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Abstract

Background: Interactions between genes and their products give rise to complex circuits known as gene regulatory
networks (GRN) that enable cells to process information and respond to external stimuli. Several important processes
for life, depend of an accurate and context-specific regulation of gene expression, such as the cell cycle, which can be
analyzed through its GRN, where deregulation can lead to cancer in animals or a directed regulation could be applied
for biotechnological processes using yeast. An approach to study the robustness of GRN is through the neutral space.
In this paper, we explore the neutral space of a Schizosaccharomyces pombe (fission yeast) cell cycle network through
an evolution strategy to generate a neutral graph, composed of Boolean regulatory networks that share the same
state sequences of the fission yeast cell cycle.

Results: Through simulations it was found that in the generated neutral graph, the functional networks that are not
in the wildtype connected component have in general a Hamming distance more than 3 with the wildtype, and more
than 10 between the other disconnected functional networks. Significant differences were found between the
functional networks in the connected component of the wildtype network and the rest of the network, not only at a
topological level, but also at the state space level, where significant differences in the distribution of the basin of
attraction for the G1 fixed point was found for deterministic updating schemes.

Conclusions: In general, functional networks in the wildtype network connected component, can mutate up to no
more than 3 times, then they reach a point of no return where the networks leave the connected component of the
wildtype. The proposed method to construct a neutral graph is general and can be used to explore the neutral space
of other biologically interesting networks, and also formulate new biological hypotheses studying the functional
networks in the wildtype network connected component.
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Background
The fate of a cell, and an organism as a whole, is deter-
mined by the functioning of a complex cellular machinery.
An important part of this machinery, which determines
the downstream information, are the gene regulatory net-
works (GRN). GRN represents the indirect interaction
between genes by means of their products (proteins,
micro RNA, etc.). Accurate and context-specific regu-
lation of gene expression is essential for all organisms,
because vital tasks such as cell differentiation and cell
division, homeostasis, apoptosis, metabolism and signal
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transduction, depend on this regulation. Studies of sev-
eral processes have been developed through the recon-
struction and analysis of gene regulatory networks that
underlie these processes. For example, the circadian clock
of Neurospora and Arabidopsis thaliana [1], cell cycle
of Saccharomyces cerevisiae [2], embryonic segmenta-
tion of Drosophila melanogaster [3], flower development
of A. thaliana [4,5], T-lymphocytes activation of human
immune system [6], mammalian cell cycle [7] and the SOS
pathway of E. coli [8], among others.
The identification of the topology, regulatory nodes of

these networks and the hierarchical relationship between
them, is essential to understand a particular process (its
behavior and dynamic). However, because the molecular
interactions within a gene regulatory network are very
complex, the functional integration of the network cannot
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be understood only by intuitive reasoning, therefore, the
need to incorporate mathematical models for its study
arises. One of the most popular models to describe and
analyze the behavior of GRN are Boolean networks, intro-
duced by Stuart Kauffman in 1969 [9]. Boolean networks
give a first idea of the qualitative dynamics of a gene reg-
ulatory network represented by the temporal evolution of
the protein states. In this network, each node represents
a gene or protein, that can be either active (node value 1)
or inactive (node value 0), and the edges represents reg-
ulatory relationships between genes. The dynamics of the
network is computed by a set of Boolean functions for
each node and an updating scheme (synchronous or asyn-
chronous). For a Boolean network with n nodes, there are
2n possible states, and given the deterministic nature of
this model, the network will converge to steady states, also
known as attractors. There are two types of attractors,
fixed point, where once the network reaches that state it
can never leave it. The other is the limit cycle, where the
network returns to a previous state with a certain period-
icity. One can also consider a non-deterministic approach,
using a fully asynchronous updating scheme, where nodes
are updated randomly. Fixed point attractors are invariant
to changes or the selection of the updating scheme, nev-
ertheless, limit cycles and the size of basins of attractions
may change drastically.
Boolean networks are used to investigate the organi-

zational principles of a network and how this influences
their robustness. This mathematical model is commonly
reconstructed by three different approaches: (1) based on
very detailed knowledge of the process to be modeled
(regulatory relations identified in previous publications)
[10], (2) from transcriptional analysis of a set of knockouts
or mutants [11], and (3) from transcriptional time-series
data of wild-type organisms [12]. Inferring the topology
of a Boolean network from a set of experimental data
involves two main steps: first, the experimental data (gene
expression profiles or protein concentrations) must be
discretized into maximally informative binary state tran-
sitions (0 or 1 values). The second step uses these binary
profiles to learn the Boolean network that best captures
the Boolean trajectories.
In this paper, we consider the Boolean network model

for the fission yeast cell cycle [10]. The cell cycle involves
four phases, G1 (Gap 1), S (Synthesis), G2 (Gap 2) and
M (Mitosis). In the G1 phase, cells increase in size. Fur-
ther, inside this phase there exist an important checkpoint,
called “Start point” in yeast. G1 checkpoint makes the
key decision whether the cell should divide (enter to the
S phase), delay division, or enter a resting stage. This
decision will depend on environmental conditions, that
increase or not the cell size (final signal). In the S phase,
DNA replication occurs, in order to duplicate the genetic
material. During the gap (G2) between DNA synthesis and

mitosis, the cell will continue to grow. The G2 checkpoint
control mechanism ensures that everything is ready to
enter the M (mitosis) phase and divide. Finally, when the
cell enters into the M phase, cell growth stops and cel-
lular energy is focused on the orderly division into two
daughter cells. A checkpoint in the middle of the mitosis
(metaphase checkpoint) ensures that the cell is ready to
complete cell division. After the M phase, the cell comes
back to the stationary G1 phase, waiting for the signal
for another round of division. It is important to note that
the progress through the cell cycle is unidirectional and
irreversible, this ensures the proper functioning of the
cell cycle.
Given the mathematical representation of the fission

yeast cell cycle through a Boolean network, it is of interest
to analyze the robustness of the model under perturba-
tion. Previously, the dynamical robustness of this model
has been studied in [13]. But not its topological (con-
nectivity) robustness. An approach to study the topolog-
ical robustness of a GRN, in the sense of modifying the
connections (adding or removing edges) of the network,
and analyzing the resulting function of the network is
through the neutral space introduced in [14]. The neu-
tral space consists of different regulatory networks that
share the same function. It can be visualized and ana-
lyzed through a neutral graph (also known as a neutral
network) developed in [15,16] that is an undirected graph
where each node represents a regulatory network. If two
nodes are connected in the neutral space this means that
the Hamming distance (number of entries in which two
adjacency matrices differ) between the interaction (adja-
cency) matrix of one network and the other is one. The
connectivity of a neutral graph can give an insight of
the topological robustness of the regulatory networks. A
neutral graph with large connected components (nodes)
can be considered of having high robustness whereas
a neutral graph with many small connected compo-
nents (or disconnected) can be considered of having low
robustness [15].
In order to construct a neutral graph, we need to con-

struct Boolean regulatory networks that have a certain
property in common, this opens the opportunity to use
intelligent computational techniques, in particular evolu-
tionary computation and related techniques to construct
networks with predefined properties. Evolutionary com-
putation is a subfield of artificial intelligence, inspired
from natural evolution, dedicated to solve complex opti-
mization problems. It consists in a group of algorithms,
that using the basic elements of biological evolution,
explores the solution space through genetic operators like
crossover and mutation, and selects the fittest candidate
solutions. An example of these algorithms corresponds to
Genetic Algorithms (GAs) introduced by John H. Holland
in the 1970s [17].
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Following this line of research, in [18] simulated anneal-
ing, which is based on the annealing treatment of solids
consisting in the physical process of heating up a solid
until it melts and cooling it down slowly until it crystal-
lizes, changing the properties of the solid, was used to
construct Boolean networks with predefined attractors for
sequential updating mode only. The swarm intelligence
technique called the bees algorithm, which is inspired in
the food search strategies used by honeybees, has been
formulated to construct Boolean networks with prede-
fined attractors [19] and used to build synthetic networks
of the budding yeast cell-cycle in [20], that promote cell
proliferation for biotechnological applications. In [21], a
reverse engineering technique was applied to the recon-
struction of the mammalian cell cycle network using
the binary gene expression data generated by the logical
model in [7]. This reverse engineering method used an
information theoretic approach combined with a modi-
fied version of the original bees algorithm. More recently,
extensions to that work have been presented in [22] where
synthetic networks are constructed that share the same
limit cycles (of length seven) and the fixed point of the
mammalian cell cycle network.
In this paper we explore the neutral space of the

Schizosaccharomyces pombe (fission yeast) cell cycle regu-
latory network. For this, we propose an evolutionary com-
putation algorithm, in particular, an evolution strategy
(ES), as a metaheuristic optimization algorithm that uses a
mutation operator as its main search strategy (unlike GAs
that use crossover and mutation) to generate a neutral
graph of Boolean regulatory networks that share the same
state sequences of the fission yeast cell cycle. We analyze
the resulting neutral graph and compare characteristics
of the regulatory networks that appear in the connected
component of the original yeast cell cycle network with
the networks that are not in the connected component,
thus, given us a notion of the robustness of the model.

Results and discussion
Proposed evolution strategy (ES) for neutral graph
construction
As mentioned in the background, a neutral graph is a
metagraph (network of networks) where each node repre-
sents a regulatory network that produces the same tem-
poral evolution for a set of states out of the 2n possible
configurations. In this paper, we considered the ten state
sequences shown in Table 1. Following the terminology
used in [14], regulatory networks that reproduce this tem-
poral evolution will be called functional networks, while
the original fission yeast cell cycle network will be called
wildtype network, which is a functional network as well
given the previous definition. Although the wildtype net-
work and a functional network will share the same state
sequences of Table 1, they do not necessarily share the

dynamics produced by the remaining 210 − 10 states. The
connectivity in a neutral graph is given by the Hamming
distance of the interaction matrices (adjacency matrices)
of the functional networks. Two nodes are connected if
the Hamming distance of the respective functional net-
work’s interaction matrices are equal to one, i.e., both
matrices differ in only one element. The search in the neu-
tral space for functional networks is huge, which makes
it a difficult problem. The search consists in finding the
weight matrix elements wij and the threshold vector ele-
ments θi that can replicate the desired state sequences. To
carry out the search for functional networks, we propose
an evolution strategy (ES) illustrated in the flow chart in
Figure 1. Preliminary results using this technique appear
in [23]. In what follows we will describe each stage.

Initial random candidate networks
A user defined parameter popSize indicates the size of
the initial population. These are generated in the fol-
lowing way. Using as a base the wildtype weight matrix
and threshold vector, a new candidate network (solution)
is obtained by changing ngh times the wildtype adja-
cency matrix and threshold vector. The parameter ngh is
selected randomly in the range of [1, 30], for every new
candidate network generated. The wildtype weight matrix
is changed using the following rule:

Rule 1

1. Select randomly a position (i, j) in the matrix.
2. If the position contains a non-zero number, then

replace by a zero.
3. Else, replace with a value selected randomly from the

following set {−2,−1, 1, 2}.

The wildtype threshold vector is changed using the fol-
lowing rule:

Rule 2

1. Select randomly a position i in the vector.
2. Replace with a value selected randomly from the

following set {−2,−1,−1/2, 0, 1/2, 1, 2}.

both rules are repeated ngh times.

Fitness evaluation
Each candidate network is evaluated in a fitness function
defined as follows. The fitness function for the Boolean
regulatory network B, is computed by the deviation of the
network’s output, defined by oi for each node i, and the
target value si (sequence of the cell cycle) for each node i:

fitness(B) = 1
10n

10∑
t=1

n∑
i=1

(oi(t) − si(t))2 (1)
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Table 1 Temporal evolution of sate vectors defining the fission yeast cell cycle

Time Start SK Cdc2/Cdc13 Ste9 Rum1 Slp1 Cdc2/Cd13* Wee1/Mik1 Cdc25 PP Phase

1 1 0 0 1 1 0 0 1 0 0 START

2 0 1 0 1 1 0 0 1 0 0 G1

3 0 0 0 0 0 0 0 1 0 0 G1/S

4 0 0 1 0 0 0 0 1 0 0 G2

5 0 0 1 0 0 0 0 0 1 0 G2

6 0 0 1 0 0 0 1 0 1 0 G2/M

7 0 0 1 0 0 1 1 0 1 0 G2/M

8 0 0 0 0 0 1 0 0 1 1 M

9 0 0 0 1 1 0 0 1 0 1 M

10 0 0 0 1 1 0 0 1 0 0 G1

where n is the number of nodes in the network, and 10 is
the number of state vector sequences (from Table 1) that
the network must contain.

Rank networks
Given that the fitness function defines the deviation of the
network’s output with respect to the desired target, the ES
is formulated to solve a minimization problem, therefore,
the candidate networks are ranked from the less deviated
to the more deviated.

Select topm%
A user defined parameter m indicates the percentage of
the ranked top solutions to be selected.

Mutation
Using the topm% solutions, (popSize − popSize× m%)/2
new candidate networks are generated using the following
rule:

Rule 3
1. Select randomly one of the top m% solutions.
2. Mutate the selected solution. This is done by

applying Rule1 and Rule2 with ngh = 1.

this is repeated until completing the (popSize− popSize×
m%)/2 new candidate networks.

Random candidate networks
To complete the popSize, the remaining (popSize −
popSize×m%)/2 is filled with random candidate networks

Initial random 
candidate 
networks

Found 
solution?

Random 
candidate 
networks

Fitness 
evaluation

Finish

Rank 
networks

Select top  
m% 

Mutation 

New 
candidate 
networks

yes

no

Figure 1 Evolution strategy (ES) flow chart. The proposed ES was used to search for functional networks that compose the neutral graph.
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generated using Rule1 and Rule2 with ngh selected ran-
domly in the range of [1, 30], for every new candidate
network generated.

New candidate networks
The new population to be evaluated in the fitness func-
tion, thus, completing the loop, is composed by the top
m% solutions + the networks generates by the mutation
stage + the networks generated randomly.

Simulations
The proposed ES was used to construct a neutral
graph with functional networks that contain the fission
yeast cell cycle state sequences of Table 1. In order
to bound the search space, the elements of the weight
matrices were constrained to the following integer
values: {−2,−1, 0, 1, 2}, and the threshold vectors to:
{−2,−1,−1/2, 0, 1/2, 1, 2}. Also, popSize = 20, m% =
20% and max iterations =100.
The ES was used to find 10000 functional networks. His-

tograms of the resulting functional networks topologies
are shown in Figure 2, where Figure 2A shows the distri-
bution of the total number of edges (non-zero elements in
the weight matrices) in the functional networks, Figure 2B
shows the distribution of the number of positives edges
and Figure 2C the distribution of the negative edges. If we
consider that the wildtype network has a total of 27 edges
composed of 8 positive edges and 19 negative edges, we
can see from the histograms that in general the functional
networks are mostly concentrated in these values but they
can also have less or more edges then the wildtype.
The distribution of the edges changes if we separate

the functional networks that belong to the wildtype con-
nected component and the functional networks that are
not in the connected component. Figure 2D,E and F
are histograms from the wildtype connected component,
showing that they are more concentrated around the wild-
type topology whereas histograms G, H, and I are from
functional networks that are not in the connected compo-
nent, showing a larger dispersion.
For visualization purposes we sampled 100 and 1000

functional networks from the 10000 found by the ES, to
generate the neutral graph in Figure3A and Figure 3B
respectively. The wildtype network appears in red (Color
online). We notice that for functional networks not in the
wildtype connected component, it is rare to see other con-
nected components, in particular, in Figure 3B we see only
one additional connected component besides the wild-
type one, formed by two functional networks. From the
wildtype connected component we notice that functional
networks reach the wildtype in no more than 3 steps.
Biological robustness can be analyzed through the

topological robustness of the functional networks in the
wildtype connected component of the neutral graph. In

particular, one can identify which of the edges of these
functional networks appear more frequent, and which are
less frequent. This can give a notion of the regulatory rela-
tions that are required, in a mandatory way in some cases,
in order to complete the cell cycle sequence. For this sim-
ulation, out of the 10000 functional networks, 330 are in
the wildtype connected component. From these networks
in the connected component, the positive edge that acti-
vates the node Slp1 appears in 100% of the networks. This
connection to Slp1 is necessary to ensure the integrity of
the cell cycle, because slp1 mutant cells remain arrested
in metaphase [24], therefore, the state sequences to com-
plete the fission yeast cell cycle is interrupted in these
cells. Another interesting case to point out are the double
mutants rum1/wee1 and ste9/wee1 which are not viable
[25], therefore, all the networks in the wildtype connected
component contain the positive edges that activates Ste9,
Wee1 and Rum1, whereas, 0.6% of the non-connected
component networks do not present the edge that acti-
vates Ste9. In a similar way, 0.4% of the networks in the
non-connected component do not present the edge that
activatesWee1, and 0.5% do not present the edge that acti-
vates Rum1. Surprisingly, by analyzing the networks in
the wildtype connected component, only one connection
appears out of the norm, in 43,9% of the networks, this
is a positive edge from Ste9 to Cdc25. This change in the
topology of the wildtype network may allow the possibil-
ity to formulate new biological hypotheses which could
be tested.
The density of the basin of attraction of the G1 fixed

point of the functional networks in the wildtype con-
nected component (blue/dashed line) and the rest of the
networks (green/solid line) appears in Figure 4A for the
parallel update, B for a block sequential update, C for
a sequential update, and D for the fully asynchronous
update. We can appreciate that both densities are quite
different, regardless of the updating scheme, except for
the fully asynchronous. For the deterministic updating
schemes, we notice that while the functional networks
in the connected component have a basin of attraction
mostly concentrated between 700∼900 (the wildtype has
a basin of attraction of size 762 using the parallel update),
nevertheless, the rest of the networks show a density
that stretches out more. For the asynchronous update, we
notice that the size of the basin of attraction of theG1 fixed
point does not concentrate in a specific range of values as
do the deterministic updating schemes. It seems that each
initial state converges to one of the different attractors
with equal probability without having a particular prefer-
ence for the G1 fixed point as in the other deterministic
cases. Finally, Figure 5 shows the state transition graph for
the wildtype network using the parallel updating scheme,
Figure 6 shows the state transition graph for the wildtype
network using a block sequential updating scheme, and



Ruz et al. Biological Research 2014, 47:64 Page 6 of 12
http://www.biolres.com/content/47/1/64

22 24 26 28 30 32 34 36 38 40

Total number of edges

H
is

to
gr

am
0

10
00

20
00

30
00

40
00

A

7 8 9 10 11 12 13 14 15 16

Number of positive edges

H
is

to
gr

am
0

10
00

20
00

30
00

40
00

50
00

60
00

B

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Number of negative edges

H
is

to
gr

am
0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

C

26 27 28

Total number of edges

H
is

to
gr

am
0

10
00

20
00

30
00

40
00

D

8 9

Number of positive edges

H
is

to
gr

am
0

10
00

20
00

30
00

40
00

E

17 18 19 20

Number of negative edges
H

is
to

gr
am

0
50

0
10

00
15

00
20

00

F

22 25 28 31 34 37 40

Total number of edges

H
is

to
gr

am
0

50
0

10
00

15
00

G

7 9 11 13 15

Number of positive edges

H
is

to
gr

am
0

50
0

10
00

15
00

20
00

H

14 17 20 23 26 29

Number of negative edges

H
is

to
gr

am
0

50
0

10
00

15
00

I

Figure 2 Histograms of the functional networks topologies of the neutral graph. A Total number of edges; B Positive edges; C Negative
edges; D Total number of edges in the wildtype connected component; E Positive edges in the wildtype connected component; F Negative edges
in the wildtype connected component;G Total number of edges not in the wildtype connected component;H Positive edges not in the wildtype
connected component; I Negative edges not in the wildtype connected component.

Figure 7 shows the state transition graph for the wildtype
network using a sequential updating scheme. From these
state transition graphs, one can appreciate the large basin
of attraction for the G1 fixed point.

Conclusions
An evolution strategy was developed to construct a neu-
tral graph of Boolean regulatory networks that share the

same state trajectory of the fission yeast cell cycle net-
work [10]. Through simulations it was found that in the
generated neutral graph, the functional networks that are
not in the wildtype connected component have in gen-
eral a Hamming distance more than 3 with the wildtype,
and more than 10 between the other disconnected func-
tional networks.We found that there are significant differ-
ences between the functional networks in the connected
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A B

Figure 3 Neutral graph obtained using the proposed evolution strategy. (Color online) the red node represents the wildtype network.
A Neutral graph using 100 functional networks; B Neutral graph using 1000 functional networks.

component of the wildtype network and the rest of the
network, not only at a topological level, but also at the
state space level, where significant differences in the dis-
tribution of the basin of attraction for the G1 fixed point
was found for deterministic updating schemes, but not
for the fully asynchronous updating scheme. From the
results one can see that in general functional networks in
the wildtype connected component, can mutate up to no
more than 3 times, then they reach a point of no return
where the networks leave the connected component of the
wildtype.
Finally, although the proposed evolution strategy was

used for the fission yeast cell cycle model, it can be used to
construct a neutral graph of other biological models under
the Boolean network formalism. Moreover, the neutral
space analysis of GRNs, may allow us to formulate new
biological hypotheses studying the functional networks in
the wildtype connected component, for example, analyz-
ing which edges are in common, yielding a core structure
that could explain the preservation of the functionality of
the network.

Methods
Boolean networks
Let x be a finite set of n variables, x = {x1, . . . , xn}, with
xi ∈ {0, 1} for i = 1, . . . , n. A Boolean network is a pair
(G, F), where G = (V,E) is a finite directed graph; V
being the set of n nodes and E the set of edges. F is a
Boolean function, F : {0, 1}n → {0, 1}n composed of n

local functions fi : {0, 1}n → {0, 1}. Furthermore, each
local function fi depends only on variables belonging to
the neighborhood Vi = {j ∈ V|(j, i) ∈ E}. The inde-
gree of vertex i is |Vi|. The updating schemes are repeated
periodically, and since the hypercube is a finite set, the
dynamics of the network converges to attractors which are
fixed points or limit cycles, defined by

• Fixed point: xi(t + 1) = xi(t) for i = {1, . . . , n}.
• Limit cycle: xi(t + p) = xi(t) for i = {1, . . . , n}.

where p > 1 is a positive integer called the period. The set
of states that can lead the network to a specific attractor
is called the basin of attraction. There are many ways of
updating the values of a Boolean network, some examples
are:

• Parallel or synchronous mode: where every node is
updated at the same time.

• Sequential updating mode: where in every time step,
every node is updated in a defined sequence.

• Block-sequential: the set of nodes, for a given
sequence, is partitioned into blocks. The nodes in a
same block are updated in parallel, but blocks follow
each other sequentially.

• Asynchronous deterministic: where in every time
step, one node is updated following a defined
sequence.

• Fully asynchronous: where in every time step, one
node is selected randomly to be updated.
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Figure 4 Density of the basin of attraction for the G1 fixed points of the functional networks in the wildtype component (blue/dashed
line) and the rest of the networks (green/solid line). A Using the parallel updating scheme; B Using the following block sequential updating
scheme (Start,SK,Cdc2/Cdc13)(Ste9,Rum1,Slp1,Cdc2/Cd13∗)(Wee1/Mik1,Cdc25,PP); C Using the following sequential updating scheme
(Start)(SK)(Cdc2/Cdc13)(Ste9)(Rum1)(Slp1)(Cdc2/Cd13∗)(Wee1/Mik1)(Cdc25)(PP);D Using the fully asynchronous updating scheme.

An alternative to working with arbitrary logical gates in
each node, is to consider a threshold Boolean network,
where updates of each node are computed by

xi(t + 1) = fi(x) = u

⎛
⎝ n∑

j=1
ωijxj(t) − θi

⎞
⎠ (2)

u(z) =
{
1, if z ≥ 0
0, if z < 0

with ωij the weight of the edge coming from node
j into the node i, and θi the activation threshold of
node i. The weights and thresholds are the network’s
parameters.

Fission yeast cell cycle network
Let us consider the Boolean network model for the cell
cycle of the yeast species Schizosaccharomyces pombe
(fission yeast) studied in [10] shown in Figure 8.
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Figure 5 Sate transition graph of the wildtype network using the parallel updating scheme. (Color online) The fix point states are
represented by red circles and limit cycle states are represented by blue circles.

Using a similar representation as in [10], the green/solid
edges are positive weights (activations), the red/dashed
edges are negative weights (inhibitory). The red/dashed
loops are self-degradation, which aremodeled mathemati-
cally by a negative weight. The gene updates are computed
by a variant of (2), as defined in [10]:

xi(t + 1) = u

⎛
⎝ n∑

j=1
wijxj − θi

⎞
⎠

=

⎧⎪⎨
⎪⎩

0, if
∑n

j=1 wijxj − θi < 0
1, if

∑n
j=1 wijxj − θi > 0

xi(t), if
∑n

j=1 wijxj − θi = 0

(3)

Figure 6 Sate transition graph of the wildtype network using a block sequential updating scheme. State transition graph using the following
updating scheme (Start,SK,Cdc2/Cdc13)(Ste9,Rum1,Slp1,Cdc2/Cd13∗)(Wee1/Mik1,Cdc25,PP). (Color online) The fix point states are represented by
red circles.
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Figure 7 Sate transition graph of the wildtype network using a sequential updating scheme. State transition graph using the following
updating scheme (Start)(SK)(Cdc2/Cdc13)(Ste9)(Rum1)(Slp1)(Cdc2/Cd13∗)(Wee1/Mik1)(Cdc25)(PP). (Color online) the fix point states are
represented by red circles.

The weight matrix and the threshold vector used in (3)
to generate the same dynamics exhibited in [10] appears
in Figure 9. A complete dynamical study of this model can
be found in [13].
In this model, three classes of molecules act: (1) The

major role is played by a cyclin-dependent protein kinase

complex: Cdc2/Cdc13 with Tyr-15, a residue of Cdc2; (2)
positive regulators of the kinase Cdc2/Cdc13: an indica-
tor of the mass of the cell that works as “Start”, “Start
kinase” (SK), a group of Cdk/cyclin complexes (Cdc2 with
Cig1, Cig2 and Puc1 cyclins), and the phosphatase Cdc25;
(3) antagonists of the complex Cdc2/Cdc13: Slp1, Rum1,

Cdc2/
Cd13*

SK

Start

Ste9
Cdc2/
Cd13 Rum1

Cdc25PP

Slp1
Wee1
/Mik1

Figure 8 The fission yeast cell-cycle threshold Boolean network. Using a similar configuration as [10], (color online) the green/solid edges
represent positive weights (activations), the red/dashed edges represent negative weights (inhibitory). The red/dashed loops represent self-degradation.
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Figure 9 Parameters for the fission yeast cell-cycle threshold Boolean network.W represents the weight matrix and � the threshold vector.

Ste9, and the phosphatase PP. In the G1 phase, without
the signal of cell size increase, the Cdc2/Cdc13 complex
is inactive due to its antagonists. When the cell achieves
a certain size, SK becomes active and a new round of
cell division will begin by means of the accumulation of
the Cdc2/Cdc13 complex. Cdc2/Cdc13 and SK dimers
switch off the antagonists Rum1 and Ste9/APC in order
to enter into the S phase. Moderate level on activity of
the Cdc2/Cdc13 complex is enough for entering the G2
phase but not the mitosis, since proteins kinase Wee1 and
Mik1 inhibits the activity of residue Tyr-15 of Cdc2. Then,
to achieve the M phase, the activity of the Cdc2/Cdc13
complex must increase, and this occurs due to Cdc25 that
reverses phosphorylation, removing the inhibiting phos-
phate group and increasing the activity of the complex.
High activity of the Cdc2/Cdc13 complex is represented
in the network by a separate node called Cdc2/Cdc13*.
An elevated activity level of Cdc2/Cdc13* at theM phase,
activates Slp1/APC (Anaphase-Promoting complex). Slp1
degrades Cdc13, therefore, the Cdc2/Cdc13* complex is
inhibited. At the end of the M phase the antagonists of
Cdc2/Cdc13 are reset and the cell reaches the G1 station-
ary state.
Using the parallel updating scheme, the cell cycle is

modeled by starting from an initial state vector at time
t = 1 and then the dynamics of the network produces
sequences of state vectors until t = 10, where the network
converges to a fixed point which represent the G1 phase.
Details of the previous sequences are shown in Table 1.
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