_q/(“q)(,u 15+ S)I—p/(l+q).
Therefore, it follows from (35) that

|15 5.0) — Kol <Ci(p+8+8) Dt o0 — xol

«
+ Co(p+ 68+ &) 7PHD o Gy + 8 + £)PI20+0),
where Ci, i =1, 2,3, are the positive constants. Using the implication
a,bc>0, s>t a <ba+c=a =0 +0),
we obtain
||x;(%5,8) —xoll = O((p + 8 +&)*).

Remark 2.1 If o is chosen a priori such that & ~ (4 + J + ¢)", 0 < 1 <1, it follows
from (35) that

- -
ms||x;(ulslg) —xo|[* <Cyq(p+8+&) "lxo — x;(u,ﬁ,g)“

+ Cs(n+8+)"?+Co(pu+8+e) .

Therefore,

1_
11X ey — Xoll = O((1 +8 +£)2), u2=min{ s",z’l}.

Remark 2.2 Condition (34) was proposed in [13] for studying convergence analysis of
the Landweber iteration method for a class of nonlinear operators. This condition is
used to estimate convergence rates of regularized solutions of ill-posed variational
inequalities in [14].

Remark 2.3 The generalized discrepancy principle for regularization parameter choice
is presented in [15] for the ill-posed operator equation (4) when A is a linear and
bounded operator in Hilbert space. It is considered and applied to estimating conver-
gence rates of the regularized solution for equation (4) involving an accretive operator
in [16].
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