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Abstract

The existence of moving indirect excitons in monolayer graphene is theoretically evidenced in the envelope-function
approximation. The excitons are formed from electrons and holes near the opposite conic points. The electron-hole
binding is conditioned by the trigonal warping of the electron spectrum. It is stated that the exciton exists in some
sectors of the exciton momentum space and has the strong trigonal warping of the spectrum.
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Background
An exciton is a usual two-particle state of semiconduc-
tors. The electron-hole attraction decreases the excitation
energy compared to independent particles producing the
bound states in the bandgap of a semiconductor. The
absence of the gap makes this picture inapplicable to
graphene, and the immobile exciton becomes impossi-
ble in a material with zero gap. However, at a finite total
momentum, the gap opens that makes the binding of the
moving pair allowable.
The purpose of the present paper is an envelope-

approximation study of the possibility of the Wannier-
Mott exciton formation near the conic point in a neutral
graphene. In the present paper, we use the term ‘exci-
ton’ in its direct meaning, unlike other papers where this
term is referred to as many-body (‘excitonic’) effects [1,2],
exciton insulator with full spectrum reconstruction, or
exciton-like singularities originating from saddle points
(van Hove singularity) of the single-particle spectrum [3].
On the contrary, our goal is the pair bound states of
electrons and holes. There is a widely accepted opinion
that zero gap in graphene forbids the Mott exciton states
(see, e.g., [4]). This statement which is valid in the conic
approximation proves to be incorrect beyond this approx-
imation. Our aim is to demonstrate that the excitons exist
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if one takes the deviations from the conic spectrum into
consideration.

Methods
We consider the envelope tight-binding Hamiltonian of
monolayer graphene as follows:

Hex = ε(pe) + ε(ph) + V (re − rh), (1)

where

ε(p) = γ0

√
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is the single-electron energy, a = 0.246 nm is the lat-
tice constant, � = 1, V (r) = −e2/(χr) is the potential
energy of the electron-hole interaction. The electron spec-
trum has conic points νK, ν = ±1, K = (4π/3a, 0), where
ε(p) ≈ s|p − νK|, s = γ0a

√
3/2 is the electron velocity in

the conic approximation.
The electron and hole momenta pe,h can be expressed

via pair q = pe + ph and relative p = pe − ph momenta.
The momenta pe,h can be situated near the same (q →
k � 2K) or near the opposite conic points (q = 2K + k,
k � 2K).
We assumed that graphene is embedded into the insu-

lator with a relatively large dielectric constant χ so that
the effective dimensionless constant of interaction g =
e2/(sχ�) ∼ 2/χ � 1 and the many-body complications
are inessential. In the conic approximation, the classical
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Figure 1 Relief of the single-electron spectrum. Domains where
exciton states exist are bounded by a thick line.

electron and hole with the same direction of momen-
tum have the same velocities s. The interaction changes
their momenta, but not their velocities. The two-particle
Hamiltonian contains no terms quadratic in the compo-
nent of the relative momentum p along k. In a quantum
language, such attraction does not result in binding. Thus,
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Figure 2 Relief map of indirect exciton ground-state binding
energy. The map shows εex (in eV) as a function of the wave vector in
units of reciprocal lattice constant. The exciton exists in the colored
sectors.

the problem of binding demands accounting for the cor-
rections to the conic spectrum.
Two kinds of excitons are potentially allowed in

graphene: a direct exciton with k � 1/a (when the pair
belongs to the same extremum) and an indirect exciton
with q = 2K + k. Assuming p � k (this results from the
smallness of g), we get to the quadratic Hamiltonian

Hex = sk + p21
2m1

+ p22
2m2

− e2

χr
, (3)

where the coordinate system with the basis vectors e1 ≡
k/k and e2⊥e1 is chosen, r = (x1, x2). In the conic
approximation, we have m2 = k/s, m1 = ∞. Thus, this
approximation is not sufficient to find m1. Beyond the
conic approximation (but near the conic point), we should
expand the spectrum (2) with respect to k up to the square
terms, which results in the trigonal spectrum warping. As
a result, we have for the indirect exciton,

1
m1

= ν
sa
4
√
3
cos 3φk, (4)

where φk is an angle between k and K.
The effective mass m1 
 m2 is directly determined

by the trigonal spectrum warping, and the large value of
m1 follows from the warping smallness. The sign of m1
is determined by ν cos 3φk. If ν cos 3φk > 0, electrons
and holes tend to bind, or else to run away from each
other. Thus, the binding of an indirect pair is permitted for
ν cos 3φk > 0. Apart from the conic point, this condition
transforms to

(1 + u + v−) < 0 ∧ (1 + u + v+) < 0∨
(1 + u + v−) < 0 ∧ (1 + v− + v+) < 0∨ (5)
(1 + u + v+) < 0 ∧ (1 + v− + v+) < 0,

where u = cos akx, v± = cos((kx ± √
3ky)a/2).

To find the indirect exciton states analytically, we solved
the Schrödinger equation with the Hamiltonian (3) using
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Figure 3 Radial sections of Figure 2 at fixed angles in degrees
(marked). Curves run up to the ends of exciton spectrum.
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the large ratio of effective masses. This parameter can be
utilized by the adiabatic approximation similar with the
problem of molecular levels. Coordinates 1 and 2 play a
role of heavy ‘ion’ and ‘electron’ coordinates. At the first
stage, the ion term in the Hamiltonian is omitted, and the
Schrödinger equation is solved with respect to the elec-
tron wave function at a fixed ion position. The resulting
electron terms then are used to solve the ion equation.
This gives the approximate ground level of exciton ε(k) =
sk − εex(k), where the binding energy of the exciton is
εex(k) = π−1skg2 log2(m1/m2) (the coefficient 1/π here
is found by a variational method).
A similar reasoning for the direct exciton gives negative

massm1 = −32/(ksa2(7−cos 6φk)). As a result, the direct
exciton kinetic energy of the electron-hole relative motion
is not positively determined and that means the impos-
sibility of binding of electrons with holes from the same
cone point.

Results and discussion
Figure 1 shows the domain of indirect exciton existence in
the momentum space. This domain covers a small part of
the Brillouin zone.
The quantity εex(k) essentially depends on the momen-

tum via the ratio of effective masses m1/m2. Within
the accepted assumptions, εex is less than the energy of
unbound pair sk. However, at a small-enough dielectric
constant χ , the ratio of both quantities is not too small.
Although we have no right to consider the problem with a
large g in the two-particle approach, it is obvious that the
increase of the parameter g can only result in the binding
energy growth.
Besides, we have studied the problem of the exciton

numerically in the same approximation and by means of
a variational approach. Figure 2 represents the depen-
dence of the exciton binding energy on its momentum
for χ = 10. Figure 3 shows the radial sections of the
two-dimensional plot. The characteristic exciton binding
energies have the order of 0.2 eV.
All results for embedded graphene are applicable to

the free-suspended layer if the interaction constant g is
replaced with a smaller quantity g̃, which is renormalized
by many-body effects. In this case, the exciton bind-
ing energy becomes essentially larger and comparable to
kinetic energy sk.
We discuss the possibility of observation of the indirect

excitons in graphene. As we saw, their energies are dis-
tributed between zero and some tenth of eV that smears
up the exciton resonance. The large exciton momen-
tum blocks both direct optical excitation and recombina-
tion. However, a slow recombination and an intervalley
relaxation preserve the excitons (when generated some-
way) from recombination or the decay. On the other
hand, the absence of a low-energy threshold results in

the contribution of excitons in the specific heat and the
thermal conductivity even at low temperature.
It is found that the exciton contribution to the specific

heat at low temperatures in the Dirac point is proportional
to (gT/s)2 log2(aT/s)). It is essentially lower than the elec-
tron specific heat ∝ (T/s)2 and the acoustic phonon
contribution ∝ (T/c)2, where c is the phonon velocity.
Nevertheless, the exciton contribution to the electron-
hole plasma specific heat is essential for experiments with
hot electrons.

Conclusions
In conclusion, the exciton states in graphene are gapless
and possess strong angular dependence. This behavior
coheres with the angular selectivity of the electron-hole
scattering rate [5]. In our opinion, it is reasonable to
observe the excitons by means of high-resolution electron
energy loss spectroscopy of the free-suspended graphene
in vacuum. Such energy and angle-resolving measure-
ments can reproduce the indirect exciton spectrum.
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