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Abstract

An accurate frequency domain model is proposed to analyze the seismic response of
uniform vertical cylinders with arbitrary cross section surrounded by water. According
to the boundary conditions and using the variables separation method, the vertical
modes of the hydrodynamic pressure are firstly obtained. Secondly, the three-
dimensional wave equation can be simplified to a two-dimensional Helmholtz
equation. Introducing the scaled boundary coordinate, a scaled boundary finite
element (SBFE) equation which is a linear non-homogeneous second-order ordinary
equation is derived by weighted residual method. The dynamic-stiffness matrix
equation for the problem is furtherly derived. The continued fraction is acted as the
solution of the dynamic-stiffness matrix for cylinder dynamic interaction of cylinder
with infinite water. The coefficient matrices of the continued fraction are derived
recursively from the SBFE equation of dynamic-stiffness. The accuracy of the present
method is verified by comparing the hydrodynamic force on circular, elliptical and
rectangle cylinders with the analytical or numerical solutions. Finally, the proposed
model is used to analyze the natural frequency and seismic response of cylinders.

Keywords: Water-cylinder interaction, Surface wave, Water compressibility, Seabed
flexibility, Added mass, Wave and earthquake action

1 Introduction
With the development of the economy and transportation, more and more offshore

and coastal structures, such as bridge piers and offshore wind turbines, have been con-

structed in China in recent years. These structures may be under threat of earthquakes

in areas of active seismicity, for instance, the Eastern coast of China. It is well known

that water-structure interaction causes hydrodynamic pressure on the structure during

earthquakes and the additional hydrodynamic pressure has significant effect on the

dynamic responses and properties of the structure (Liaw and Chopra 1974; Han and

Xu 1996; Wei et al. 2013). Therefore, it is necessary to investigate earthquake-induced

hydrodynamic pressure on the offshore structures. The purpose of this study is mainly

to develop an accurate frequency-domain model of water interaction with cylinders of

arbitrary shape during earthquakes.
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The study on earthquake-induced hydrodynamic pressure has begun with the gravity

dams (Westergaard 1933) and the cantilever circular cylinders (Jacobsen 1949). For the

simple cross-section cylinder, it has been well studied by analytical method, such as cir-

cular cylinder (Liaw and Chopra 1974; Tanaka and Hudspeth 1988), elliptical cylinder

(Wang et al. 2018a, 2019a), and arbitrary smooth cross-section (Wang et al. 2018b).

Liaw and Chopra (1974) demonstrated that water compressibility was negligible for

slender cylinders but important for squat cylinders vibrating at high frequency.

Additionally, effect of the hydrodynamic pressure can be simply modeled as an ‘added

mass’ when the surface wave and water compressibility are ignored. Assuming the

structure rigid, the simplified formulas of the added mass for the earthquake induced

hydrodynamic pressure on circular cylinder and elliptical cylinders were given by Jiang

et al. (2017), Li and Yang (2013), and Wang et al. (2018a). Considering the flexible of

the structure, a simple and accurate added mass representation was also presented by

Han and Xu (1996). Later, Wang et al. extended this model to calculate the added mass

representation for a flexible vertical elliptical cylinder vibrating in water (Wang et al.

2019a). Considering water compressibility, Du et al. (2014) presented a simplified

formula in time domain for hydrodynamic pressure on rigid circular cylinders by intro-

ducing three dimensionless parameters including frequency ratio, wide-depth ratio and

relative height. Recently, considering the flexible of the circular cylinder, an accurate

and efficient time-domain model was proposed to analyze water-cylinder interaction

during earthquake (Wang et al. 2018c). In addition, the boundary integral method is

also can be used to analyze the earthquake responses of submerged circular cylinder

(Williams 1986).

The earthquake-induced hydrodynamic pressure on complex structures should be

solved by numerical method, such as the finite element method (FEM) (Liao 1986, Liaw

and Chopra 1974), finite-difference scheme (Chen 1997), and the finite element tech-

nique incorporating the infinite element (Woo-Sun et al. 1991). A special boundary

method based on the use of a complete and non-singular set of Trefftz functions was

presented for hydrodynamic pressure on axisymmetric offshore structures (Sun and

Nogami 2010; Avilés and Li 2001). The free surface wave effect on the water-cylinder

interaction is significant in wave force (Ti et al. 2020), but it has been validated that

free surface waves have less effect on the earthquake-induced hydrodynamic force on

cylinders by Liaw and Chopra (1974) and Li and Yang (2013).

Recently, coupled the FEM and artificial boundary condition was used to simu-

lated the water-fluid interaction system (Zhao et al. 2018). Wang et al. (2019b)

present an accurate and efficient numerical model to calculate the earthquake-

induced hydrodynamic pressure on uniform vertical cylinders with an arbitrary

cross section surrounded by water and the simplified formulas for the hydro-

dynamic pressure on round-ended and rectangular cylinder were also given. In

addition, the simplified methods for efficient seismic design and analysis of water-

surrounded circular tapered cylinders and composite axisymmetric structures were

also presented (Wang et al. 2018d, 2019c).

Recently, the scaled boundary finite element method (SBFEM), originally developed

to solve soil-structure interaction problems (Song and Wolf 1996, 1997), has been

successfully applied to many fields, such as stress singularities as occurring in cracks

(Song and Wolf 2002), elastostatics (Deeks and Wolf 2002), potential flow (Deeks and
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Cheng 2003), and non-linear analysis of unbounded media (Doherty and Deeks 2005).

The SBFEM is a novel semi-analytical, combining the advantages of the finite element

method (FEM) and the boundary element method (BEM), as reduction of the spatial

dimension by one but no fundamental solution required and eliminates singular

integrals. The SBFEM is also used to analyze wave interaction with a bottom-mounted

uniform porous cylinder of arbitrary shape (Meng and Zou 2012), a single and multiple

cylindrical structures of different cross sectional shape (Song et al. 2010).

In this paper, a substructure method in frequency domain is proposed for the analysis

of seismic response of the water-cylinder interaction system, where the section of cylin-

der can be general shape. Proposed approach is efficient in the water-cylinder dynamic

interaction. The SBFEM is used to simulate the earthquake-induced hydrodynamic

pressure on the uniform vertical cylinder with arbitrary cross section. Firstly, utilizing

the variables separation method, the three-dimensional wave equation governing the

compressible water is transformed into a two-dimensional (2D) Helmholtz equation.

Secondly, a dynamic-stiffness equation is obtained by utilizing the SBFEM. Thirdly, a

continued fraction is used to solve the dynamic-stiffness equation. Finally, the finite

element equation of the water-cylinder interaction system is obtained.

2 Mathematical formulation
The water-cylinder interaction system during earthquake is shown in Fig. 1. The struc-

ture can be assumed to be linearly elastic. The cylinder varies uniformly from bedrock

above water surface along z axis. The water is a horizontally infinite layer of the

constant depth h. The rigid bedrock has a horizontal earthquake motion of the

displacement time history along the direction of paralleling x axis. The cylinder is fully

submerged in water and treated simply as a one-dimensional structure governed by

beam theory. The water-cylinder interaction system is initially at rest.

Fig. 1 The water-cylinder interaction system during earthquake
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The governing equation of the water can be expressed in terms of its hydrodynamic

pressure, which is controlled by the wave equation, can be written as

∂2P
∂x2

þ ∂2P
∂y2

þ ∂2P
∂z2

þ ω2

c2
P ¼ 0 ð1Þ

where P(x, y, z, ω) is the hydrodynamic pressure expressed in frequency domain; ω is

the circle frequency; c = 1438m/s is the velocity of the wave propagate in water.

The boundary conditions are as follows

(1) At the bottom of the water, no vertical motion

∂P
∂z

¼ 0 ð2aÞ

(2) At the free surface of the water, the hydrodynamic pressure is zero

P ¼ 0 ð2bÞ

(3) At the water-cylinder interface, the outward normal acceleration of the water in

contact with the structure is equal the cylinder surface, which in frequency can be

written as

∂P
∂n

¼ ρwω
2Uxnx ð2cÞ

(4) At the infinity of the water, the hydrodynamic pressure is decayed to zero

P r¼∞j ¼ 0 ð2dÞ

where nx is the outward normal direction of the cylinder surface at the x axis compo-

nent; Ux is the displacement of the cylinder surface in x-direction; ρw = 1000 kg/m3 is

the mass density of water; and r is the distance from the cylinder.

Applying separation of the variables to the hydrodynamic pressure, the vertical modes

of the hydrodynamic pressure are obtained. Then, the hydrodynamic pressure P(x, y, z,

ω) can be separated out as (Liaw and Chopra 1974)
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P x; y; z;ωð Þ ¼
X∞
j¼1

P jU j cosλ jz ð3Þ

where Pj = Pj(x, y, ω) is the modal hydrodynamic pressure in xy-plane; λj = (2j − 1)π/2h;

and U j ¼ 2
h

R h
0 Uxnx cosλ jzdz is the corresponding modal displacement of the cylinder.

Then, the problem of three-dimensional water-cylinder interaction is reduced to

solve a two-dimensional Helmholtz equation with the boundary conditions (Liaw and

Chopra 1974) as follows

∂2P j

∂x2
þ ∂2P j

∂y2
þ ω2

c2
− λ2j

� �
P j ¼ 0 ð4Þ

∂P j

∂n
¼ ω2ρwnx ð5aÞ

P j r¼∞j ¼ 0 ð5bÞ

3 The SBFEM equation
3.1 Scaled boundary finite element transformation

SBFEM defines the domain V by scaling a defining curve Si relative to a scaling

center (x0 y0), which is chosen at the center of the cylinder in this study. As

shown in Fig. 2, the circumferential coordinate η is anticlockwise along the defin-

ing curve Si, which is closed in this case. The normalized radial coordinate ξ is a

scaling factor with 1 ≤ ξ ≤ ∞ for unbounded domain. The coordinate of a point on

the straight line element are denote as xb and yb, it can be expressed with mapping

function as

xb ¼ NX ð6aÞ
yb ¼ NY ð6bÞ

Fig. 2 The transform of Cartesian coordinate and scaled boundary
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with N¼ 1 − η
2

1þη
2

h i
is the mapping function; X¼ x1 x2f gT , Y¼ y1 y2f gT are the

nodes coordinates vector in Cartesian coordinate.

Therefore, the Cartesian coordinates are transformed to the scaled boundary

coordinate ξ and η with the scaling equations

x ¼ ξxb ð7aÞ
y ¼ ξyb ð7bÞ

The spatial derivatives in the two coordinate systems are related as

∂
∂ξ
∂
∂η

8>><
>>:

9>>=
>>;

¼ Ĵ ξ; ηð Þ
∂
∂x
∂
∂y

8><
>:

9>=
>; ð8Þ

with

Ĵ ξ; ηð Þ ¼ xb yb
ξxb; η ξyb; η

� �
¼ 1

ξ

� �
J ð9Þ

where J ¼ xb yb
xb; η yb; η

� �
is Jacobi matrix.

Then the derivatives with respect to x, y can be obtained

∂
∂x
∂
∂y

8><
>:

9>=
>; ¼ Ĵ ξ; ηð Þ − 1

∂
∂ξ
∂
∂η

8>><
>>:

9>>=
>>;

¼ b1
∂
∂ξ

þ 1
ξ
b2

∂
∂η

ð10Þ

with

b1 ¼ 1
Jj j

yb;η
− xb;η

� �
ð11aÞ

b2 ¼ 1
Jj j

− yb
xb

� �
ð11bÞ

For later use, note that (b2|J|),η = − b1|J|.

The infinitesimal area dV of the domain is calculated as

dV ¼ Ĵ ξ; ηð Þ�� ��dξdη ¼ ξ Jj jdξdη ð12aÞ

dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x;η2 þ y;η2

q
dη ð12bÞ

3.2 Scaled boundary finite element equation

To derive the finite element approximation, Eq. (4) is multiplied by a weighting

function w and integrating over the domain, it can be obtained as

Z
w

∂2P j

∂x2
þ ∂2P j

∂y2
þ ω2

c2
− λ2

� �
P j

� �
dV ¼ 0 ð13Þ

Substituting Eq. (10) into Eq. (13), we get
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Z
wb1T

∂
∂ξ

b1
∂P j

∂ξ
þ b2

∂P j

∂η

� �
þ 1
ξ
wb2T

∂
∂η

b1
∂P j

∂ξ
þ b2

∂P j

∂η

� �
þ w

ω2

c2
− λ2

� �
P j

� �
dV ¼ 0 ð14Þ

Substituting the transformation of the scaled boundary coordinate into Eq. (14), the

SBFEM equation can be obtained as

E0ξ
2P j;ξξ þ E0 − E1 þ E1

T

 �

ξP j;ξ − E2P j þ ω2

c2
− λ2

� �
M0ξ

2P j ¼ 0 ð15Þ

with the introducing coefficient matrixes are

E0 ¼
Z 1

− 1
B1

TB1 Jj jdη ¼ Δx
2 þ Δy

2

12 Jj j
2 1
1 2

� �
ð16aÞ

E1 ¼
Z 1

− 1
B2

TB1 Jj jdη ¼ Δx
2 þ Δy

2

24 Jj j
− 1 1
1 − 1

� �
−
Δy y1 þ y2ð Þ þ Δx x1 þ x2ð Þ

8 Jj j
− 1 − 1
1 1

� �

ð16bÞ

E2 ¼
Z 1

− 1
B2

TB2 Jj jdη ¼ 3 y1 þ y2ð Þ2 þ 3 x1 þ x2ð Þ2 þ Δx
2 þ Δy

2

24 Jj j
1 − 1
− 1 1

� �
ð16cÞ

M0 ¼
Z 1

− 1
NTN Jj jdη ¼ Jj j

3
2 1
1 2

� �
ð16dÞ

where B1 = b1N and B2 = b2N,η.

To simply the nomenclature, the same symbols are used for the assembled coefficient

matrices.

3.3 Dynamic-stiffness equation

The amplitude of the internal nodal forces Q(ξ), which are equal to the normal deriva-

tives of Pj, on a line with a constant ξ are addressed. Applying the principle of virtual

work yields

wTQ ξð Þ ¼
Z
Si

wT ∂P j

∂n
dS ð17Þ

The nodal forces can be obtained by substituting relevant formulas mentioned above

Q ξð Þ ¼ E0ξP j;ξ þ E1
TP j ð18Þ

For an unbounded medium, the amplitudes of the modal nodal forces R(ξ) are equal

to the opposite of the internal nodal forces Q(ξ), which can be expressed as

R ξð Þ ¼ −Q ξð Þ ð19Þ

The same signs of Eqs. (18) and (19) applied to the assembled system. In the

frequency domain, the amplitudes of the modal hydrodynamic pressures Pj(ξ) are

related to those of the nodal forces R(ξ) as

R ξð Þ ¼ S ω; ξð ÞP j ξð Þ ð20Þ

where S(ω, ξ) is the dynamic-stiffness matrix.

The SBFE equation in dynamic-stiffness is derived from Eqs. (15), (18), (19) and (20)

(Song and Wolf 1996). On the boundary (ξ = 1) the dynamic stiffness matrix for the

unbounded medium is expressed as
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S ωð Þ þ E1ð ÞE0
− 1 S ωð Þ þ E1

T

 �

− ωS ωð Þ;ω − E2 þ ω2

c2
− λ2

� �
M0 ¼ 0 ð21Þ

Introducing a dimensionless coefficient ϖ ¼ − iλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðω=λcÞ2

q
, Eq. (21) can be

simplified into the general form of the SBFEM as (Song and Wolf 1996)

S ϖð Þ þ E1ð ÞE0
− 1 S ϖð Þ þ E1

T

 �

−ϖS ϖð Þ;a − E2 þϖ2M0 ¼ 0 ð22Þ

3.4 Solution of the dynamic-stiffness

It can be seen that Eq. (22) is a system of non-linear first-order ordinary differ-

ential equations with the independent variable ϖ. To avoid the computationally

expensive task, a continued fraction solution for the dynamic-stiffness matrix is

developed in (Bazyar and Song 2008) directly from the scaled boundary finite

element equation.

The continued fraction solution of the dynamic-stiffness matrix is derived in this

section. The solution is assumed as

S ϖð Þ¼g0 þ iϖh0 − S1
− 1 ϖð Þ ð23aÞ

S j
− 1 ϖð Þ¼g j þ iϖh j − S jþ1

− 1 ϖð Þ ð23bÞ

Substituting Eq. (23a) into (22), three terms in descending order of the power of (iϖ)

are expressed as

iϖð Þ2 h0E − 1
0 h0 −M0

0
� 


þ iϖð Þ h0E0
− 1 g0 þ ET

1


 �þ g0 þ E1ð ÞE − 1
0 h0 − h0

� �
þ g0 þ E1ð ÞE − 1

0 g0 þ ET
1


 �þ E2 − g0 þ E1ð ÞE − 1
0 S − 1

1 − iϖð Þh0E − 1
0 S − 1

1

− S1 − 1E0
− 1 g0 þ ET

1


 �
− S − 1

1 E − 1
0 iϖð Þh0 þ S − 1

1 E − 1
0 S − 1

1 −ϖS − 1
1;ϖ ¼ 0

ð24Þ

It can be seen that Eq. (24) is satisfied only when all the three terms are equal to zero,

setting the coefficient of the (iϖ)2 and (iϖ) terms to zero results in

h0E − 1
0 h0 −M0

0 ¼ 0 ð25aÞ

h0E0
− 1 g0 þ ET

1


 �þ g0 þ E1ð ÞE − 1
0 h0 − h0 ¼ 0 ð25bÞ

where Eq. (25a) can be solved by the function ‘care’ in MATLAB, and Eq. (25b) can be

solved by the function ‘lyap’ in MATLAB.

The remaining part of Eq. (24) which is an equation for S1 can be written as

S1V1
1S1 þ V2

1 þ iϖV3
1


 �
S1 þ S1 V4

1 þ iϖV5
1


 �þ V1
6 −ϖS1;ϖ ¼ 0 ð26Þ

with

V1
1 ¼ g0 þ E1ð ÞE − 1

0 g0 þ ET
1


 �þ E2 ð27aÞ

V2
1 ¼ − E0

− 1 g0 þ ET
1


 � ð27bÞ

V3
1 ¼ − E0

− 1h0 ð27cÞ
V4

1 ¼ − g0 þ E1ð ÞE − 1
0 ð27dÞ

V5
1 ¼ − h0E − 1

0 ð27eÞ
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V6
1 ¼ E − 1

0 ð27fÞ

Substituting Eq. (23b) into Eq. (26), three terms in descending order of the power of

(iϖ) are expressed as

iϖð Þ2 h jV1
jh j þ V3

jh j þ h jV5
j


 �þ iϖð Þ h jV1
jg j þ g jV1

jh j þ V2
jh j þ V3

jg j þ h jV4
j þ g jV5

j − h j

� 

þg jV1

jgþV j
6 þ V2

jg j þ g jV4
j − S jþ1

− 1 V1
j g j þ iah j

� 

þ V4

j þ iaV5
j

h i
− g j þ iah j

� 

V1

j þ V2
j þ iaV3

j
h i

S jþ1
− 1 þ S jþ1

− 1V1
jS jþ1

− 1 þϖS jþ1;ϖ
− 1 ¼ 0

ð28Þ

Equation (28) is satisfied when all the three terms are equal to zero, setting the

coefficient of the (iϖ)2 and (iϖ) terms to zero results in

h jV1
jh j þ V3

jh j þ h jV5
j ¼ 0 ð29aÞ

h jV1
jg j þ g jV1

jh j þ V2
jh j þ V3

jg j þ h jV4
j þ g jV5

j − h j ¼ 0 ð29bÞ

Pre- and post-multiplying Eq. (29a) with h − 1
j respectively yields

V1
j þ h − 1

j V3
j þ V5

jh − 1
j ¼ 0 ð30Þ

Equations (29b) and (30) can be solved by the function ‘layp’ in MATLAB. Then the

remaining part of Eq. (28) is an equation for Sj + 1 (Bazyar and Song 2008)

S jþ1V1
jþ1S jþ1 þ V2

jþ1 þ iϖV3
jþ1


 �
S jþ1 þ S jþ1 V4

jþ1 þ iϖV5
jþ1


 �þ V jþ1
6 −ϖS jþ1;ϖ ¼ 0

ð31Þ

with

V1
jþ1 ¼ g jV1

jgþV j
6 þ V2

jg j þ g jV4
j ð32aÞ

V2
jþ1 ¼ − V1

jg j þ V4
j

� 

ð32bÞ

V3
jþ1 ¼ − V1

jh j þ V5
j


 � ð32cÞ

V4
jþ1 ¼ − g jV1

j þ V2
j

� 

ð32dÞ

V5
jþ1 ¼ − h jV1

j þ V3
j


 � ð32eÞ

V6
jþ1 ¼ V1

j ð32fÞ

The continued fraction solution of Eq. (23) is constructed from the coefficient matrix

g0, h0, gj, hj, and Sj
−1, which can be solved by Eqs. (27), (29b) and (30).

3.5 Scaled boundary finite element transformation

The same weight residual method used to the boundary condition Eq. (5a), and

transformed to the scaled boundary coordinates, it can be obtained that

E0ξP j;ξ þ E1
TP j ¼ − ω2M1nx ð33Þ

with

nx¼ nx1 nx2ð ÞT ð34aÞ
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M1 ¼ ρw

Z 1

− 1
N

T
Ndη ð34bÞ

where N is the mapping function of the structure, and M1 is lumped as

M1 ¼ ρwle
2

1 0
0 1

� �
ð35Þ

It is obvious that the left of Eq. (33) is the internal nodal force Q(ξ). The same signs

in Eq. (33) applied to the assembled system. Substituting Eqs. (19) and (20) into Eq.

(33), the relation of the hydrodynamic pressure and the displacement of the cylinder at

the interface can be obtained as

P j ¼ ω2 S ϖð Þ½ � − 1M1n ð36Þ

4 Coupled finite element equation of water-cylinder interaction system
The cylinder is assumed as a cantilever only the lateral deformation is considered,

which can be solved by the finite element method (Chandrupatla and Belegundu 2013).

After the spatial discretization to the cylinder, the finite element equation can be

written as the partitioned matrix form as follow

MO 0
0 MI

� �
€uO

€uI

� �
þ CO COI

CIO CI

� �
€uO

€uI

� �
þ KO KOI

KIO KI

� �
uO

uI

� �
¼ 0

f I

� �
ð37Þ

where the subscripts I denotes the nodes of the cylinder immersed in water and O de-

notes the nodes of the cylinder in air, respectively; u is the absolute motion vector with

the given bedrock motion ug; the dot over variable represents the derivative to time;

and M, C and K are the lumped mass, damping and stiffness matrices, respectively, and

fI is the hydrodynamic force vector caused by the water-cylinder interaction. The

element stiffness matrix is obtained as Re. (Chandrupatla and Belegundu 2013).

By using Fourier transform, Eq. (37) can be rewritten as

− ω2 MO 0
0 MI

� �
UO

UI

� �
þ iωð Þ CO COI

CIO CI

� �
UO

UI

� �
þ KO KOI

KIO KI

� �
UO

UI

� �
¼ 0

FI

� �
ð38Þ

The cantilever immersed in water is separated into N nodes, the corresponding z-

coordinates, lateral deformations and mapping functions are

zI ¼ z1 z2 ⋯ zNf gT ð39aÞ

UI ¼ U I1 U I2 ⋯ U INf gT ð39bÞ

NZ zð Þ ¼ N1 zð Þ N2 zð Þ ⋯ NN zð Þf g ð39cÞ

Then arbitrary node coordinate and deformation can be expressed as

z ¼ Nz zð ÞzI ð40aÞ

U ¼ NzUI ð40bÞ

The shape function is defined as
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W ¼
Z h

0
Nz zð Þ½ �TNz zð Þdz ð41Þ

The corresponding modal vector is written as

ϕ j ¼ cos λ jz1

 �

cos λ jz2

 �

⋯ cos λ jzN

 �� �T ð42Þ

Substituting Eq. (41) into the modal displacement, we get

U j ¼ 2
h

ϕ j

h iT
WUI ð43Þ

The interaction force in Eq. (38) is

FI ¼
Z h

0
NTFdz ð44Þ

with the continuous hydrodynamic force equal to the integral along interface Si

F ¼
X∞
j¼1

−
Z
S

P j:nxdsU j cosλ jz ¼
X∞
j¼1

f jU j cosλ jz ð45Þ

where f j ¼ −
Z
S

P j:nxds, where the dot between two vector is the inner product of the

vectors.

Substituting Eqs. (43) and (45) into Eq. (44), the hydrodynamic force can be

expressed as follows

FI ¼ − ~SUI ð46Þ

~S ¼ 2
h

X∞
j¼1

f jWϕ jϕ j
TW ð47Þ

5 Verification and application
The definition of section parameters is shown in Fig. 3. Then, the seismic responses of

circular, elliptical and rectangle cylinders are investigated, where the density, Yang’s

modulus and damping ratio of the cylinder is 2500 kg/m3, 30,000MPa and 0.05.

5.1 Verification

The accuracy of the present method is verified by comparing the hydrodynamic force

on rigid circular, elliptical and rectangle cylinders with the analytical or numerical

Fig. 3 The cross-section of the cylinders
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solutions (Wang et al. 2018a, 2019a; Du et al. 2014), where the numerical solution is

calculated by finite element method.

Figure 4 shows the real and the imaginary part of the hydrodynamic force on circular

cylinder, where the horizontal axis is r0 =ϖ, ‘SBFEM’, and ‘Analytical’ represent the

solution calculated by the proposed method and the analytical solution. Figures 5 and 6

shows the real and the imaginary part of the hydrodynamic force on elliptical and

rectangle cylinders, where ‘Numerical’ represents the numerical solution. It can be seen

that the proposed method is in good agreement with the reference solution.

5.2 Application

The seismic responses and natural frequencies of circular, elliptical and rectangle cylin-

ders are further investigated. The seismic responses of cylinders surrounded by water

in frequency domain are analyzed by using ground excitation ug = eiωt. Two dimension-

less parameters including width-depth ratio (L = 2b/h) and aspect ratio (Rs = a/b) are

introduced. Two dimensionless variables Ehωn and ECOMωn are introduced to represent

the effect of hydrodynamic pressure and water compressibility on the natural frequency

of the cylinders surrounded by water, which can be expressed as

Ehωn ¼ ωc − ω0j j
ωc

� 100% ð48Þ

Fig. 4 The hydrodynamic pressure on the rigid circular model in frequency

Fig. 5 The hydrodynamic pressure on the rigid elliptical cylinder in frequency
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ECOMωn ¼ ωc − ωij j
ωc

� 100% ð49Þ

where, ωc, ωi and ω0 mean the fundamental frequency of the cylinder surrounding by

compressible water, incompressible water, and air, respectively.

The frequency responses of circular cylinders are firstly calculated, where the

maximum displacement response on the top of the cylinder is selected as the observe

Fig. 6 The hydrodynamic pressure on the rigid rectangle cylinder in frequency

Fig. 7 Frequency response of the circular cylinder surrounded by incompressible water, compressible water
and in air
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object. Figure 7 is the frequency response of the circular cylinder surrounded by incom-

pressible water, compressible water and in air. Figure 8 shows the variation of the ratios

ωc/ω0 and ωc/ωi with respect to L. It can be seen from Figs. 7 and 8 that water-cylinder

interaction reduces the natural frequency of the cylinder, and this influence decreases

as width-depth ratio increasing. It is obvious that water compressibility has little influ-

ence on the natural frequency of cylinder. Figure 9 shows the variation of the ratios

Ac/An and Ac/Ai with respect to L, where Ac, Ai and An are the amplitude displace-

ment on the top of cylinder at fundamental frequency in the case of compressible

water, incompressible water and air. Compared Figs. 7 and 9, it can be seen that water-

cylinder interaction can increase the seismic response of slender cylinders (circular

cylinder L ≤ 0.8). However, water-cylinder interaction can significantly decrease the

seismic response of squat cylinders (circular cylinder L ≥ 1), and this trend increases as

width-depth ratio increasing.

Figure 10 shows the variation of Ehωn with respect to L for the elliptical and rectangle

cylinders with different Rs. It is obvious that the effect of hydrodynamic pressure on the

natural frequency decreases as L and Rs increase. Figure 11 shows the variation of

Fig. 8 Variation of the ratios ωc/ω0 and ωc/ωi with respect to L of circular cylinder

Fig. 9 Variation of the ratios Ac/An and Ac/Ai with respect to L of circular cylinders
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ECOMωn with respect to L for the elliptical and rectangle cylinders with different Rs. It

can be seen that the effect of water compressibility decreases as L increases and this

influence is limited in 6% for elliptical and rectangle cylinders with L ≤ 2 and Rs ≤ 4. In

case of L = 1.2 and Rs = 2 (L = 1.0 and Rs = 2), the natural frequency of structure and

surrounded by water is nearly resonance. Therefore, the effect of hydrodynamic

pressure is significant, as shown in Fig. 10.

6 Conclusion
Based on the scaled boundary finite element, an accurate frequency domain model is

proposed to simulate the seismic response of cylinders with arbitrary shapes cross-

section surrounded by water. The numerical examples show that the proposed model

has high-accuracy. The proposed model is also used to investigate the seismic

responses and natural frequencies of the circular, elliptical and rectangle cylinders. The

results indicate that water-cylinder interaction can reduces the natural frequency of the

cylinder, and this influence decreases as width-depth ratio and aspect ratio increase. It

Fig. 10 Variation of Ehωn with L for elliptical and rectangle cylinders

Fig. 11 Variation of ECOMωn with L for elliptical and rectangle cylinder
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is also obtained that water compressibility has little influence on the natural frequency

of cylinder.

7 Nomenclature
P(x, y, z, ω) hydrodynamic pressure expressed in frequency domain

ω circle frequency

c velocity of the wave propagate in water

Pj(x, y, ω) the modal hydrodynamic pressure in xy-plane

N mapping function

J Jacobi matrix
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