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Diabetic retinopathy: could the alpha-1 antitrypsin

be a therapeutic option?
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Abstract

might be beneficial.

inflammation, NF-kB

Diabetic retinopathy is one of the most important causes of blindness. The underlying mechanisms of this disease
include inflammatory changes and remodeling processes of the extracellular-matrix (ECM) leading to pericyte and
vascular endothelial cell damage that affects the retinal circulation. In turn, this causes hypoxia leading to release of
vascular endothelial growth factor (VEGF) to induce the angiogenesis process. Alpha-1 antitrypsin (AAT) is the most
important circulating inhibitor of serine proteases (SERPIN). Its targets include elastase, plasmin, thrombin, trypsin,
chymotrypsin, proteinase 3 (PR-3) and plasminogen activator (PAl). AAT modulates the effect of protease-activated
receptors (PARs) during inflammatory responses. Plasma levels of AAT can increase 4-fold during acute inflammation
then is so-called acute phase protein (APPs). Individuals with low serum levels of AAT could develop disease in lung,
liver and pancreas. AAT is involved in extracellular matrix remodeling and inflammation, particularly migration and
chemotaxis of neutrophils. It can also suppress nitric oxide (NO) by nitric oxide sintase (NOS) inhibition. AAT binds
their targets in an irreversible way resulting in product degradation. The aim of this review is to focus on the points
of contact between multiple factors involved in diabetic retinopathy and AAT resembling pleiotropic effects that
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Introduction

The overall prevalence of diabetic retinopathy (DR) in
diabetic patients is about 34% worldwide and it is the
leading cause of blindness in the working population
(16—64 years old) [1]. The underlying mechanisms of this
disease include degenerative and inflammatory changes as
well as remodeling processes of the extracellular-matrix
(ECM) leading to pericyte and vascular endothelial cell
damage that severely affects the retinal microcirculation.
In turn, this causes hypoxia, vascular endothelial growth
factor (VEGF) release and angiogenesis [2-5]. Neovessels
grow in the retina and also into the vitreous, and could in-
duce hemorrhages due to their fragile walls [6,7]. In ad-
vanced stages the development of vitreoretinal fibrosis
promotes retinal traction and detachment [8]. It has
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widely been demonstrated that this process is one of the
previous steps to blindness.

Unfortunately, the ophthalmic therapy for diabetic retin-
opathy is focused on severe stages of the disease. The
treatment is carried out when it reaches the so-called pre-
proliferative stage using pan-retinal photocoagulation;
development of macular edema is treated with focal
photocoagulation and anti-VEGF agents; presence of
retinal detachment requires vitreoretinal surgery [9].
The development of molecules to treat diabetic retinop-
athy in early stages is scarcely explored. New insights
into pharmaceutical molecules and the recent advances
in regenerative medicine should be exploited in order to
find a treatment for early DR.

Review

- AAT and inflammation

Protease-activated receptors

It is well known how alpha-1 anti-trypsin (AAT) binds
and inhibits serum serine proteases such as elastase,
trypsin, thrombin and proteinase-3 (PR-3) [10]. These
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serin proteases are considered key mediators of the in-
nate immune response [11,12] and can activate specific
receptors named protease-activated receptors (PARs) on
the membrane of immune cells such as neutrophils, eo-
sinophils and macrophages. PARs are a family of four re-
ceptors (PAR1-4) involved in the intracellular signaling
cascade and PAR-1 and PAR-4 appear to be essential
during inflammatory responses [13]. In neutrophils, cell
activation is accompanied by Akt (also known as protein
kinase B) phosphorylation, rise of intracellular Ca** and for-
mation of actin filaments, leading to better cell motility
[14]. The crucial role of PARs activation during disease pro-
gression was revealed in animal models of inflammation
such as gastrointestinal diseases, neuroinflammatory and
neurodegenerative processes, skin, or allergic responses
[11] and insulin-deficient murine type 1 diabetes models
[12]. Moreover, the expression of mRNA of the four mem-
bers of PARs was found in the postnatal eye and in the ret-
ina of adult rat [15]. PAR-2 is expressed in a variety of cells,
including neuronal tissue, leukocytes, and vascular endothe-
lial cells [16] and it was found involved in neovascularization
processes of proliferative retinopathies [17]. Furthermore,
PAR-2 has a link between pro-inflammatory and pro-
angiogenic effects mediated by TNF-a, via MEK/EK1/2
pathway in the retina [17]. In summary, the inhibition of
serine proteases that activate PARs could contribute to de-
creasing the inflammatory and pro-angiogenic process.

Reactive oxygen and nitrogen species

It is known that reactive oxygen species (ROS) are gener-
ated during diabetic retinopathy [18,19]. Particularly,
superoxide anion production by polymorphonuclear cells
(PMNSs), was found to be higher in patients with DR than
in patients without DR, suggesting that ROS may have a
role in retinopathy development [20]. In eosinophils, a tar-
get of AAT, trypsin was able to induce superoxide anion
production via PAR-2 [21]. Also reactive nitrogen species
(RNS) such as nitric oxide (NO) could be modulated by
AAT [22]. Du et al, observed a significant increase in
superoxide, NO, cyclooxygenase (COX)-2 and leukostasis
within retinal microvessels in a model of streptozotocin-
treated diabetic rats. These effects were suppressed using a
p38 mitogen-activated protein kinase (MAPK) inhibitor
[23]. However, the role of AAT in the activation of p38 and
ERK1/2 MAPK could not be demonstrated in iz vitro stud-
ies of murine RAW 264.7 macrophagic cells stimulated
with combined LPS and IFN-y [23]. Therefore the relation-
ship between AAT and superoxide anion production of NO
seems to be partly regulated via MAPK in diabetic retinal
microvessels, but not in cells of the innate immune system
such as macrophages. However, some evidences suggest
that the development of retinal neovessels requires the in-
volvement of macrophages [24,25]. The number of macro-
phages rises in the vitreous and in the retina of animals

Page 2 of 9

with oxygen induced retinopathy [26]. Also, a mutation of
macrophage colony stimulator factor was reported to
reduce retinal neovascularization [27]. These findings
support the hypothesis that the activation and migration
of macrophages contribute to the pathogenesis of
retinal neovascularization.

Neutrophil chemotaxis
In the absence of any exogenous stimuli, AAT inactivates
calcium-dependent cysteine protease calpain I (p-calpain)
and concomitantly induces random neutrophil migration
and polarization. Moreover, rho GTPases are rapidly acti-
vated, and neutrophils show increase phosphorylation of
ERK 1/2. Also, AAT inhibits neutrophil adhesion to fi-
brinogen [28]. Bergin et al. [14] have provided evidence
that AAT modulates neutrophil chemotaxis by association
with neutrophil membrane lipid rafts, interacting with the
glycosylphosphatidylinositol linked (GPI-linked) mem-
brane protein FcyRIIIb and inhibiting ADAM- 17 activity,
a tumor necrosis factor alpha converting enzyme. Neutro-
phil migration is a process that occur due to chemotaxis
[29], an event that is present in diabetic retinopathy [30].
On the other hand, glycosylated AAT can bind to IL-8, a
ligand for CXCR1 (chemokine receptor 1), and the AAT-
IL-8 complex formation can prevent IL-8 interaction with
CXCRI regulating neutrophil chemotaxis [14]. In response
to IL-8, the cell is activated resulting in actin filament
formation and cytoskeletal rearrangement, via Akt (also
known as PKB) phosphorylation and Ca **flux. Thus,
when IL-8 binds to AAT it cannot interact with CXCR1
and cell activation is inhibited (Figure 1).

CD40 and NFkB

It has been observed that CD154 (CD40 ligand) plays a key
role in the production of pro-inflammatory cytokines and it
has been linked to various autoimmune diseases with
microvascular complications, like diabetes mellitus [31-33].
In vitro studies using Jurkat E6.1 T-cells demonstrated that
the soluble form of CD154 (sCD154) is released from
T-cells by ADAM10 and ADAM17 upon CD40 ligation
[34]. Interestingly, a recent investigation performed in
CD40 knock-out mice showed that these animals exhib-
ited diminished inflammatory responses and they were
protected from the development of diabetic retinopathy,
suggesting that CD40 promotes the development of
early diabetic retinopathy [35].

It was observed that AAT was able to inhibit nuclear
transcriptional factor-kB (NF-kB) activation in a variety of
animal models preventing PMN chemotaxis and the de-
velopment of acute inflammation [36-38]. Activation of
NF-kB induced by diabetes and high glucose regulates a
pro-apoptotic program in retinal pericytes [39] and is
well known that these cells are affected early in diabetic
retinopathy [40].
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Figure 1 The interaction of AAT with Blood Cells and Miiller Cells might influence the development of diabetic retinopathy.
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The effect of AAT on tumor necrosis factor alpha (TNF-a)
was demonstrated in a microarray study in human endo-
thelial lung cells. The co-administration of AAT inhibited
25% of genes up-regulated by TNF-a including TNF-a-
induced self-expression. These effects were equally
achieved when oxidized AAT, a modified form of AAT,
lacking serine protease inhibitor activity was used [41].
AAT inhibited TNF-a receptor-1 up-regulation and sig-
nificantly reduced TNF-a secretion. These results were
associated with inhibition of TNF-a-converting enzyme
activity or ADAM17. Furthermore, AAT inhibited cal-
pain activity, whose activation by TNF-a contributed to
decreasing intracellular AAT concentrations. All these
data indicate that AAT initially facilitates acute re-
sponses of the endothelium to TNF-q, followed by se-
lective inhibition of TNF-a-induced-self amplification,
which may assist the vasculature in the resolution of
chronic inflammation [42].

Intermittent infusions of alpha 1-antitrypsin were
shown to be beneficial in the treatment of patients with
alpha l-antitrypsin deficiency [43] and augmentation
therapy caused decreased neutrophil infiltration [44,45].
Leukocytes and proteins that govern leukocyte adhesion
to endothelial cells play a causal role in retinal abnor-
malities characteristic of the early stages of diabetic ret-
inopathy, including diabetes-induced degeneration of
retinal capillaries [46,47]. These facts suggest a possible
beneficial use of AAT in early stages of DR.

Protective effect on beta pancreatic cells

Non-functional circulating AAT (probably due to exces-
sive non enzymatic glycation) was described in type 1
diabetes [48-53]. Additionally, levels of AAT in non-
obese diabetic mice (NOD) were found to be half of
those seen in the wild type strains [52]. These facts led
to the development of gene therapy strategies using re-
combinant adeno-associated virus-(AAV) carrying murine
AAT genes. As a result, AAV-AAT prevents type I diabetes
in NOD mice [54]. Alpha-1-Antitrypsin (AAT) has been
shown to reduce pro-inflammatory markers and protect
pancreatic islets from autoimmune responses in pre-
clinical studies [55]. Currently, clinical trials using recom-
binant AAT are being conducted in type 1 diabetic
patients (Table 1). Preliminary results of one study showed
better metabolic control probably through a protect effect
on beta pancreatic cells that lead to a halt in disease pro-
gression. Diabetic retinopathy and other complications
would benefit from this systemic therapy. In addition, vis-
ual scientists could consider the possibility to develop an

Table 1 Ongoing clinical trials using AAT in young
patients with type 1 diabetes

NCT Phase Age range (years) Source/dose of AAT (mg)
01304537 Il 10 to 25 Glassia®/40-60-80
01319331 I 6 10 45 Aralast NP
01183468 Il 810 35 Aralast NP
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ophthalmic treatment of AAT to further prevent or delay
diabetic retinopathy.

- AAT role in cell death

Many studies have determined the ability of AAT to in-
hibit caspases. These are involved in cell death by apop-
tosis, as inducers or effectors [56]. The role of AAT in
caspase-3 inhibition was described in murine lung endo-
thelial cells and in murine pancreatic beta cells [57,58].
Also, AAT was capable of inhibiting executing caspase-6
and -7 in lung microvascular endothelial cells [56].
Similar results were reported in animal models of dia-
betic retinopathy and also in diabetic patients. Activation
of retinal caspases, particularly caspase-3, lead to apop-
tosis of endothelial cells and pericytes [59,60]. The cap-
acity of AAT to inhibit caspases could be exploited in
order to protect microvasculature from early damage
induced by DR (Figure 1).

- Potential interaction between AAT and

Miiller cells

Similary to brain astrocytes, Miiller cells could produce
factors that induce the formation of tight junctions con-
ferring barrier properties to the retinal vessels [61]. They
synthesize or store a number of growth factors with
trophic or regulatory functions for various cell types in
the retina. These characteristics make an assessment of
Miiller cell function in diabetes relevant to two well-
known features of diabetic retinopathy: vascular leakage
and capillary obliteration. Indeed, microvascular cell
apoptosis occurs in human and experimental diabetic
retinopathy [62], and one of the mechanisms leading to
apoptosis is loss of survival signals provided by neigh-
boring cells [63]. On the other hand, Miiller cells might
release metalloproteases (MMPs) that promote the deg-
radation of extracellular matrix (ECM), along with the
evidence that MMPs promote cell migration and prolif-
eration. This strongly suggests that Miiller cells play an
important role in the control of cell and ECM interac-
tions that, in turn, facilitate the development of retinal
neovascularization (Figure 1).

It is noteworthy that Miiller cells are currently being
used in gene delivery. These cells transfected with plas-
mids or adeno-associated vectors (AAV) containing dif-
ferent constructions are a useful tool to explore different
pathways. The retina is an attractive structure for gene
therapy approaches because it is surgically approachable,
isolated due to the presence of the blood-retinal barrier
(BRB) and immunologically privileged. A study demon-
strated that accumulation of hypoxia-inducible factor-la
in Miiller cells induces the expression of VEGF, which in
turn, promotes increased MMP-2 expression and activity
in neighboring endothelial cells (EC). MMP-2 expression
was detected in endothelial cells of retinal neovessels
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from proliferative diabetic retinopathy (PDR) patients,
whereas MMP-2 protein levels were elevated in the
aqueous humor of PDR patients compared with healthy
patients [64]. The stability control of the microvasculature
through regulation of the extracelullar matrix (ECM) in
the retina is essential to avoid progressive development of
the disease. AAT could be involved in the control of ECM
because of its ability to inhibit MMP-12 and MMP-9. Fur-
thermore, gene therapy using AAT could be a suitable tool
for the inhibition of those changes.

The mRNA and protein levels of the complement recep-
tor C5aR were measured in human Miiller cells. C5aR was
found constitutively expressed in human Miiller cells. Up-
regulated C5aR expression in Miiller cells was promoted
by, prostaglandin E2 and hyperglycemia, either individu-
ally or synergistically. Signaling through C5aR on Miiller
cells up-regulated production of IL-6 and VEGE, which
promoted the proliferation of human retinal endothelial
cells and increased their permeability [65]. Furthermore,
IL-6 seems to be involved in the regulation of AAT since
human hepatocyte exposure to IL-6 increased the expres-
sion levels of AAT [66]. A recent investigation also found
increased IL-6 levels in diabetic animals [67]. This infor-
mation suggests that complement plays a role in disease
progression but how this could modulate the activity of
AAT and the relationship between AAT and C5aR remains
to be verified. However, the use of silencing strategies to
reduce the availability of the receptor C5aR in the retina
might be beneficial. Similar strategies have already been
used in retinal Miiller cells [68].

- AAT and extracellular matrix remodelling

MMPs are a family of enzymes capable of degrading es-
sentially all ECM components [69]. The two major matrix
degrading enzymes, known as MMP-2 and MMP-9 were
found in the vitreous of eyes with proliferative DR [70].
The main source of these MMPs in vivo may be retinal
pigment epithelial cells [71-73]. In the retina of diabetic
rats the activation of cytosolic MMP-9 and MMP-2 is an
early event, which is followed by their accumulation in the
mitochondria [74]. In humans, it was found a positive cor-
relation between vitreous levels of MMP-9 and VEGF with
proliferative DR [75], and levels of AAT were found in-
creased in different types of vitreoretinal diseases [76]. Be-
sides, another study found higher vitreous levels of AAT
in proliferative DR compared with vitreous levels seen in
cases without diabetes mellitus [77]. Another MMP,
MMP-12 is mainly produced by macrophages and called
both metallo-elastase or macrophage-elastase [78]. An
important factor in the development of vascular wall alter-
ations is the degradation of the elastic fiber major protein-
elastin [79]. It should be noted that hyperglycemia may
directly disrupt elastin formation [80]. In diseases such as
chronic obstructive pulmonary disease (COPD), it has
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been shown that AAT is capable of inhibiting the action of
MMP-12. Besides, preliminary results on streptozotocin
induced diabetes in rats intravitreally treated with human
alpha-1 proteinase inhibitor Prolastin® have shown a
higher expression of MMP-12 compared with controls
(Ortiz et al. unpublished data). AAT also inhibited MMP-9
in a mouse model of the autoimmune disease bullous
pemphigoid [81]. MMP-9 is an important IL-1 inducible
protease that is suspected of contributing to the progres-
sion of various diseases such as cardiovascular disease,
rheumatoid arthritis, COPD and multiple sclerosis [81,82].
These evidences together suggest that progression of
angiogenesis is associated with MMP’s and also with in-
flammation process in the vitreoretinal diseases. It is im-
portant to better understand these processes, to avoid the
progression of the disease.

Recent studies on the role of epigenetic patterns in
streptozotocin-induced diabetic rats reported an altered
pattern of methylation of histone H3K4 H3K9 located in
the promoter of MMP-9. The activity of Lysine-specific
demethylase 1 (LSD1) was found elevated by 50% and
gene and protein expression was 2-fold augmented.
Gene activation markers, acetyl H3K9 and NF-kB (p65
subunit) recruitment were found to be increased by
about 18-fold and 30-fold, respectively [83]. Epigenetic
changes modify the expression pattern of MMP’s occur-
ring at early stages in the development of DR. To ameli-
orate these changes the use of molecules that neutralize
MMP’s action seems to be necessary.

The outgrowth of mouse retinal ganglion cells (RGCs) is
co-regulated by MMP-2 and another membrane type 1
MMP (MT1-MMP) [84]. Furthermore, in an ex vivo ret-
inal explant model MMPs were shown to be beneficial fac-
tors in axonal regeneration. On the other hand, CD44
proteolysis in T-cells is involved in migration and function
of self-reactive T-cells, and a study using three MMP in-
hibitors in NOD mice found that MT1-MMP has a unique
involvement in type 1 diabetes development [85].

- Vessel walls and capillaries might be protected
by AAT

Pericyte loss and microaneurysm formation are hall-
marks of early changes in the retinas of diabetic pa-
tients [86]. After induction of diabetes in rodents,
reduction of pericyte number in retinal capillaries is
the earliest morphological change, followed by the for-
mation of increased number of acellular-occluded ca-
pillaries, occasional microaneurysms, and thickening
of the vascular basement membrane [87]. With pro-
gressive vascular occlusions in the human diabetic eye,
the retina responds with either a progressive increase
of vascular permeability leading to retinal edema, or
the formation of new vessels that finally proliferate
into the vitreous [5].
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Pericytes can control endothelial cell proliferation and
angiogenesis, both under physiological and pathological
conditions [88-94]. DR is morphologically characterized
by pathological changes in the retinal capillaries. The
primary and predominant characteristics are the loss of
pericytes and the progressive occlusion of capillaries
[3,86]. Several research groups [39,95,96] have reported
that cultured retinal pericytes exposed to high levels of
glucose (25—-30 mmol/l) for 7 days or more show a higher
rate of apoptosis than cells grown at 5.5 mmol/l glucose.
Besides, it has been found that retinal pericytes play a key
role in the stabilization of endothelial cells protecting
them from hypoxic insults and angiogenic stimuli [4].

Other research groups working on animals at 10 months
post diabetes-induction have reported significant increases
in the number of degenerate (acellular) capillaries and
pericyte ghosts compared to non-diabetic animals. How-
ever, when the inhibitor of p38 MAPK was used, all these
abnormalities were significantly diminished [23].

It is known that bone-marrow-stem-cells (BMSCs) ap-
pear to act primarily through their incorporation into the
retina as endothelial cells, microglia, and photoreceptors
[97-101]. Also, pericytes can be derived from BMSCs
[102], but this does not appear to be a predominant differ-
entiation pathway for these cells when injected into the
eye [98,103]. A recent study showed that pericytes ob-
tained from adipose-derived stem cells (ASCs) protect
against retinal vasculopathy. It is noteworthy that ASCs
express pericyte-specific markers in vitro, and when they
were intravitreally injected into the eye of a mouse model
of oxygen-induced-retinopaty (OIR) they were capable of
migrating and integrating in the vasculature [104].

The breakdown of the inner blood-retinal barrier
(iBRB) is also a feature of experimental diabetes in ani-
mal models, being observed as early as 1-2-weeks post-
diabetes induction in rodents [105,106]. It is well
established that this lesion occurs early in clinical dia-
betic retinopathy [107].

Advanced-glication-end products (AGEs) are known
to induce expression of the potent angiogenic agent
VEGF in the retina in vivo [108,109] and in retinal
cells in vitro [110,111]. It has been demonstrated that
in short-term diabetic rodents (3 weeks post induction
of streptozotocin 165 mg/kg) inhibition of AGEs pre-
vents disruption of iBRB [112]. Besides, AGEs medi-
ated expression and secretion of TNF-a in rat retinal
microglia [113].

We previously pointed out the capacity of AAT to in-
hibit protease-activated receptors, to diminish neutro-
phil chemotaxis, to hinder NFkB activation, to reduce
the effect of TNF-alpha and also to inhibit caspases.
Through these mechanisms described above AAT might
protect the structures of the vessel walls of retinal capil-
laries that are damaged in DR development.
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Figure 2 AAT might ameliorate DR progression inhibiting many key pathways of inflammation in early and advanced disease. AAT
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pericytes. In turn, the resulting production of NO could be decreased. Both ROS and AGEs stimulate production of two proinflammatory key
molecules: NFkb and TNF-a. Inactivation of these molecules may be performed partially by AAT. During chronic inflammatory processes AAT can inhibit
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VEGF: Vascular Endothelial Growth Factor C5aR: Complement 5a Receptor.

Figure 2 schematizes the above data regarding the in-
volvement of AAT in different pathways during DR
progression.

Conclusions

The above data support the potential protective role of
AAT in diabetic retinopathy as a result of its multiple ac-
tivities and anti-inflammatory properties. AAT is able to
inhibit key pro-inflammatory molecules such as NF-kB
and TNF-q, as well as all serine proteases involved in acti-
vating PARs. Taking into account that activated PARs con-
trol neutrophil chemotaxis and motility, a hallmark of

inflammatory chronic processes such as those present in
diabetic retinopathy, AAT could be administered in the
early or advanced stages of DR for the patients to achieve
a therapeutic benefit.

Anti-apoptotic properties inhibiting caspase 3, 6, 7
could be beneficial in the pathogenesis of DR and any
neurodegenerative process that may occur. Indirect anti-
angiogenic features in the retinal microvasculature could
decrease ECM remodeling. Because AAT could delay the
damage induced by DR, early use of AAT therapy may
be an effective strategy to prevent or hinder the progres-
sion of diabetic retinopathy.
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