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Abstract

Let C be a nonempty closed convex subset of a real Hilbert space H. Let S: C —> C
be an asymptotically nonexpansive map in the intermediate sense with the fixed
point set F(S). Let A : C — H be a Lipschitz continuous map, and VI(C, A) be the set
of solutions u € C of the variational inequality

(Au,v—u) >0, VYveC.

The purpose of this study is to introduce a hybrid extragradient-like approximation
method for finding a common element in £(S) and VI(C, A). We establish some strong
convergence theorems for sequences produced by our iterative method.
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1 Introduction

Let H be a real Hilbert space with inner product (-, -) and norm || - ||, respectively. Let
C be a nonempty closed convex subset of H and let Pc be the metric projection from
H onto C. A mapping A : C — H is called monotone [1-3] if

(Au—Av,u—v) >0, VuveC
and A is called k-Lipschitz continuous if there exists a positive constant k such that
JAu — Av|| < kllu—v|, VuvecC

Let S be a mapping of C into itself. Denote by F(S) the set of fixed points of S; that is
F(S) = {u e C: Su = u}. Recall that S is nonexpansive it

ISu—Svll < llu—vll, YuveC

and S is asymptotically nonexpansive [4] if there exists a null sequence {y,} in [0, +
o) such that
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[S"u—S"v| < (1+ya)llu—vl, YuveCandn> 1.

We call S an asymptotically nonexpansive mapping in the intermediate sense [5] if
there exists two null sequences {y,} and {c,} in [0, + o) such that

|8 —S™y||> < T+ y)|x—y|* +cn VxyeCV¥n=1.

Let A : C - H be a monotone and k-Lipschitz continuous mapping. The variational
inequality problem [6] is to find the elements u € C such that

(Au,v—u) >0, VveC.

The set of solutions of the variational inequality problem is denoted by VI(C, A). The
idea of an extragradient iterative process was first introduced by Korpelevich in [7].
When S : C — C is a uniformly continuous asymptotically nonexpansive mapping in
the intermediate sense, a hybrid extragradient-like approximation method was pro-
posed by Ceng et al. [8, Theorem 1.1] to ensure the weak convergence of some algo-
rithms for finding a member of F(S) n VI(C, A). Meanwhile, assuming S is
nonexpansive, Ceng et al. in [9] introduced an iterative process and proved its strong
convergence to a member of F(S) n VI(C, A).

It is known that an asymptotically nonexpansive mapping in the intermediate sense
is not necessarily nonexpansive. Extending both [8, Theorem 1.1, 9, Theorem 5], the
main result, Theorem 1, of this article provides a technical method to show the strong
convergence of an iterative scheme to an element of F(S) n VI(C, A), under the weaker
assumption on the asymptotical nonexpansivity in the intermediate sense of S.

2 Strong convergence theorems

Let C be a nonempty closed convex subset of a real Hilbert space H. For any x in H,
there exists a unique element in C, which is denoted by Pcx, such that ||x - Pcx|| < ||
x - y|| for all y in C. We call Pc the metric projection of H onto C. It is well-known
that Pc is a nonexpansive mapping from H onto C, and

(x — Pcx, Pcx —y) >0 forallxe H,y € C; (1)
see for example [10]. It is easy to see that (1) is equivalent to
||x — y||2 > ||lx — Pex||? + ||y - ch”2 forallx e H, y € C. (2)

Let A be a monotone mapping of C into H. In the context of variational inequality
problems, the characterization of the metric projection (1) implies that

ueVI(C,A) < u=Pc(u—ArAu) forsome i > 0.

Theorem 1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let
A : C —> H be a monotone and k-Lipschitz continuous mapping. Let S : C — C be a
uniformly continuous asymptotically nonexpansive mapping in the intermediate sense
with nonnegative null sequences {y,} and {c,}. Suppose that Y o-, ky < ccand F(S) n VI
(C, A) is nonempty and bounded.

Assume that

()O0<u<l,and0<a<b< 82;4;

(i)a<l,<b a,20 6,200, +B,<1,and 3/4 <5, <1, for all n > 0;
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(iii) lim,,_,., o, = 0O;
(iv) lim inf,_,.. 8, > 0;
() lim,_,.. B, = 1.
Set, for all n = 0,
Ay =sup{llx, —ull :u € F(S)NVI(C, A)},
dy =2b(1 — pWan Ay,
Wy = b? poey, + 4b% 1P Bu(1 — 8,)(1 + yn),
v = b2 (1 — e + 4b*(1 — 1)?Bn(1 = 8,)(1 + yn), and
Uy = ,BnVnAfl + BnCn.
Let {x,}, v} and {z,} be sequences generated by the algorithm:
xo € C chosen arbitrarily,
Yn = (1 = 8,)xn + 8nPc(xn — AnptAxy — An(1 — )Ayn),
Zn = (1 — 0y — ,Bn)xn + 0p)Yn + ,BnSnPC(xn - )mA)/n),

Cn = {Z eC:|lzy — Z”2 < |lx, — Z”2 + dn ”AYn ” + wn”Axn”2 +Up ”A}/n ”2 + ﬁn}/

Qu=1{z€C:{xy—2,x —x) >0},

®3)

Xns1 = Pc,no, (%0),  ¥n>0.

Then, the sequences {x,}, {y,; and {z,} in (3) are well-defined and converge strongly to
the same point q = Prsynvic,a)(%o)-

Proof. First note that lim,,_,.. ¥, = lim,,_,.. ¢,, = 0. We will see that {A,} is bounded,
and thus lim,,_,., d,, = lim,,_,., w,, = lim,,_,.. v,, = lim,,_,.. 9, = 0.

We divide the proof into several steps.

Step 1. We claim that the following statements hold:

(a) C,, is closed and convex for all n € N;

) |12 - ul)® < 1% - ul|> + dul |Ayal| + Wal|Ax,||? + Vil |AYa]|* + 9, for all n > 0
and u € F(S) n VI(C, A);

(c) F(S) n VI(C, A) € C,, for all n e N.

It is obvious that C, is closed for all # € N. On the other hand, the defining inequal-
ity in C, is equivalent to the inequality

(2(xn — zn),2) < ”xn”2 - ”anZ +dy ”AYH ” + l”»’n”Axn”2 + Uy ”AYH ”2 + U,

which is affine in z. Therefore, C, is convex.
Let t, = Pc(x, - AAy,) for all n > 0. Assume that u € F(S) n VI(C, A) is arbitrary. In
view of (3), the monotonicity of A, and the fact u € VI(C, A), we conclude that

lltn — ull®
2 2
S M S N —
=|lx, — u||2 — llx, — tn”2 + 2)\n(AYn/u — tn)
= |lxn, — u||2 — llx, — tn||2 + 200 [(Ayn — Au, u — y) + (A, U — Yn) + (AYn, Yn — tn) ] (4)
< |lxn — ullz — llxn — tn”z + 2)‘vn<Aan Yn — ty)
= [lxn — u||2 - Hxn - yn”2 = 2{%n = Y, Yn — tu) — ”)/n —In ”2 + 200 (AYn, Yn — tn)
= [lxn — u”2 - “xn - }’n”2 - ”)/n - tn“2 +2(xn — AnAYn — Vn, tn — ¥n)-
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Now, using
Yn = (1 — 8,)xn + 8nPc(xn — Xt Axy — An(1 — w)Ayn),
we estimate the last term

(xn — )\nAYn — Ynitn — Vn>
(%0 — AnftAXy — (1 — ) AYn — Yns ta — Vn) + Anft{AXy — Ay, tn — Vi)

< (= AaptAxy — Ap(1 — Ay — (1 = 83)xn — 8nPc(Xn — AnprAxy — An(1 — )Ayn), tn — ¥n) (5)
+Anpt ”Axn — Apn “ ”[n —In ”
< Sn{xn — AnpAxy — An(1 — p)Ayy — Po(xn — AppeAxn — An(1 — )Ayn), th — ¥n)

= (1= ) hn{eAx + (1 = 1)Ayn, o — Yu) + dntitle |20 = yul| [tz = v -

It follows from the properties (1) and (2) of the projection Pc(x, - A, uAx, - A, (1 - u)
Ay,,) that

(xtn — AnptAxy — (1 — w)Ayn — Pc(xn — AnprAxy — An(1 — 1)Ayn), tn — yn)
(%n = AnptAxy — 2n(1 — ) Ayn — Pc(xn — AnptAxy — An(1 — p)Ayn),
tn — (1 = 8n)xn — 8nPc(Xn — AnptAxy — An(1 — (£)Ayy))
(1 = 8n){xn — AnttAxy — An(1 — ) Ayn — Po(n — AnptAxy — An(1 — i)Ayn), tn — Xn)
+ 8 (X — AnptAxy — An(1 — w)Ayn — Pc(xn — AnptAxy — An(1 — p)Ayn), (6)
tn — Pc(xn — AnptAxy — An(1 — )Ayn))
(1 = 8n)(Xn — AuprAxy — An(1 — )Ayn — Pc(xn — AnptAxy — Au(1 — )Ayn), tn — Xn)
(1= 8n) [0 = AnstAxn = An(1 = 1)AYn = Pc(n — AnftAxn = An(1 = 1) Ay
(1—38n) ”)‘nMAxn +An(1 — () Ayn ” ltn — xnll
(1 = 8n)An(pe 1 Axnll + (1 — ) ”AYn H)(”tn - Yn“ + ”}’n _xn“)-

| th 7an

INIA TN IA

In view of (4)-(6), A, < b, and the inequalities 208 < o* + B and (a + B)* < 20 +
2ﬁ2, we conclude that

e — wl® < %0 — ull® = [[xn =yl * = 70 = ta]* + 2060 = AnAVi = Yo tn — y)
< o = ull® = 0 = yul* = 10 — ta]®
+ 20 [8(1 = 8n) (1 1Axall + (1 = 1) [Aya] Y[t =y + [y = 2a]))
= 2(1 = 8u)An(pAxn + (1 — 1)AYn, tw — Yn) + 20tk | X0 — yu | |0 — ] ]

< tn = ull® = %0 = ya]* = Jyn = ta?

+28,(1 = 82)b( Axy | + (1 = 1) | Ay | ) (||t = ya]| + [lyn — xa]])

+2(1 = 8)b( 1Ax | + (1 — ) [Aya ) [[tn = v + 261k |20 = v | |2 — 1]
= =l = %0 = ya]® = Jyn — ta]?

+28,(1 = 8,) (0?12 1A% 1% + 02 (1 — 1) | Apa|” + [tn = v + 70 = 2] )

+ (1= 8) (P2 Axy 17 + b2 (1 — )| Ay + 2]t — ]| *)

byl x0 =y * + 162 = ")
= lltn =l = [ — yu (1 = 284(1 = 8) — blepa)

= Jtx = vl (287 — 8 — blew)

+2(1 = 8202 2| Ax, |12 + 2(1 — 82)b* (1 — )2 || Aya |-

Since i <8, <landb < sijlu we have from (7) for all m e N,

ltw — ull® < [l — el + 4(1 = 8,)b% 12 [ Axall? + 4(1 — 8,)02(1 — )?[| Aya . (®)
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In view of the fact that u € VI(A, C) and properties of Pc, we obtain

Iy = ]” = (1 = 8 (tn — 1) + 80(Pe(n — onstAsty — An(1 — ) Ayn) — ) |
< (1= 8011w — ull? + 84| Po(on — AnptAxy — An(1 — p)Ayn) — Pe(u)]*
< (1= 8)l1xn — ull® + 8w — AnptAxy — dn(1 — w)Ay — u®
= (1= 8u)llan — ull® + 8n [lln — ull® = 2(AnptAxy + An(1 — ) Ay, X — 1)
+nieAny + 2a(1 = )an] ]
= (1= 8n)llxn — ull® + 8 [0 — wll® — 22pt (A, %0 — 11) — 200 (1 — ) (Apn, Xp — w)
a1 = )Aw ] )
< (1= 8w — ull® + 8 [In — ul® + 220 (1 — 12) [ Apn]) s — ul
AullAnl? + 130 w)|Apl ]
< (1= )l — ull? + 8 [l — ull® + 2b(1 — ) Ay | Ay
Pl A%+ 021 = ) Ap]]
< W =l + 8, [26(1 = ) A [Aya | + D22 Ax 2 + 02 (1 = ) Ay ]

< It — l? + 26(1 = ) Ay |Aya]| + B2 pllAxa ] + b2 (1 — ) | Apa .

Since S is asymptotically nonexpansive in the intermediate sense, in view of $"u = u,
we conclude that

2w = ull? = [ (1 = ctn = Ba)on + ctapn + BuS"tn — u]®
< (1= an = Ba)len — ull® + anlyn — ul| + B "tw — u]®
< (1 —an— Bu)llxy —ull®
+ [llxn —ull? + 2b(1 — 1) A [Apa| + B2l AR, 12 + B2 (1 — 1) Ay ||2]
+ B [(1+ y)lltn — ull® + ¢
< (1= an — Bn)llxn — ul?

+ ap [len —ull? + 2b(1 — 1) Ay [ Ay + B2l AR, ]2 + B2 (1 — 1) Ay ||2] (10)

+ Ba(1+ ) [le,, —ull? +2(1 = 8)b2 2 Ay 12 + 2(1 — 8,)62(1 — )| Ay ||2}
+ Buln
< lotw = ull® + Buyndsy + 26(1 — st A Ay
+ (0P pety + 26717 Bu(1 = 84) (1 + ya)) 1 Axa 1
+ (VP(1 = wan + 207 (1 = w)*Ba(1 = 82) (1 + 7)) [ Ay
+ Buncn.

This implies that u € C,. Therefore, F(S) n VI(C, A) < C,,.

Step 2. We prove that the sequence {x,} is well-defined and F(S) n VI(C, A) € C, n
Q, for all m > 0.

We prove this assertion by mathematical induction. For n = 0 we get Qo = C. Hence,
by step 1, we deduce that F(S) n VI(C, A) € C; n Q;. Assume that x; is defined and F
(S) N VI(C, A) € C; n Qi for some k > 1. Then, yy, z; are well-defined elements of C.
We notice that Cy is a closed convex subset of C since

Ci={z€C: llak — Xl + 2(2k — X Xt — 2) < dy Ay + wall A%y 12 + v | Apa|* + ).

It is easy to see that Qy is closed and convex. Therefore, C; N Qy is a closed and con-
vex subset of C, since by the assumption we have F(S) n VI(C, A) € Ci n Q. This
means that Pc,ng,%o is well-defined.

By the definition of x;,; and of Qi,1, we deduce that C; N Qi © Qy,;. Hence, F(S) n
VI(C, A) © Q1. Exploiting Step 1 we conclude that F(S) n VI(C, A) € Ciy1 N Qpy1-
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Step 3. We claim that the following assertions hold:

(d) lim,, ;o ||, - x0|| exists and hence {x,}, as well as {A,}, is bounded.

(e) limy oo |[%41 - %4]| = O.

(©) limy .. |12 - 2] = O.

Let u € F(S) n VI(C, A). Since X441 = Pc,no,%0 and u e F(S) n VI(C, A) € C, N Q,,,
we conclude that

Xne1 — Xoll < llu —x0ll, V¥n=>0. (11)

This means that {x,} is bounded, and so are {y,}, Ax, and {Ay,}, because of the
Lipschitz-continuity of A. On the other hand, we have x, = Pg, %o and x,,,;, € C, N Q,
€ Q,,. This implies that

2 2 2
[%ne1 — Xl < llxne1 — Xoll* — llxn — x0ll>,  ¥n > 0. (12)

In particular, ||x,,1 - %o|| = ||x, - %o|| hence lim,,_,.. ||x, - xo|| exists. It follows from
(12) that

lim, s oo (%41 — %) = 0. (13)
Since x,,, € C,, we obtain
2
llzn — Xns1 ”2 < 1% — Xni1 ”2 +dy ”AYn || + wn”Axn”2 +Un ”AYn || + Oy

In view of lim,_,.. ¥, = 0, lim,,_,.. &,, = 0, lim,,_,.. J,, = 1 and from the boundedness
of {Ax,} and {Ay,} we infer that lim, ,. (x,,1 - z,) = 0. Combining with (13) we
deduce that lim,,_,.. (x, - z,) = 0.

Step 4. We claim that the following assertions hold:

(8) limy, o |[% - yul| = 0.

(h) lim, .. |IS, - ] = 0.

In view of (3), z, = (1 - a0, - B)x, + oy, + B,S"t,, and S"u = u, we obtain from (9)
and (8) that

llzn — ull?
- ||(1 — &y — Bu)xn + AnYn + PuS"ty — u||2
< (1= — Bu)lt — ul® + anlyn — u|* + Bu]| "tn — u?
< (1 —an — Bu)llxn —ull?
+ ey [len =l 4 26(1 = @) A [ Ay | + PulAs, 12 + 0 (1 = p2) |Ava ]
+ B [(1+ v)lltn — ull® + ]
< (1 —an— B)llxn — ull?
+ o [l =l + 26(1 = ) Ay Ay + PRl 121 = ) Ay ]
# Bl + ) [l =l = (1 = 28,(1 = 82) [0 = ya|” = blsa)
— (282 = 1= blep) | tw — y|* + 41 — 80)b? 12| Ax |12
+ 4(1 = 8,)b(1 — w)?|| Aya|” + Bucn
< 1l — ull® + BuynSj + Bucn
+ 2b(1 =)o [Apn | + [07 oty + 4671 Bu(1 + ya) (1 = 8a)] 1A% ]I
# [P0 = W + 402 (1 = 1) Bu(1+ 7)1 = 80)] [
— [Ba(1 4 7)1 = 26,(1 = 8,) — ble) ] o — yu|®
— [Bu1 + y)(282 = 80 — blea)] [t — .

(14)

Page 6 of 10
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Thus, we have

Ba(1 + ya)(1 = 28,(1 — 8,) — blepa) || — 1|
< llxn — ull®> = llza — ull® + Buynlrj + Bucn
+ 2b(1 — w)otnAp [|Ayn]| + [07 ety + 407 12 Bu (1 + va) (1 — 8,)] 1 Axa |1

. [b2(1 — W+ 402 (1 — 1) Ba(1 + y) (1 — 5,,)] | Ay

< (llxn — ull + llzn — ) %0 = Zull + BuYn Ay, + Bucn
+ 2b(1 — w)on Ay [|Ayn]| + [07 ey + 467 12 B (1 + va) (1 — 8,)] 1 Axa |1

#0201 = W + 462 (1= w) a1+ ) (1 = 8)] Ay
Since bky < 3/8 and 3/4 < 6, < 1 for all n > 0, we have
limy o0 X0 — yn”2 =0.
In the same manner, from (14), we conclude that
limy oo || tn — ¥n ||2 =0.

Since A is k-Lipschitz continuous, we obtain ||Ay, - Ax,|| — 0. On the other hand,

llxy, — tall < “xn —Vn “ + “yn —In

’

which implies that ||x, - ¢,|]| = 0. Since z,, = (1 - &, - B)x, + 0y, + B.S"t,, we
have

Zn — Xn = — Xy + QY + Bu(8"ty — xn).

From ||z, - x,|| = 0, &,, = 0, lim inf, _, ¢ B, > 0 and the boundedness of {x,, y,} we
deduce that ||S"t, - x,|| = 0. Thus, we get ||t, - S"t,|| — 0. By the triangle inequality,
we obtain

ln = 8™ < llow — tall + ||t — S™tu | + || S"tn — S"xa

< lxn = tall + [t — S™a]| + /(1 + ¥) lltw — xull + .

Hence, [|x, - $"x,|| = 0. Since ||x,, - x,,,1|| = 0, it follows from Lemma 2.7 of Sahu
et al. [5] that ||x, - Sx,|| — 0. By the uniform continuity of S, we obtain ||x, - $"x,||
—> 0asn —> o forall m> 1.

Step 5. We claim that w,,(x,) € F(S) n VI(C, A), where

ww(xn) = {x € H : x,, — x weakly for some subsequence {x;,} of {x,}}.

The proof of this step is similar to that of [8, Theorem 1.1, step 5] and we omit it.

A similar argument as mentioned in [9, Theorem 5, Step 6] proves the following
assertion.

Step 6. The sequences {x,}, {y,} and {z,} converge strongly to the same point ¢ = Pr
(nVIGA)Xo), which completes the proof.

For o, =0, B, =1 and J, = 1 for all » € N in Theorem 1, we get the following
corollary.

Corollary 2. Let C be a nonempty closed convex subset of a real Hilbert spaces H. Let
A : C — H be a monotone and k-Lipschitz continuous mapping and let S : C — C be a
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uniformly continuous asymptotically nonexpansive mapping in the intermediate sense
with nonnegative null sequences {y,} and {c,}.
Suppose that y 2| yn < ocand F(S) n VI(C, A) is nonempty and bounded. Set 9, =

YA, + c,.. Let yu be a constant in (0, 1], and let {\,;} be a sequence in [a, b] with a > 0
3

kit

Let {x,,}, {y,} and {z,} be sequences generated by

and b < 4

xo € C chosen arbitrarily,

Yn = Pc(%n — AnptAxn — An(1 — 1) Ayn),
2y = S"Pc(xy — AnAyn),

Cn=1{z€C:llzn —2I* < llxn —zl1% + 9},
Qn=1{z € C: (x4 —2,x0 —xp) = 0},

Xn+1 = Pc,nq, (%0),  Vn = 0.

(15)

Then, the sequences {x,}, {y,} and {z,} in (15) are well-defined and converge strongly
to the same point q = Prs)nviic,a)(%o)-

In Theorem 1, if we set o, = 0 and 3, = 1 for all » € N then the following result
concerning variational inequality problems holds.

Corollary 3. Let C be a nonempty closed convex subset of a real Hilbert spaces H. Let
A : C - H be a monotone and k-Lipschitz continuous mapping and let S : C — C be a
uniformly continuous asymptotically nonexpansive mapping in the intermediate sense
with null sequences {y,} and {c,}.

Suppose that Y oo yn < ccand F(S) n VI(C, A) is nonempty and bounded. Let y be a
constant in (0, 1], let {\,.} be a sequence in [a, b] with a > 0 and b < SZM, and let {0,}
be a sequence in [0, 1] such that lim,_,.. J,, = 1 and &, > ifor all n = 0. Set A,, = sup
(1%, - u|| : ue FS) n VIC, A}, w, = 4b°1*(1 + 1,)(1 - 6,), 9, = Yul\, + ¢y for all n >
0.

Let {x,}, {y,} and {z,} be sequences generated by

xo € C chosen arbitrarily,

Yn = (1 = 82)%n + 8nPc(xn — AnptAxy — An(1 — p)Ayy),
2y = S"Pc(xy — AnAyn),

Cn=1{z € C: llzn —2I* < llxn — 2% + wll Axal® + 9},

Qn=1{ze€C: (xy—2z,x) —x5) =0},

(16)

Xne1 = Pc,nq, (%0),  Vn > 0.

Then, the sequences {x,}, {y,} and {z,} in (16) are well-defined and converge strongly
to the same point q = Prnvic,a)(%o)-

The following theorem is yet an other easy consequence of Theorem 1.

Corollary 4. Let H be a real Hilbert space. Let A : H — H be a monotone and k-
Lipschitz continuous mapping and let S : H — H be a uniformly continuous asymptoti-
cally nonexpan-sive mapping in the intermediate sense with null sequences {y,} and
{cn}-

Suppose that Yy -1 yn < ocand F(S) N AN(0) is nonempty and bounded. Let u be a

3
8k’

{ou,}, (B} and {0,} be three sequences in [0, 1] satisfying the following conditions:

constant in (0, 1], let {\,.} be a sequence in [a, 3b/4] with 0 < 4a/3 <b < and let

Page 8 of 10



Naraghirad et al. Journal of Inequalities and Applications 2011, 2011:119 Page 9 of 10
http://www.journalofinequalitiesandapplications.com/content/2011/1/119

(i) o, + B, <1, Vi = 0;
(ii) lim,,_,.. a,, = 0;
(iii) lim inf,_,.. B8, > 0;
(iv) lim, .. 0, = 1 and 8, > ifor all n > 0.
Set
Ay = sup{llx, — ul : u € F(S)NA~1(0)},
dn = 2b(1 — p)an Ay,
Wp = bzﬂan + 4172/"2/371(1 = 8n)(1 + yn),
Un = 0?(1 — )ty + 46> (1 — 11)?Bn(1 — 8,)(1 + yn), and
On = BuYnly + Bucn

forall n = 0.
Let {x,}, {y,} and {z,} be sequences generated by

xo € C chosen arbitrarily,

Vn = %Xn — AnptAxy — dn(1 — )Ay,

zn = (1 — Bn)xn — anptAxy — ayhn(1 — p)Ayy + BnS™ (xn — g:Ayn),
Co=1lz€C:llzn— 2l < Iotn — 2% + dn | Ay | + wall A2 + v | Ay + 22},
Qn=1{z € C: {xy —2,%0 —xp) > 0},

17)

Xns1 = Pc,nq, (%0),  VYn>0.

Then, the sequences {x,}, {y,} and {z,} in (17) are well-defined and converge strongly
to the same point q = Prsyna-1(0)(xo).

Proof. Replace ), by A;, = 2‘: Then, a <A, < A, <b < s;u' For C = H, we have P¢
= I and VI(C, A) = A™1(0). In view of Theorem 1, the sequences {x,,}, {y,) and {z,} are
well-defined and converge strongly to the same point g = Pr(s)na1(0)(xo).
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