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Abstract

In this study, three machine learning techniques, the XGBoost (Extreme Gradient
Boosting), LSTM (Long Short-Term Memory Networks), and ARIMA (Autoregressive
Integrated Moving Average Model), are utilized to deal with the time series
prediction tasks for coastal bridge engineering. The performance of these techniques
is comparatively demonstrated in three typical cases, the wave-load-on-deck under
regular waves, structural displacement under combined wind and wave loads, and
wave height variation along with typhoon/hurricane approaching. To enhance the
prediction accuracy, a typical data preprocessing method is adopted and an
improved prediction framework for the LSTM model after the rolling forecast
prediction is proposed. The obtained results show that: (a) When making a
prediction on data featured with periodic regularity, both the XGBoost and ARIMA
models perform well, and the XGBoost model can make predictions multi-step
ahead, (b) The ARIMA model can predict just one step ahead based on aperiodic
dataset with limited amplitude more accurately, while the XGBoost and LSTM
models can predict multi-step ahead with appropriate data preprocessing, and (c) All
the three models can predict the data tendency with model updating over time, but
the prediction accuracy of the LSTM model is more favorable. The successful
application of these three machine learning techniques can provide guidance to
resolve engineering problems with time-history prediction requirements.
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1 Introduction
More intensive economic activities in coastal zones trigger the necessity of construct-

ing more long and flexible coastal bridges that usually cross vast and deep water. These

sea-crossing bridges usually serve as the backbone in the transportation network con-

necting the islands and mainland. For example, Table 1 lists several major long-span

bridges built in coastal zones in China since the late twentieth century. As evidenced

from Table 1, with the development of the bridge construction technology, the forms

of sea-crossing bridges are gradually diversified with increased span length, and the

functions are also transformed from highway only to dual-use of highway and railway.

The harsh environment, particularly huge waves and strong winds brought by tropical

cyclones or hurricanes, as well as earthquakes, tides, and current, poses high challenges
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for the safety and resilience of these bridge structures during their service life. Many

lessons have learned from hurricanes Ivan in 2004 and Katrina in 2005 that a large

number of coastal low-lying bridges along the Gulf of Mexico were heavily damaged.

Since then, many studies have been conducted on the bridge-deck-interaction (Bradner

2008; McPherson 2010; Sheppard and Marin 2009; Cuomo et al. 2009; Xu et al. 2018).

The main reason for the bridge damage is that hurricane-induced storm surge and wave

loads are not adequately accounted for in designing these low-laying bridges.

With the development of the bridge construction technology, coastal bridges may

reach vast and deep ocean zones such that the marine environment at the bridge site

would be more complex. Existing studies have shown that long span sea-crossing

bridges are more vulnerable to extreme environmental loads (Zhu and Zhang 2017; Ti

et al. 2018; Zhang et al. 2019a, b). For long span sea-crossing bridges, the structural

stability and safety of the bridge tower and foundation are key issues since these struc-

tural components directly contact with the hydraulic forces. To disentangle these

issues, Guo et al. (2016) took a bridge tower model as the experimental research object

to test its vibration under coupled wind and wave loads, and concluded that the bridge

tower will vibrate obviously when the structural frequency is close to the loading

frequency, i.e., resonance would be dominant under the action of low-speed wind and

regular waves. Meng et al. (2018) put forward a frequency spectrum method by consid-

ering the correlation between wind and wave loads based on theoretical analysis of

experimental data. Wei et al. (2017) investigated the structural dynamic response of an

elastic bridge tower model with a scale of 1:150 in a flume under the action of regular

waves and current and observed the changes of the shear force and vibration amplitude

at the pile foundation under different load situations.

To address the structural safety and resilience for coastal bridges under various

extreme environmental conditions, quick and accurate prediction of the major loads

and structural dynamic responses in advance would be highly desirable, especially for

the stakeholders to make expedient decisions on the evacuation route before a hurri-

cane landing. Therefore, time series prediction, from the perspective of timely evaluat-

ing the loads and structural dynamics for coastal bridges, is of high interest. Generally

speaking, time series prediction is a regression prediction process, which uses the existing

data for statistical analysis and data processing to predict their future values. Until now,

the time series prediction technique has been substantially developed. The ARIMA (Auto-

regressive Integrated Moving Average Model), SVM (Support Vector Machine), random

forest, ANN (Artificial Neural Network), XGBoost (Extreme Gradient Boosting), GRU

Table 1 Coastal bridges built in China since the late twentieth Century

Name Completion date Full length Load form Bridge type

Xiamen bridge 1991 2.1 km Highway Continuous girder
bridge

Haicang bridge 1999 5.9 km Highway Suspension bridge

Donghai bridge 2005 32.5 km Highway Cable-stayed bridge

Hangzhou bay bridge 2008 36 km Highway Cable-stayed bridge

Jiaozhou bay bridge 2011 41.6 km Highway Cable-stayed bridge

Hong kong-zhuhai-macao
bridge

2018 55 km Highway Cable-stayed bridge

Pingtan railway bridge 2019 16.3 km Highway & Railway Cable-stayed bridge
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(Gated Recurrent Unit), LSTM (Long Short-Term Memory Networks) and other machine

learning models have emerged and extended for time series prediction purpose. Until

now, the application of time series prediction techniques in bridge engineering is quite

limited. Lee et al. (2008) applied the ANN model to evaluate the reliability of individual

bridge elements and fixed the missing historical condition data. After that, a variety of ma-

chine learning techniques, including SVM, BP neural network (Back Propagation neural

network), BDMs (Bayesian dynamic models), ARMA (Autoregressive Moving Average

Model), are used to monitor the bridge’s health and assess its reliability (Yang and Zhou

2011; Li et al. 2012; Liu et al. 2014; Tang et al. 2015).

In recent years, time series prediction has been ever used in predicting the bridge

conditions. For example, (Sun and Hao 2011) analyzed the girder deflection of the

Xushui river bridge to establish a SHM (Structural Health Monitoring) system for early

warning and found that the time series analysis can effectively predict the variations of

structural response. Yi (2015) studied the internal stress of the bridge tower for a long

span bridge subjected to typhoon and applied the BP neural network based on cluster-

ing to predict the tower stress, showing that the nonlinear time series prediction has

high validity. (Gong and Li 2018) adhibited the RWTLS (robust weighted total least-

squares) to predict two observed data sets for the pier settlement by taking the errors

in the coefficient matrix and possible gross errors into consideration, proving that the

RWTLS model can be much more reliable and accurate than LS (least-squares), RLS

(robust least-squares) and WTLS (weighted total least-squares) models. Shi et al.

(2019) adopted the liner regression model to predict the routine maintenance costs for

reinforced concrete beam bridges where the logarithm of the historical routine main-

tenance cost is set as the dependent variable and the bridge age is taken as the inde-

pendent variable. Kaloop et al. (2019) estimated the safety behavior of the Incheon

large span bridge with the ARMA model and revealed that the bridge is safe under traf-

fic loads. Liu et al. (2020) regarded the dynamic coupled extreme stresses of bridges as

time series data and applied the Bayesian probability recursive processes to successfully

predict the value of stresses. However, currently, there are rare studies on using time

series prediction techniques for estimating the response of bridges under dynamic loads

in coastal environment, which is essential in terms of the hazard prevention for coastal

bridges.

This study aims to address the particular features of the major loads and structural

dynamics for coastal bridges by using three competitive time series prediction tech-

niques, the XGBoost, LSTM, and ARIMA. The three models are selected for their

proved ability for precisely predicting and wide application in academic achievements.

The ARIMA model, a combination of the AR (Autoregressive) model and MA (Moving

Average) model, is specially proposed for the time series prediction with limited hyper-

parameters, high accuracy and fast calculation speed. The XGBoost model is a newly

proposed decision tree model. Based on the GBDT (Gradient Boosting Decision Tree)

model, the XGBoost model has been developed to enhance the prediction accuracy and

calculating speed. Since then, many participants won prizes in modeling competitions,

e.g., Kaggle, with the XGBoost model, confirming its superiority. The LSTM model is a

classical and widely used deep learning model and it well solves the gradient exploding

and gradient vanishing problems. In addition, the overfitting problem can be reduced

by regularization. The performances of these techniques are comparatively demonstrated
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in three typical cases, the wave-load-on-deck under regular waves, structural displacement

under combined wind and wave loads, and wave height variation along with typhoon/hur-

ricane approaching. The features of the statistical data sets associated with coastal bridges

are representative and therefore, this study can provide guidance to resolve similar engin-

eering problems with time-history prediction requirements.

2 Time series prediction techniques
2.1 ARIMA

The ARIMA model, known as Autoregressive Integrated Moving Average model, can

be used for stationary and non-white noise time series forecasting. The ARIMA model

consists of three aspects, capture the three key aspects of the model. AR for autoregres-

sion, I for integrated, and MA for moving average. Compared with the ARMA model,

ARIMA model can deal with the non-stationary process by a degree of differencing. At

present, many scholars have successfully used the ARIMA model combined with cer-

tain other technical means to predict a variety of data. For example, the ARIMA model,

combined with the wavelet analysis, was used to predict the network flow, leading to a

higher prediction accuracy than the original ARIMA model (Li et al. 2009). The

ARIMA and DBN (Deep Belief Network) model were combined and applied to multiple

classical datasets prediction, and find that to predict the value with DBN model and

predict the error with ARIMA model separately can be a better choice than use the

ARIMA model only (Hirata et al. 2015). The ARIMA model was also used in mechan-

ical engineering to predict the residual life and fault conditions of mechanical products,

e.g., estimating the service life of water pumps (Sanayha and Vateekul 2017) and the

remaining useful life of aircraft engines (Ordóñez et al. 2019), where rather high predic-

tion accuracy is attained. For applications in bridge engineering, Xin et al. (2018)

predicted the structure deformation of a bridge with Kalman-ARIMA-GARCH (Gener-

alized Autoregressive Conditional Heteroskedasticity) Model.

The ARIMA model is developed based on the ARMA model and the main equation

of the ARMA model is given as follows.

1 −
Xp0

i¼1

αiLi

0
@

1
AXt ¼ 1þ

Xq

i¼1

θiLi
 !

εt ð1Þ

where p′ is the autoregressive order, q is the moving average order, Li is the lag oper-

ator, Xt refers to the real value at time t, αi indicates the parameters of the autocorrel-

ation part for the model, θi refers to the parameters of the moving average part, and εt
is the error term.

Assume that the polynomial ð1 −Pp
0

i¼1αiL
iÞ has a unit root (1 − L) of multiplicity d,

then the core equation of ARIMA model can be obtained as

1 −
Xp

i¼1

φiL
i

 !
1 − Lð ÞdXt ¼ 1þ

Xq

i¼1

θiL
i

 !
εt ð2Þ

where p = p′ − d, φi are the parameters of autocorrelation part of the model.

In Eq. (2), the value of d is the number of differences needed for stationary, aka the

degree of differencing. The parameters of p, q, and d should be determined in
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establishing the model. In determining the specific value of p, q and d parameters, the

autocorrelation coefficient and partial autocorrelation coefficient of the model need to

be calculated firstly. The two coefficients can be roughly estimated by observing the

graph of ACF (Autocorrelation Function) and PACF (Partial Autocorrelation Function),

then precisely determined by grid search, information criterion function, thermo-

dynamic diagram or other methods.

2.2 XGBoost

The XGBoost model, i.e., extreme gradient boosting, is an open source framework pro-

posed by (Chen and Guestrin 2016) for the gradient enhancement, where the existing

gradient boosting algorithm can be optimized. Because favorable prediction results have

been obtained by using this model, it is widely used in machine learning competitions.

Meanwhile, the XGBoost model performs excellently on the prediction of the sales vol-

ume, stock price, and traffic flow (Gurnani et al. 2017; Wang and Guo 2020; Lu et al.

2020). However, there are few applications of this algorithm for prediction tasks in

engineering practices due to its the late advent. Chen et al. (2019) used the XGBoost

model to predict the quality of welding and the error rate on the test set is 20.5%.

(Zheng and Wu 2019) predicted the wind power by employing the XGBoost model and

several other machine learning techniques, the BP neural network, classification and

regression tree, random forests, and support vector regression and the result shows the

XGBoost model attains the highest prediction accuracy.

The XGBoost model consists of many trees, each of which has its own number of

layers. For a single tree, several functions can be added to predict the output, which is

shown as

Obj tð Þ ¼
X
i

l yi; ŷ
t − 1ð Þ
i þ f t xið Þ

� �
þΩ f tð Þ þ C ð3Þ

where lðyi; ŷðt − 1Þ
i þ f tðxiÞÞ is the loss function, yi is the target value, ŷðt − 1Þ

i is the

prediction of tree i-1, and ft(xi) is the prediction of tree i; Ω(ft) is the regular term; C is

a constant.

By using the Taylor expansion to approximate the loss function, we have

f xþ Δxð Þ ≈ f xð Þ þ f
0
xð ÞΔxþ 1

2
f
0 0 xð ÞΔx2 ð4Þ

Define the parameters gi and hi

gi ¼ ∂ŷ t − 1ð Þ l yi; ŷ
t − 1ð Þ
i

� �
ð5Þ

hi ¼ ∂2
ŷ t − 1ð Þ yi; ŷ

t − 1ð Þ
i

� �
ð6Þ

Then rewrite Eq. (3) as

Obj tð Þ ≈
X
i

l yi; ŷ
t − 1ð Þ
i þ gi f t xið Þ þ hi f

2
t xið Þ

� �h i
þΩ f tð Þ þ C ð7Þ

For the XGBoost algorithm, once the prediction result of the former t-1 trees is ob-

tained, the tree t will then be added to predict the difference between yi and ŷðt − 1Þ
i .

Therefore, the final predicted Obj is the sum of all trees by the end of the model
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construction. In the actual simulation, the maximum number of trees needed for the

prediction and the deepest depth of each tree will be set as hyper-parameters to stop

the tree splitting when the model complexity reaches the preset, thus preventing the

overfitting.

2.3 LSTM

The LSTM model (long-short term memory model) was proposed by Hochreiter and

Schmidhuber (1997), through which the gradient vanishing and exploding problems in

previous deep learning models can be effectively avoided. Compared with the afore-

mentioned two machine learning models, the LSTM model maintains some unique

characteristics, while it requires more training time and thus is computationally costly.

In addition, the LSTM model is highly dependent on the data size. For a relatively small

data set, the prediction accuracy would fall below the expectation. However, for certain

large data set, appreciable prediction accuracy can be thereby achieved. Until now, the

LSTM model has been applied to assess the safety of industrial facilities, such as tail-

ings ponds, as well as the heating and cooling equipment (Li et al. 2019; Wang et al.

2019). In the field of civil engineering, this model is ever employed to predict the failure

of bearings, seismic response of nonlinear structures, and displacement of dams (Gu

et al. 2018; Zhang et al. 2019a, b; Liu et al. 2020). Relatively high prediction accuracy

was obtained in these studies.

Figure 1 shows the structure of the LSTM model with demonstrative three cells,

where the inside structure of the middle cell associated with time t (in short, cell t) is

explicated given. Note here ht − 1 represents the information transmitted from the cell

t-1, ht refers to the short time memory output from cell t, xt denotes the newly

acquired information, tanh function is the activation function.

Each cell in LSTM contains three key components: the forget gate, input gate, and

output gate. The forget gate controls how much memories can be retained from cell t-1

at time t, the input gate determines the amount of information that can be transferred

into cell t from xt, and the output gate decides the information that can be transferred to

ht. The information at the forget gate, i.e., ft, can be expressed as

f t ¼ σ W f ∙ ht − 1; xt½ � þ bf
� � ð8Þ

where Wf and Wi, WC, Wo in the following equations are weight matrices, bf and bi, bC,

bo in the following equations are bias vectors, and σ is a sigmoid function.

Fig. 1 Structure of LSTM model
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Consequently, at the input gate, the model obtains new information it and Ĉt by

it ¼ σ Wi∙ ht − 1; xt½ � þ bið Þ ð9Þ

Ĉt ¼ tanh WC ∙ ht − 1; xt½ � þ bCð Þ ð10Þ

Next, the memory transformed from the forget gate and input gate can be combined

to get Ct

Ct ¼ f t�Ct − 1 þ it�Ĉt ð11Þ

At last, the output gate outputs the result ot and ht as

ot ¼ σ Wo∙ ht − 1; xt½ � þ boð Þ ð12Þ
ht ¼ ot� tanh Ctð Þ ð13Þ

3 Demonstration cases
Common dynamic loads and structural responses for coastal bridge engineering can be

roughly divided into three forms according to the characteristics of their amplitude and

periodicity. For the first form, the load has a clear periodicity and its amplitude fluctu-

ates within a certain range. For example, in case the bridge girder is fully submerged

under the action of regular waves, the time histories of the wave forces on deck largely

show this pattern. Secondly, the time-history data fluctuates within a certain range,

whereas its frequency distribution is relatively complex and there are no obvious peri-

odicities on the data; this data pattern can be witnessed on the time-history displace-

ments of the tower top and mid span for long-span sea-crossing bridges under random

waves and turbulence winds. As for the third form, the time-history data has certain

tendency, generally increasing or decreasing with time. Demonstratively, the wave

height variation along with typhoon approaching favors this pattern.

In this section, the aforementioned three machine learning techniques will be utilized

in three demonstrative cases with typical datasets in the time domain. This aims to

provide guidance for the structure health monitoring for coastal bridges during their

service life.

3.1 Wave-load-on-deck under regular waves

In the design of long-span ocean bridges, ocean waves generally exert wave forces on

the bridge pile foundation, thus indirectly affecting the time-history displacement of

the main girder (superstructure). However, under special circumstances when hurri-

canes (or tropical cyclones) approach, the bridge girder may be partial or completely

submerged due to the rising water level. In this scenario, the wave force will not only

affect the bridge pile foundation but also impact the superstructure directly, probably

leading to much more severe damage.

As evidenced from the damage of many low-lying bridges induced by Hurricanes Ivan

and Katrina in 2004 and 2005, respectively, huge waves and rising storm surge largely

lead to the superstructure, in the form of simply supported spans in most instances,

displaced and/or falling from the bent (Okeil and Cai 2008; Padgett et al. 2008). Many

subsequent studies reveal that the wave loads largely surpass the capacities of the

supporting interface between the bridge superstructure and substructure (Douglass
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et al. 2006; Robertson et al. 2007; O'Connor and McAnany 2008; Robertson et al. 2011;

Yuan et al. 2018; Huang et al. 2018; Xu et al. 2020).

It is noticed that Huang (2019) used a wave flume to experimentally investigate the

variation of the time-history wave forces on the bridge superstructure under hurricane

induced regular waves. The schematic diagram of the experimental setup is shown in

Fig. 2, where the total length of the wave flume is 68 m and the regular waves are

generated at the left boundary, with a distance of 39 m from the target bridge deck

model. The wave induced loads on the deck model are measured by a force transducer

placed adjacently above the deck model in a suspended rigid steel frame. Figure 3

shows a typical time history of the wave force in the transverse direction of the bridge,

i.e., horizontal wave load, when the bridge superstructure is completely immersed.

Because the measurement frequency of the transducer is 40 Hz, a total of 516 data

points in the scope of the time history curve, corresponding to equal steps of data

measurement, will be thereafter analyzed.

As shown in Fig. 3, the wave period here is 2.5 s and the variation of the wave forces

due to the presence of high frequency signals enables that the variation pattern is

different in each period. This motivates the necessity of time series prediction of the wave

forces, potentially benefiting the timely monitoring of the structural vibration and safety.

To start the work, the autocorrelation function is used to confirm the autocorrelation

of wave forces in time series, and the result is shown in Fig. 4. In the figure, the

abscissa represents the lag time step in wave force dataset, and the ordinate indicates

the value of autocorrelation coefficient. As observed in Fig. 4, the horizontal wave force

on the bridge superstructure has a strong autocorrelation in the time series. Note that

the values of the structural force, displacement and other data at time t can all be

regarded as the sum of itself at time t − 1 and the variation within the time period Δt.

In the following two demonstrated cases, the variation of data values also shows this

pattern, and therefore the autocorrelation results will not be presented in the context

for simplicity purpose.

In the training procedure, the proportion of the training set, validation set and pre-

diction set for the considered prediction models, the XGBoost, LSTM and ARIMA is

correspondingly different for each model, as shown in Table 2. It should be noted that

the amount of data required for the model training and the number of forecast steps

for the ARIMA model are different with the other two models. In addition, there is no

validation set for the XGBoost and ARIMA models.

1.
6

periodic regular wave

wavemaker

wave gauge deck with a box girder

SWL

pebble beach

39

68

suspension system

Fig. 2 Flume arrangement for the experimental study by Huang (2019) (unit: m)
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Figure 5 shows the overall prediction results, along with the measured data by Huang

(2019). Based on the comparison between the predicted results and the experiment

data, it can be concluded that the prediction results by using the three models agree

with the experiment data quite well, and the overall trend and the peak values, exhib-

ited as the pulse component of the wave forces, can be favorably predicted in advance.

The metrics of mean absolute error (MAE) and mean squared error (MSE) are used to

evaluate the performance of three prediction models, and the results are listed in

Table 3.

By comparing the predictive power of the three models, it can be found that the

XGBoost model features a higher prediction accuracy across multiple time steps when

the autocorrelation coefficient remains over 0.5. The prediction accuracy of the LSTM

model is relatively lower, probably because the LSTM model needs the validation set to

support multiple rounds of training. When the original data set is small, the prediction

accuracy will be lower due to the reduction of the training set. When the data collected

for training is sufficiently large, the error will be reduced. The ARIMA model requires

a small amount of data during training, and the accuracy on the predicted data can be

Fig. 3 Typical time history of the horizontal wave force

Fig. 4 Autocorrelation of data in time series
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similar to the results obtained by the XGBoost model. However, the disadvantage of

the ARIMA model is that it predicts only one step ahead, which leaves a shorter

response time after obtaining the predicted results.

3.2 Structural displacement under combined wind and wave loads

In the design of sea-crossing bridges, the influence of combined wind and wave loads is

more obvious with the increasing of the bridge span, as well as the complex natural

environment condition. Fang et al. (2020) carried out numerical analysis for a typical

sea-crossing bridge under the combined action of wind and waves, and the overall

elevation view of the prototype bridge is shown in Fig. 6. Based on the analysis, time

histories of the vibration displacement with 250 s long at three key locations, the tower

top, mid-span, and joint of the tower and main girder, as also shown in Fig. 6. Since

the attenuation of the structural transient response takes certain amount of time after

the load is applied, the time history displacement within the range from 50 s to 250 s is

selected for the prediction analysis. During the calculation of the finite element model,

the data is saved every 0.025 s. Therefore, the displacement response curve at each of

the three discussed locations contains 8000 data points correspondingly. The time his-

tories of the displacement obtained at the monitored locations are shown in Fig. 7.

The model parameter setup for the three prediction models is similar to that listed in

Table 2. The prediction results of the structural displacement at three typical locations

are shown in Fig. 8, where expected refers to the target time history curve from the

finite element analysis.

Based on the analysis of the vibration response at three different locations on the

bridge, it can be concluded that the response at the middle span is mainly consistent

with the symmetric lateral vibration mode, thus the prediction results obtained by the

Table 2 Model setup in the case of wave-load-on-deck under regular waves

XGBoost LSTM ARIMA

Training set size / % 80 60 67

Validation set size / % – 20 –

Test set size / % 20 20 33

Single predict data volume 10 10 10

Predict steps 5 5 1

Fig. 5 The prediction results in the case of wave-load-on-deck under regular waves
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three prediction methods agree with the simulated time-history displacement favorably.

However, because the time history displacement at the other two locations consists of mul-

tiple vibration modes, the time autocorrelation is not as obvious as that associated with the

mid-span vibration, resulting in more difficulties for the prediction task. Failures can be ob-

served for both the XGBoost and LSTM models, such as the prediction misses the extreme

values and prediction tendency goes in the reverse direction occasionally, leading to un-

favorable prediction results. The ARIMA model can predict the future data much better,

but the time step of predictions is still limited. Therefore, the time history displacement at

the joint and tower top should be preprocessed before the model training.

Based on the analysis of the data in the frequency domain, the displacement response

features large amplitudes at some frequencies, as shown in Fig. 9.

The process of the optimized prediction can be specified as four steps. Firstly, for the

vibration signals at the joint and tower top locations, the scipy and numpy modules of

the Python language were used to particularly extract five most prominent vibration

frequencies with corresponding maximum amplitudes. Then, the FFT (Fast Fourier

transform) filter was applied to separate the extracted time history displacement signals

from the raw data, and therefore, the extracted signals show the characteristics of stable

frequency and strong time-autocorrelation, which indicates the prediction is more likely

to get favorable results. As follows, the XGBoost and LSTM models are applied to pre-

dict the five sets of signals. Finally, the rest signals with lower amplitude can be

summed up and predicted together. With this data preprocessing, the XGBoost and

LSTM models perform well for the prediction task in the context of the time history

displacement at the joint and tower top locations and attain higher prediction accuracy,

as evidenced in Fig. 10.

The MAE and MSE values predicted with raw data and preprocessed data are listed

in Table 4. From the table, it can be seen that the prediction error of the two models

decreases obviously after the preprocess, which means the machine learning models

can better conclude rules from the preprocessed data.

Table 3 Performance of three prediction models in the case of wave-load-on-deck under regular
waves

XGBoost LSTM ARIMA

Mean Absolute Error (MAE) 0.0030 0.0037 0.0030

Mean Squared Error (MSE) 1.4 × 10−3 2.6 × 10− 3 1.4 × 10− 3

532 196 133196133

Tower top

Mid-span Joint

Fig. 6 Elevation view of the prototype bridge
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To summarize, with certain data preprocessing, the XGBoost and LSTM models can

yield desirable results for the prediction of the time-history structural displacement

with complex frequency domain signals. In addition, the prediction time span is longer

than that of the ARIMA model. Thus, it is promising to use both models for prediction

tasks regarding datasets without obvious periodicity.

a

b

c

Fig. 7 Time histories of displacement at different monitored locations. a Mid-span. b Joint. c Tower top

Fig. 8 Time history prediction of bridge displacement at three locations. a Mid-span. b Joint. c Tower top
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3.3 Wave height variation along with typhoon/hurricane approaching

Coastal Bridges may be often visited by typhoons or hurricanes in their service life.

With the typhoon approaching, the wave height rises continuously, along with the

particular storm surge. As a result, the bridge structure may be damaged by huge

waves. However, since the transit time of typhoon is relatively short as compared with

the previous two circumstances, the amount of collected data will be marginally

limited. Furthermore, before the typhoon comes, the model training data cannot be col-

lected in advance. In case of insufficient samples, the prediction accuracy of the model

will be significantly affected. To solve the above two issues, an improved prediction

framework for LSTM model after the rolling forecast prediction, as shown in Fig. 11, is

proposed. The framework firstly gathers a small dataset to establish the initial model

with k-fold verification method. Although training on future data sets and validating on

a b

Fig. 9 Frequency domain analysis for the time history displacement at joint and tower top locations. a
Joint. b Tower top

a

b

Fig. 10 Time history prediction by XGBoost and LSTM models with data preprocessing. a Joint. b Tower top
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past data sets is an inverse time series behavior, the k-fold verification can still result in

appreciable accuracy. This is due to the fact that data sets have inherent characteristics

that can be exploited. The next step is to gradually update the model in the following

time steps by append new observations. When the accuracy of predicted value meets

the criterion, it means that the model can be applied for the future prediction.

Due to the lack of specific observation data for typhoons, a public dataset with certain

variation trend is adopted here for demonstration purpose. The dataset processed in

both the time- and frequency-domains is shown in Fig. 12.

In the training of the LSTM model, a small sample with 40 steps, i.e., data points, is

firstly used, thus the initial model can be built. With the time moving, the data set can

be augmented with real-time monitored data and the prediction model can be updated

until the prediction accuracy meets the set criteria. As can be seen from the analyzed

data in the frequency domain in Fig. 12 (b), the peak amplitude appears at the four fre-

quencies, i.e., 0.08, 0.169, 0.25 and 0.33, which correspond to the input number of 12,

6, 4 and 3 data points for one batch size. The batch size put into the model should be

emphasized, because when the batch size is too large for a single iteration, the model

updating time will be longer, which will affect the immediacy of prediction. However,

when the batch size is too small, the model update times before meeting the criteria

will be excessive due to the information can be obtained in one update is insufficient.

Therefore, in the process of model updating, the batch size being four is chosen in the

present study.

Figure 13 shows the prediction results by using the three prediction models. In the

updating procedure for the LSTM model, the prediction error is controlled within 5%

after 5 epochs and the MAE for the LSTM model is 13.08 cm pertaining to the predic-

tion set, indicating favorable fitting results have been obtained. By this time, the trained

model can be used to predict the subsequent wave height.

The XGBoost and ARIMA models, as Fig.13 shows, can marginally predict the ten-

dency of the data series. Since the learning capability for these two techniques is

Table 4 Comparison of the prediction results

Raw data Preprocessed data

MAE MSE MAE MSE

Joint XGBoost 0.014 3.9 × 10− 4 0.009 1.1 × 10− 4

LSTM 0.035 2.0 × 10−3 0.007 9.0 × 10−5

Tower top XGBoost 0.002 7.1 × 10−6 6.2 × 10−4 4.3 × 10−7

LSTM 0.002 6.4 × 10−6 5.1 × 10−4 3.0 × 10−7

Fig. 11 Schematic diagram for an improved prediction framework
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relatively high, the prediction procedure can be initiated when the first group of

data is collected, and subsequently the prediction model is updated in each follow-

ing time step. However, the forecast accuracy is far less than that predicted by the

LSTM model, as obvious time lag phenomenon is observed. Compare the MAE

and MSE value of predictions given by three models in Table 5, it can also be con-

cluded that the result of LSTM model is much more favorable than that predicted

by the rest of the two models. The unfavorable prediction results by XGBoost and

ARIMA model may be related to the difficulties in controlling the complexity of

models’ architecture in the training process, thus overfitting in small sample learn-

ing would largely happen.

4 Concluding remarks
In this study, three machine learning techniques, i.e., the XGBoost (Extreme Gradient

Boosting), ARIMA (Autoregressive Integrated Moving Average Model) and LSTM

(Long Short-Term Memory Networks) were applied in three demonstrative cases with

datasets that are closely related to the safety and resilience of coastal bridges during

their service life. A typical data preprocessing method was adopted and an improved

prediction framework for the LSTM model after the rolling forecast prediction was

proposed to enhance the prediction accuracy. Based on the comparative results in the

demonstration cases, the following conclusions can be obtained:

a b

Fig. 12 Schematic diagram for wave height variation. a Time domain data. b Frequency domain data

Fig. 13 Prediction for wave height variation by machine learning models
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1. For datasets with clear periodicity, all three considered machine learning models

demonstrate rather favorable performance in the time series prediction. Both the

XGBoost and LSTM models can predict multi-step ahead, whereas a relatively

larger accuracy on a small training dataset can be achieved by using the XGBoost

model and employing the LSTM model cannot reach a high precision yet due to

the partitioning ways on datasets. Therefore, it is necessary to ensure a sufficiently

large dataset when using the LSTM model for time series prediction. By using the

ARIMA model a high prediction accuracy is remained, but this model predicts only

one step ahead.

2. For datasets with fluctuating values within certain range and complex frequency

distribution, using the ARIMA model can achieve a relatively higher prediction

accuracy on the original dataset than that associated with the XGBoost and LSTM

models. However, with adopting a typical preprocessing method where the five

most prominent wave bands with corresponding maximum amplitudes in the

frequency domain are extracted for individual prediction, higher prediction

accuracy can thus be achieved.

3. The LSTM model features with high prediction accuracy with an improved

framework after the rolling forecast prediction, where overfitting issues can be

avoided. The k-fold method and model updating overcomes the lack of data points

to some extent. However, the low accuracy and phase lag phenomenon can be

observed for the prediction results by using the XGBoost and ARIMA models and

this is because overfitting in small sample learning usually occurs.

The availability of the data largely limits the model training process. Currently, the

models have been trained based on the available datasets in the literature. Once given a

larger data set, it is worth analyzing the model performance more extensively, especially

for the rolling forecast models. The overfitting problem may then be resolved, but the

efficiency of the model training needs to be emphasized.
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