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receptors blocks zinc release from hippocampal
mossy fibers
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Abstract

Background: The hippocampal CA3 area contains large amounts of vesicular zinc in the mossy fiber terminals
which is released during synaptic activity, depending on presynaptic calcium. Another characteristic of these
synapses is the presynaptic localization of high concentrations of group Il metabotropic glutamate receptors,
specifically activated by DCG-IV. Previous work has shown that DCG-IV affects only mossy fiber-evoked responses
but not the signals from associational-commissural afferents, blocking mossy fiber synaptic transmission. Since zinc
is released from mossy fibers even for single stimuli and it is generally assumed to be co-released with glutamate,

the aim of the work was to investigate the effect of DCG-IV on mossy fiber zinc signals.

Results: Studies were performed using the membrane-permeant fluorescent zinc probe TSQ, and indicate that
DCG-IV almost completely abolishes mossy fiber zinc changes as it does with synaptic transmission.

Conclusions: Zinc signaling is regulated by the activation of type Il metabotropic receptors, as it has been
previously shown for glutamate, further supporting the corelease of glutamate and zinc from mossy fibers.
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Background

Zinc is one of the most influent transition metals
present in the brain and has an important role in various
neuronal processes, such as protein activation and
neurotransmission [1,2]. Free or weakly-bound zinc is
sequestered in the synaptic vesicles of zinc-containing
neurons, constituting most of the histochemically react-
ive zinc in the brain [3]. Some glutamatergic neurons, in
particular the granule cells of the hippocampus contain
large amounts of zinc, which is present in their synaptic
terminals, the mossy fibers [3,4]. Cell depolarization and
subsequent calcium influx evoke zinc release from pre-
synaptic vesicles [5] that interacts with multiple recep-
tors and channels, either inhibiting or enhancing their
responses [6-10]. It is generally assumed that zinc is
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co-released with glutamate, although no direct evidence
exists for that assumption [4,11]. Zinc is also released
from mossy fibers following low levels of stimulation,
which was measured with permeant fluorescent zinc indi-
cators, such as TFLZn [12] and N-(6-methoxy-8-quinolyl)-
para-toluenesulfonamide (TSQ) [13,14] or the impermeant
zinc dye FluoZin-3 [15]. The nature of TSQ zinc sig-
nals was tested using the very high-affinity and specific
permeant zinc chelator,N,N,N,N'tetrakis(2-pyridylmethyl)
ethylenediamine (TPEN), as well as the impermeant zinc
chelator Ca-EDTA [16]. It was observed that these signals
are abolished by TPEN but remain in the presence of
Ca-EDTA.

However, it should be noted that stimulation of the
mossy fiber pathway may also evoke electrical activity in
a zinc-poor synaptic system, the associational/commis-
sural fibers, which are also present in that region of the
hippocampus [4,17,18]. Metabotropic glutamate (mGlu)
receptors are involved in various synaptic functions in
the central nervous system [19,20]. The mossy fibers
have very specific characteristics, including the presence
of group II mGlu receptors, which inhibit glutamate
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release and, in consequence, synaptic transmission [21].
It was observed that application of a potent group II-
selective mGlu receptor agonist (2S,1'R,2'R,3'R)-2-(2,3-
dicarboxycyclopropyl)glycine(DCG-IV) reversibly and
differentially reduced the field potentials and presynaptic
calcium signals [17,18,22] in hippocampal slices. In order
to observe the relationship between the effect of the acti-
vation of group II mGlu receptors and zinc transients ob-
tained from mossy fiber stimulation, we have investigated
the action of DCG-IV on presynaptic zinc signals, using
the fluorescent zinc indicator TSQ. It is shown that
the application of DCG-IV reversibly blocks zinc signals
evoked by single stimuli, while the synaptic activity was
also significantly reduced. These results indicate a rela-
tionship between glutamate and zinc release in mossy
fibers, reinforcing the idea that zinc is co-released with
glutamate.

Optical traces represent fractional changes in fluores-
cence (AF/F), where AF represents changes in fluorescence
after stimulation and F the resting value of fluores-
cence, corrected for autofluorescence. All stimuli were
given at baseline stimulus strength, which is the average
of the first ten pulses delivered at the beginning of the ex-
periment. Data are expressed as mean + S.E.M. Statistical
significance was evaluated using the Mann-Whitney U
test (p <0.05). Drugs used were: TSQ (Molecular Probes
Europe BV, Leiden, NL) CNQX, D-APV and DCG-IV
(Tocris Cookson, Bristol, UK).

Results

Figure 1 shows the results of experiments designed to
determine the effect of the group II mGlu receptors
agonist DCG-IV, on the zinc signals and on the corre-
sponding field potentials. The upper part (Figure 1a) is a
schematic representation of a hippocampal brain slice,
with the main areas of the hippocampus, the electrode
arrangement, and the region from where the optical sig-
nals were detected. The middle part (Figure 1b) shows
the normalized pooled data of the zinc signals and also
sample zinc transients. As can be seen, the zinc changes
were almost completely and reversibly abolished by
DCG-IV. In the presence of this drug, the amplitude of
the zinc signals at 25-30 min after its application, de-
creased to 13+8% (mean+SEM., n=5; p<0.05) of
baseline. The right side of this panel shows representative
zinc traces measured before, during the application and
after washout of DCG-IV. The lower part (Figure 1c)
presents the effect of DCG-IV on the corresponding
population spikes and also sample field potentials. In
these experiments, the amplitude of the population spikes
of the somatic field potentials was markedly reduced to
19+5% (n=7, p<0.05) of baseline values, indicating
a correspondence between the zinc transients and field
potentials.
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For a comparison of the effect of DCG-IV on zinc and
field potentials, data representing the normalized ampli-
tude of these signals, in the absence and presence of
DCG-1V, is summarized on the bar graph of Figure 2.
This figure includes also the effect of CNQX (10 pM)
and D-APV (50 pM), antagonists of AMPA and NMDA
receptors, respectively, on the same signals, in order to
verify their pre- or postsynaptic nature.

The zinc transients were maintained in the presence
of CNQX (10 uM) and D-APV (50 puM), which block
AMPA and NMDA receptors, respectively, abolishing, as
shown, synaptic transmission (Figure 2). In the presence
of both drugs the normalized values of the zinc and field
potentials were 98+7% (n=5), 101+7% (n=>5) and
9+ 8% (n=7), respectively, of the control values obtained
in ACSEF. These observations indicate that both zinc and
calcium transients are presynaptic.

Discussion

In this study, we investigated the presynaptic inhibitory
action at the hippocampal mossy fiber synapses, by
group II mGlu receptors. We have observed that appli-
cation of the group II mGlu receptors agonist DCG-IV
has a similar effect on the presynaptic zinc signals and
field potential responses induced by single stimuli, in
agreement with the results obtained measuring extracel-
lular zinc changes [15]. The degrees of inhibition of both
the electrical and the calcium signals, being the first
ones more affected by DCG-1V, are in agreement with
those reported in previous works [17,18,23]. The cal-
cium results, obtained using the fluorescent indicator
Fura-2 [24], indicate that the amplitude of the calcium
signals was reduced to 62 + 8% of the control values
(n=5, p<0.05), in the presence of DCG-IV. This inhib-
ition is approximately three to four times smaller than
that observed on both the zinc and field potential signals
in this study, in accordance with an about fourth-power
relationship between presynaptic calcium transient and
vesicular transmitter release [25].

The suppression of glutamate release evoked by the
activation of group II mGlu receptors in mossy fiber ter-
minals, maybe, at least in part, due to the inhibition of
forskolin-stimulated cyclic adenosine mono phosphate
(cAMP) formation [26,27]. It was observed that an in-
crease in cAMP concentration within mossy fiber termi-
nals leads to persistent enhancement of transmitter
release [28,29], suggesting that a decrease in cAMP con-
centration is likely to be involved in this DCG-IV in-
duced inhibition of transmitter release process. Another
possible contribution for the observed inhibition is the
reduction of action potential-induced calcium influx into
presynaptic terminals by DCG-1V, followed by the sup-
pression of transmitter release. Previous observations in-
dicate that mGlu receptor 2 activation can inhibit zinc
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Figure 1 Diagram of the hippocampal slice and presynaptic zinc signals and field potentials obtained in the presence of DCG-IV.

a. Hippocampal slice scheme representing different hippocampal areas, CA1, CA3 and dentate gyrus (DG), and the mossy fiber tract (mf). It also
shows the location of the injection site (I) of the calcium indicator Fura-2, the stimulation electrode (S) and the recording electrode (R). The dark
squared area represents the region from where the optical signals were detected. b. Presynaptic zinc signals evoked by single stimuli are
significantly and reversibly reduced by the application of DCG-IV. Normalized amplitude of zinc signals from experiments with (closed circles) and
without (open circles) the mGlu receptor agonist DCG-IV (left side), and sample zinc transients (n = 5), (right side). c¢. Normalized amplitude of the
population spikes (left) and sample field potentials (right) from the same experiments. The sample traces A-C were recorded at the times indicated
by the letters in the graphs. The bars represent the period of application of the solutions containing DCG-IV. The slices were stimulated

at the control frequency (16 mHz). The points in the graphs represent the mean value + S.EM. All stimuli were delivered at baseline
stimulus strength.

relase [30] and N-type voltage-gated calcium channels
[31,32], which mediate glutamate release. Down-regulation
of these channels, which are involved in synaptic transmis-
sion at the mossy fiber-CA3 synapses in the hippocampus
[33], may result in the suppression of calcium-dependent
glutamate release.

Since mossy fiber zinc and glutamate are assumed to be
co-released, and both processes are calcium-dependent,

the mentioned DCG-1V-evoked cAMP and N-type calcium
channel processes are also expected to affect zinc release.

Conclusions

The results show that the mGlu receptor agonist DCG-
IV causes a large inhibition of both zinc release and syn-
aptic transmission but a small reduction of the calcium
transients. Thus, as observed for glutamate, synaptic zinc
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Figure 2 Effect of DCG-IV and CNQX + D-APV on zinc and field potential signals. a. sample zinc signals (left side) and field potentials
(right side) evoked by single stimuli (n=5), b. Bar graph representing the averaged amplitude of five records for each type of signals,
obtained in ACSF (control), DCG-IV (1 uM) or CNQX (10 uM) 4+ D-APV (50 uM). The bars represent the mean value + S.EM. All stimuli were

dynamics depends on the activation of presynaptic group
II mGlu receptors.

Methods

The experiments were performed on 4-6 weeks old
Wistar rats. The animals were anesthetized with ethyl
ether and quickly decapitated. Transverse brain slices
(400 pm thick) were obtained from the hippocampus.
They were then transferred to the experimental chamber
where they were continuously perfused (1.5-2 ml/min),
with oxygenated artificial cerebrospinal fluid (ACSF) at
30-32°C. The ACSF solution contained (in mM): NaCl
124; KCl 3.5; NaHCO3 24.0; NaH,PO, 1.25; MgCl, 2.0;
CaCl, 2.0 and glucose 10.0. The stimulation was delivered
by means of stainless steel bipolar electrodes placed on
the mossy fibers of the dentate granule cells (DG), which
form synapses with the proximal dendrites of CA3 neu-
rons (Figure 1). Single current pulses (200-500 pA;
100 ms), equal to 40% of the saturation value, were applied

every minute (at 16 mHz). These evoked field potentials
that were recorded extracellularly at the pyramidal cell
layer, using glass microelectrodes (1-10 MQ) containing a
2 M NaCl solution. The zinc studies were performed
in brain slices pre-loaded (60-90 min, 35-39°C) with
the membrane-permeant fluorescent zinc indicator TSQ
(30 uM), as previously described [14]. TSQ is character-
ized by a very low fluorescence in the free form, but a
large intensity of fluorescence, without changes in wave-
length, following zinc complexation. Thus, zinc release
will lead to a decrease in the fluorescence of the TSQ/Zn
complex, since the free zinc concentration in the synaptic
cleft is about four orders of magnitude lower than inside
the vesicles. Presynaptic calcium signals were detected
using the permeant form of the fluorescent calcium indi-
cator Fura-2, which was pressure-injected in the mossy
fiber tract as reported before [23]. The optical signals
were obtained in the region represented by the rectangle
shown in Figure 1, using a silicon photodiode and an
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optical setup for transfluorescence measurements. Light
was focused onto and collected from the brain slice, by
means of two identical objective lenses (40x N.A. 0.75,
Zeiss). For the zinc measurements, in which a tungsten/
halogen lamp (12, 100 W) was used, the excitation
(400 nm) and emission wavelengths were selected by
means of a linear variable interference filter (400-700 nm;
Schott), with slit widths of 0.6 mm, and a 500 nm long-
band pass filter, respectively. The signal from the photo-
diode after passing through an I/V converter with a 1 GQ
feedback resistance, was applied into an AC-coupled amp-
lifier with a low (1 Hz) cut-off frequency. The agonist of
group II mGlu receptors DCG-IV (1 uM) and 6-cyano-7-
nitroquinoxaline-2,3-dione (CNQX, 10 puM) and 2R-
amino-5-phosphonopentanoate (D-APV, 50 puM), which
block AMPA and NMDA receptor channels, were added
to the perfusion medium, the latter ones at the end of the
experiments. During the period (30 min) of application of
these drugs solutions, which were recirculated (100 ml),
control frequency stimulation (16 mHz) was delivered to
the mossy fibers.

All experiments were carried out in accordance with
the European Communities Council Directive. All efforts
were made to minimize animal suffering and to use only
the number of animals necessary to produce reliable sci-
entific data.
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