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Abstract 

Swidden agriculture is a common land use found in the mountainous regions, especially in Southeast Asia. In Myan-
mar, the swidden agriculture has been practicing as an important livelihood strategy of millions of people, mainly by 
the ethnic groups. However, the extent of swidden agriculture in Myanmar is still in question. Therefore, we attempted 
to detect swidden patches and estimate the swidden extent in Myanmar using free available Landsat images on 
Google Earth Engine in combination with a decision tree-based plot detection method. We applied the commonly 
used indices such as dNBR, RdNBR, and dNDVI, statistically tested their threshold values to select the most appropri-
ate combination of the indices and thresholds for the detection of swidden, and assessed the accuracy of each set 
of index and thresholds using ground truth data and visual interpretation of sample points outside the test site. The 
results showed that dNBR together with RdNBR, slope and elevation demonstrated higher accuracy (84.25%) com-
pared to an all-index combination (dNBR, RdNBR, dNDVI, slope, and elevation). Using the best-fit pair, we estimated 
the extent of swidden at national level. The resulting map showed that the total extent of swidden in Myanmar was 
about 0.1 million ha in 2016, which is much smaller than other previously reported figures. Also, swidden patches 
were mostly observed in Shan State, followed by Chin State. In this way, this study primarily estimated the total extent 
of swidden area in Myanmar at national level and proved that the use of a decision tree-based detection method 
with appropriate vegetation indices and thresholds is highly applicable to the estimation of swidden extent on a 
regional basis. Also, as Myanmar is the largest country in mainland Southeast Asia in area with a great majority of the 
population living in rural areas, and many in the mountains, its land resources are of great relevance to the people’s 
livelihoods and thereby the nation’s progress. Therefore, this study will contribute to sustainable land management 
planning on both regional and national scale.
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Background
Swidden, also known as slash-and-burn agriculture and 
shifting cultivation, is a common land use in mountain-
ous regions, especially in Southeast Asian countries (Das 
et al. 2021; Schmidt-Vogt et al. 2009; Mertz et al. 2009a; 

Mertz et al. 2009b; Li and Feng 2016). Traditionally, the 
land is cleared for cultivation (normally by fire) on a 
rotational basis and then left for a few years for regen-
eration. This type of land use can be largely found on 
the forest-agriculture frontiers, and is still carried out 
in 40– 50 countries (Mertz 2009). According to Heini-
mann et al. (Heinimann et al. 2017), shifting cultivation 
landscapes, including fallows cover roughly 280 million 
hectares worldwide. In the Southeast Asia regions alone, 
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about 14–34 million people engage in swidden cultiva-
tion (Mertz et al. 2009b). Therefore, it is self-evident that 
swidden agriculture plays an important role in mountain-
ous communities and the livelihoods of the dwellers.

According to the reviews by Schmidt-Vogt et  al. 
(Schmidt-Vogt et al. 2009) and van Vliet et al. (Vliet et al. 
2012), the conclusive data on the extent of swidden is 
surprisingly limited, especially in Southeast Asia. The 
swidden system itself consists of temporarily cultivated 
land and associated fallows, and therefore it is a com-
plex and dynamic land use. According to the review by 
Schmidt-Vogt et  al. (Schmidt-Vogt et  al. 2009), swidden 
fields are identified as agricultural lands, and fallows are 
grouped as either unclassified and/or barren wasteland 
or wood- and shrub-lands. The data gatherers find it dif-
ficult to define, find and measure the swidden system, 
and therefore often relegate it to a “residual category” of 
land use (Schmidt-Vogt et  al. 2009; Padoch et  al. 2007). 
Consequently, swidden lands often do not appear on 
land use maps or in statistical records (Schmidt-Vogt 
et  al. 2009). Mapping swidden land use and its dynam-
ics plays an important role in policy making and proper 
resource management for socio-economic and environ-
mental benefits (Mertz et al. 2009a; Vliet et al. 2012). Yet, 
because of political control over swidden farming as well 
as the complexity and dynamics of swidden smallhold-
ings, delineating swidden agriculture remains challenging 
(Padoch et al. 2007).

Several efforts to estimate the extent of swidden on a 
regional basis (Richards and Flint 1994; Uhlig et al. 1994) 
and on national scale in Southeast Asian countries have 
been made in the past, using different data sources such 
as censuses, forest inventories, aerial photographs and 
satellite images (Schmidt-Vogt et  al. 2009). Attempts 
were also made to estimate solely on secondary forests 
including various phases of swidden fallows in Lower 
Mekong Region by Heinimann et  al. (Heinimann et  al. 
2017) and Mittelman (Mittelman 2021), using various 
datasets. The first result came out of the regional analysis 
of swidden in southeast Asia by Spencer (1966) but with 
limited resources. Based on this result, a map of swid-
den distribution in the Asia–Pacific region was depicted 
in the Conservation Atlas of Tropical Forests: Asia and 
Pacific by Collines et al. (Collines et al. 1991).

Today, thanks to technological development, many 
kinds of remote sensors including airborne and space 
sensors provide remotely collected data for assessing 
burned areas like swidden patches (Lentile et al. 2006). At 
present, several kinds of remotely sensed data are availa-
ble in different resolutions on different platforms includ-
ing Landsat. With a growing availability of remotely 
sensed data (Potapov et al. 2019; Potapov et al. 2012), the 
extent, dynamics, and spatial characteristics of swidden 

agriculture are quantified on different scales in Asia–
pacific countries (Castella et  al. 2013; Hurni et  al. 2013; 
Liao et  al. 2015; Molinario et  al. 2017; Messerli et  al. 
2009).

Using remote sensing, burned areas can be mapped 
with various image classification methods, inclusive of 
visual analysis, single channel density slicing, multitem-
poral thresholding of vegetation indices, principal com-
ponent analysis, regression modelling, supervised and 
unsupervised classification, and spectral mixture analy-
sis. Recent studies identified burned forest areas of shift-
ing cultivation using a threshold value method with great 
overall accuracy (Das et  al. 2021; Das et  al. 2022; Swe 
2020). A range of spectral indices such as the Normal-
ized Burn Ratio (NBR), the difference in the Normalized 
Burn Ratio between pre- and post-fire images (dNBR), 
and the Normalized Difference Vegetation Index (NDVI) 
are commonly used for producing burned area maps 
(Lentile et al. 2006; Miller and Thode 2007; Rozario et al. 
2018). The differences between pre- and post-fire indi-
ces are extensively used for characterizing burned areas 
because such values provide objective results in detecting 
changes (Landmann 2003). Previous studies showed that 
the dNBR- and RdNBR-based classification provided a 
higher degree of accuracy in research results (Miller and 
Thode 2007; Rozario et al. 2018; Miller et al. 2009) while 
Das et al. (2021) observed a great performance of NDVI 
and NBR in capturing differences in the burned patches 
in Northeast India. Even though further technological 
development has been made to identify and follow the 
trends of land use transition, we still cannot fully analyze 
the complex, dynamic and fragmented land use system of 
swidden (Mertz et al. 2009a).

Specifically in Myanmar, based on the field inventory 
data and satellite imagery by the Forest Department, the 
estimate of swidden area ranged from 0.29 million hec-
tares within Permanent Forest Estate (PFE) to 10.18 mil-
lion hectares (Schmidt-Vogt et  al. 2009). The extent of 
swidden in Myanmar is extremely variable, even though 
the figures are provided by the same government agency 
(Schmidt-Vogt et  al. 2009). A recent global scale study 
found that the shifting cultivation area in Myanmar has 
declined drastically since 2000 (Heinimann et  al. 2017). 
Some studies researched on swidden cultivation in Myan-
mar in terms of traditional knowledge of swidden cultiva-
tors (Thet and Tokuchi 2020; Win 2004), biomass status 
in swidden fallows (Chan et  al. 2013; Chan and Takeda 
2016), and mapping of swidden land use at village level 
(Swe 2020; Chan et al. 2013; Chan and Takeda 2016; Swe 
and Nawata 2020; Chan and Takeda 2019). According to 
Chan and Takeda (2016) and Thet and Tokuchi (2020), 
the swidden fallow periods vary in different places in the 
7 to 20-year range. Also, Swe et al. (Swe 2020) found that 
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the fallow period decreased when permanent agriculture 
was introduced, and the availability of land for cultivation 
became limited as well. In the meantime, teak plantation 
was introduced in the Bago Mountains, Myanmar in the 
nineteenth century (Bryant 1996), and has since been 
well established. It is likely that the advent of plantation 
practices has made it difficult to assess the distribution of 
swidden at the national level. To fill this gap in swidden 
area mapping, we attempted to preliminarily estimate the 
extent of swidden in 2016 at the national level.

Objectives
The overall objective of this study is to produce a swidden 
land use/ land cover map of Myanmar by developing a 
decision tree-based swidden land use detection method. 
The national-level swidden land use data are scarce and 
thus urgently needed for the reform of the country’s 
land use policies pertaining to the land use rights of the 
mountain dwellers, as well as for the planning of sustain-
able development at local level. Therefore, this study is 
primarily intended to (i) delineate the swidden plots by 
developing a decision tree-based detection method, and 
with the use of remotely sensed data, (ii) test the accuracy 
of the method using the ground truth, and (iii) generate 
data on swidden land use areas of the years 2015‒2016.

Methods
Study area
Myanmar with an area of 676,557 sq. km has 15 adminis-
trative regions: one Union Territory (Nay Pyi Taw), seven 
States (Chin, Kachin, Kayin, Kayah, Mon, Rakhine, and 
Shan), and seven Regions (Ayeyarwady, Bago, Magway, 
Mandalay, Sagaing, Tanintharyi, and Yangon). The coun-
try lies between latitudes 9° and 29°N, and longitudes 
92° and 102°E (Fig.  1), bordering Bangladesh and India 
in the west, Tibet Autonomous Region in the north, and 
Yunnan, Laos and Thailand in the east. Many mountain 
ranges such as the Rakhine Yoma, the Bago Yoma, the 
Shan Hills and the Tenasserim Hills run north-to-south. 
Tropical monsoon climate and geographical modification 
characterize various ecosystems of Myanmar, featured by 
ice-capped mountains in the north, desert-like dryland in 
the center, and tropical moist region in the south.

The agricultural sector is the main economy of Myan-
mar, and 75% of the total population lives in rural areas 
(Win 2004; Department of Population 2019). Over the 
mountainous regions, several ethnic groups (Kachin, 
Kayah, Karen, Chin, Mon and Shan) have been practic-
ing swidden agriculture for generations. Each ethnic 
group has their own rules and practices on their swid-
den system. Agricultural crops such as upland rice, cot-
ton, sesame, chili peppers, and groundnuts are grown 
for both subsistence and income generation in the first 

year of cultivation. Swidden cultivation plots are selected 
at the end of winter, then slashed and burned before the 
rains (i.e., before May). Then, swiddeners start grow-
ing crops. They weed during the rainy season, and har-
vest the crops in the winter (i.e., from the beginning of 
November) (Swe 2020; Thet and Tokuchi 2020; Win 
2004; Chan et al. 2013; Chan and Takeda 2016; Chan and 
Takeda 2019). After crop cultivation, the cultivated areas 
are left as fallows for 7–20 years to recover for revegeta-
tion. The duration varies from location to location. (Swe 
2020; Thet and Tokuchi 2020; Win 2004; Chan et al. 2013; 
Chan and Takeda 2016; Chan and Takeda 2019; Swe and 
Funakawa 2019). According to the previous studies (Swe 
2020; Thet and Tokuchi 2020; Win 2004; Chan et al. 2013 
Sep; Chan and Takeda 2016; Chan and Takeda 2019; Swe 
and Funakawa 2019) and field observation, the swidden 
cultivation in Myanmar could be found in the elevation 
above 150-m, and slope of > 10 percent.

In‑situ data collection
Swe and Nawata (2020) tracked the boundaries of all 
existing swidden fields of SN and KC villages in the Bago 
Yoma using GPS (German Darkota 20) in May and June, 
2016. Also, they collected the point information of lands 
for other uses such as forest lands in the studied villages. 
Furthermore, they conducted interview surveys with the 
locals to confirm the size of the swidden fields, their agri-
cultural calendar and fallow period.

Using those ground truth data of Swe and Nawata 
(2020), we assessed the accuracy of the decision tree-
based detection method developed in this study.

Landsat image selection and pre‑processing
Previous studies recommend using the Landsat images 
to perform studies on burned areas due to its suffi-
ciently high spatial resolution (Torralbo and Benito 2012) 
and free availability. In this study, we applied Landsat 8 
Operational Land Imager (OLI)/ Thermal Infrared Sen-
sors (TIRS) satellite images with a 30  m spatial resolu-
tion from the Collection 1 Tier 1 Surface Reflectance 
Data, as the prime source of data for the study. According 
to Foga et  al. (2017), these images have the lowest geo-
registration errors which include a pixel Quality Assess-
ment (QA) band based on CF Mask (C code based on 
the Function of Mask or Fmask) algorithm, and is given 
preference to for operational cloud and cloud shadow 
detection. In addition, the USGS Shuttle Radar Topogra-
phy Mission Digital Elevation Model (SRTM DEM) was 
applied to perform the landscape analyses of elevation 
and slope position.

Pre-processing CF Mask of Landsat 8 OLI/TIRS 
images requires application of quality bands to 
remove cloud and cloud shadow contamination by 
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using respective QA band values. Pre-processing with 
the application of Landsat images and the landscape 
analyses with the SRTM DEM were performed on the 
Google Earth Engine (GEE) platform (Fig. 2).

Image composites
In this study, several Landsat images acquired during 
April‒May in both 2015 and 2016 were applied for the 
accuracy and national level analyses (Fig. 2). When there 

Fig. 1  Description of the study site with administrative boundaries
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are more than one image per region of interest, compos-
ites were created by using the median values of the Blue, 
Green, Red, Near Infrared, Short Wave Infrared-1 and 
Short Wave Infrared-2 bands of the images. In total, we 

applied 14 and 16 images from 2015 and 2016, respec-
tively, for the accuracy test sites (Fig. 3). At the national 
level, we used 178 and 181 images from 2015 and 2016, 
respectively (Fig. 3).
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Fig. 2  Flow chart with decision tree-based detection method
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Vegetation indices
To detect swidden plots, several vegetation indices were 
applied. In this study, two frequently used vegetation indi-
ces in swidden land use studies (Lentile et al. 2006; Miller 
and Thode 2007; Rozario et  al. 2018; Landmann 2003; 
Miller et  al. 2009) were computed to detect burnt areas: 
NBR and NDVI. NBR is one of the most widely used veg-
etation indices to highlight burnt areas in large fire zones. 
NDVI is also one of the most common vegetation indices 
to grasp the repetition and alternation pattern of swidden 
cultivation over different temporal intervals in test site and 
to characterize vegetation phenology.

Using the image composites, the pre- and post-NBR were 
calculated by Eq. (1). To know the changes in NBR values 
due to vegetation clearance or vegetation loss and burn, the 
dNBR value was computed by Eq. (2). Also, we recalculated 
the relative difference NBR (RdNBR) by Eq. (3).

(1)NBR = (NIR− SWIR2)/(NIR+ SWIR2)

(2)dNBR = Pre−NBR − Post−NBR

(3)

RdNBR = dNBR/

[

√

{

ABS(pre− fireNBR/1000)
}

]

Similarly, to assess the reduction in vegetation pres-
ence, the pre- and post-NDVIs were computed by Eq. (4), 
and the difference NDVI (dNDVI), by Eq. (5).

The differences in NBR and NDVI and the relative dif-
ference in NBR were adjudged to account for any change 
pixels due to vegetation clearance or vegetation loss and 
burn for swidden cultivation. Such changes in index value 
ranges were optimized based solely on their occurrences 
in various images acquired during the April‒May of 2015 
and 2016 periods (Fig. 2). After computing all the indices, 
we overlaid on them the elevations and the slopes derived 
from SRTM DEM images.

Threshold value extraction and selection
Within the ground truth polygons of the swidden plots 
collected in 2016, sample points were randomly taken, 
especially at the centers of the ground truth polygons. 
In addition, outside the ground truth site (test site), 
we took sample points by way of visual interpretation, 
comparing the vegetation statuses in 2015 and 2016 
(Fig. 4). A total of 108 sample points in and outside the 
test sites were applied to extract the dNBR, RdNBR, 
and dNDVI values from the stacked layers (Fig. 2). The 
extracted values from the sample points were then cal-
culated to obtain minimum, 1st Quartile, 2nd Quartile, 
and 3rd Quartile, and maximum values for each index 
(except elevation and slope). Therefore, a total of 15 
threshold values of dNDVI, dNBR, and RdNBR indices 
with their corresponding minimum, 1st Quartile, 2nd 
Quartile, and 3rd Quartile and maximum values were 
assessed to select the most suitable threshold for each 
index for further accuracy assessment.

Before accuracy assessment, we considered another 
factor, i.e. the size of the swidden plot. Due to differ-
ent patterns of swidden practice (such as random shift 
by the Karen people, and collective shift by some eth-
nic groups of the Chin), the extent of swidden varies 
in the number of plots and in area. Also, at the time of 
plot-burning for swidden cultivation, site preparation 
for tree plantation takes place in Myanmar, especially 
in mountainous areas, which may have been misde-
tected (wrongly detected) as swidden plots. However, 
the size of tree plantation sites is often bigger than that 
of swidden plots. According to the Forest Department 
(unpublished), the smallest size of tree plantation is 
25 acres (about 10.12 ha). The smallest size of swidden 
plot is 0.5 acres (0.2 ha) based on the ground truth data 
of (Swe 2020). Therefore, we excluded the areas, which 

(4)NDVI = (NIR− Red)/(NIR+ Red)

(5)dNDVI = Pre−NDVI − Post−NDVI
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are smaller than 0.5 acres and larger than 25 acres, to 
extract the actual area of swidden plots.

When assessing the five thresholds for each of the 
three indices (in total 15 threshold values), we adopted 
the decision tree-based detection (DTD) method to 
select the most accurate threshold for each index. The 
DTD method is a commonly used data mining method 
for developing classification systems based on multiple 
covariates or for establishing prediction algorithms for 
a target variable (Song and Lu 2015). We conducted an 
accuracy assessment using the DTD method based on 
the ground truth data collected in 2016. The accuracy 
was assessed for two parameters (number of plots, and 
the extent of area) by using the following Eqs. 6 and 7 
(Swe 2020):

From this accuracy assessment, we selected three 
criteria with the most appropriate corresponding 
thresholds.

(6)Accuracy(%), based on the number of plots =
100× total number of accurated etection plots identified by ground truth

total detected area (Number of plots)

(7)Accuracy(%), based on the area =
100× total accurate detection are a identified by ground truth

total detected area (ha)

Threshold value pairing and accuracy assessment
We combined the three indices (dNDVI, dNBR, and 
RdNBR) and their corresponding thresholds of the 
highest accuracy, with both elevation and slope percent 
derived from SRTM DEM to make the threshold value 
pairs. Seven pairs of indices (Pair 1–7) were obtained. 
Again, we performed a similar accuracy assessment on 
these seven pairs of indices, using the ground truth poly-
gons collected in the test site, to select the most accurate 
pair for further assessment of swidden plots at national 
level.

Estimation of swidden extent at national level
Using the best-fit model, we estimated the extent of swid-
den for the whole of Myanmar. It should be noted that 

cloud cover was not taken into account in this estima-
tion. Additionally, we calculated the swidden area by 
the administrative boundaries to know which regions 
need to be paid attention to in terms of land use plan-
ning and sustainable development of swidden system at 
the regional level. Due to cloud cover, we computed the 
area percentage of each region by the total swidden area 
detected in this study.

Results
Threshold determination and accuracy
After pre-processing, compositing and analyzing veg-
etation indices for the pre- and post-burn images, we 
extracted the threshold values for NBR and NDVI indices 
with data from 108 sample points. These threshold values 
for each index were statistically extracted by quartiles, 
and the accuracies for each pair of index and threshold 
assessed by two parameters _ the number of plots and the 
area of the detected plots.

The threshold values for dNBR are 0.058 at minimum 
threshold (dNBR_1), 0.297 at 1st quartile (dNBR_2), 
0.371 at 2nd quartile (dNBR_3), 0.440 at 3rd quartile 
(dNBR_4), and 0.588 at maximum (dNBR_5) (Table  1). 
The threshold values at minimum (RdNBR_1), at 1st 
quartile (RdNBR_2), at 2nd quartile (RdNBR_3), at 3rd 
quartile (RdNBR_4), and at maximum (RdNBR_5) are 
8, 18, 21, 23, and 29, respectively (Table 1). The thresh-
old values for dNDVI are 0.032 at minimum (dNDVI_1), 
0.158 at 1st quartile (dNDVI_2), 0.235 at 2nd quartile 

Fig. 4  Taking sample points using Landsat Image composites (April–
May, 2016) in (upper panel) and outside (lower panel) ground truth 
sites
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(dNDVI_3), 0.303 at 3rd quartile (dNDVI_4), and 0.515 
at maximum (dNDVI_5) (Table 1).

The dNBR models produced 752, 94, 58, 36 and 1 plots 
by each threshold. According to the assessment based on 
the number of plots, dNBR_5 threshold produced one 
plot which overlapped with the ground truth plot (100% 
accuracy), followed by dNBR_3 threshold (79.31% accu-
racy, 46 overlapped plots), dNBR_2 threshold (76.60% 
accuracy, 72 overlapped plots), dNBR_4 threshold 
(75.00% accuracy, 27 overlapped plots), and dNBR_1 
threshold (9.27% accuracy, 53 overlapped plots) (Table 1). 
The assessment based on the area of the ground truth 
provided 100% accuracy for dNBR_5 threshold, fol-
lowed by dNBR_2 threshold (77.67%), dNBR_4 thresh-
old (77.53%), dNBR_3 threshold (77.20%), and dNBR_1 
threshold (65.44%) (Table  1). Although the dNBR_5 
threshold was found to be 100% accurate in term of the 
number of plots, it could detect only one accurate plot 
with the area of 0.51 ha which did not cover the ground 
truth area of 129.42 ha. Also, in terms of the number of 
plots detected and overlapped with the ground truth 
plots, dNBR_3 showed a higher percentage (79.31%) 
than dNBR_2 (76.60%) (Table  1). However, considering 
the area-based accuracy with a higher number of plots 
detected by the model and overlapped with the ground 
truth plots, we selected the dNBR_2 threshold for further 
analysis.

In case of RdNBR index, the models gave 310, 112, 98, 
91 and 26 plots for each threshold (Table 1). The assess-
ment based on the number of plots showed the highest 
accuracy (71.43%, 65 overlapped plots) with RdNBR_4 
threshold, followed by 66.33% (65 overlapped plots) with 
RdNBR_3, 65.38% (Potapov et  al. 2019) with RdNBR_5, 
62.50% (70 overlapped plots) with RdNBR_2, and 22.58% 
(70 overlapped plots) with RdNBR_1 (Table  1). The 
area-based assessment also gave the highest accuracy 
(81.33%) with RdNBR_4 threshold, followed by 80.07% 
with RdNBR_3 threshold, 77.59% with RdNBR_2 thresh-
old, 65.27% with RdNBR_5 threshold, and 52.03% with 
RdNBR_1 threshold (Table 1). Therefore, we applied the 
RdNBR_4 threshold for the later analysis, based on the 
accuracy assessment in terms of the number of plots 
detected and the area extent of the overlapped plots.

The dNDVI models detected 682, 124, 56, and 16 
plots for each threshold, except dNDVI_5 (Table  1). 
The threshold dNDVI_5 could not detect any accurate 
plots. According to the assessment based on the num-
ber of plots, it showed the highest accuracy (73.21%, 
41 overlapped plots) with dNDVI_3 threshold, fol-
lowed by dNDVI_2 threshold (62.10%, 77 overlapped 
plots), dNDVI_4 threshold (56.25%, 9 overlapped plots), 
and dNDVI_1 threshold (6.16%, 42 overlapped plots) 
(Table  1). The area-based assessment for the dNDVI 

index showed the highest accuracy (73.55%) with 
dNDVI_3 threshold, followed by dNDVI_2 threshold 
(71.70%), dNDVI_1 threshold (68.77%), and dNDVI_4 
(63.26%) (Table 1). The results showed that the dNDVI_3 
produced the highest accuracy based on the number of 
plots and area assessments.

Therefore, we performed further analyses using the 
threshold values of 0.297 for dNBR, of 23 for RdNBR, and 
of 0.235 for dNDVI (Table 1).

Index pair analysis and accuracy assessment
Using the threshold values of dNBR, RdNBR and dNDVI, 
indices which have the highest accuracy, and together 
with elevation and slope, we performed analyses for 
seven index pairs (Table 2). Like the accuracy assessment 
in threshold determination, we calculated the accuracy, 
in terms of the number of plots and area, for the seven 
threshold pairs (Table 2).

When assessing the index pairs, different models 
detected different numbers of plots. There were 97 plots 
produced by Pair_1 model, 88 by Pair_2, 76 by Pair_4, 
55 by Pair_3 and Pair_5, and 48 by Pair_6 and Pair_7 
(Table 2). Figure 5 also depicted the generated polygons 
by seven index pairs (blue) and the ground truth poly-
gons (red) which visualize the accuracy assessment.

According to the accuracy assessment by the num-
ber of model-produced plots which overlapped with the 
ground truth plots, the Pair_4 model showed the high-
est accuracy (82.89% with 63 overlapped plots), followed 
by Pair_2 (77.27% with 68 overlapped plots), Pair_6 and 
Pair_ 7 (77.08% with 37 overlapped plots each), Pair_3 
and Pair_5 (74.55% with 41 overlapped plots each), and 
Pair_1 (74.23% with 72 overlapped plots) (Table 2).

The area-based accuracy assessment showed that the 
Pair_4 model produced the largest accuracy (84.25%), 
followed by Pair_2 (82.04%), Pair_1 (78.98%), Pair_6 
and Pair_7 (75.20% each), Pair_3 (72.72%), and Pair_5 
(72.69%) (Table 2).

According to both accuracy assessments, the Pair_4 
model showed the highest accuracy, and we will use this 
model to estimate the extent of swidden for the whole 
country.

Estimation of the extent of swidden at national level
Using the Pair_4 model, the spatial extent of swidden 
plots was estimated at national level for the year 2016. 
This, however, does not include some regions due to 
an extensive cloud cover during the burning and leaf 
initiation periods of the study year. The cloud cover 
was 8379623.25 ha, especially in the Northern parts of 
Myanmar such as Kachin and Sagaing. The spatial dis-
tribution of swidden plots and cloud cover is depicted 
in Fig.  6. The average proportions of cloud cover for 
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the test site in 2015 and 2016 are 32.45% and 21.75%, 
respectively (Fig.  3). The average proportions of cloud 
cover for the whole site in 2015 and 2016 are 33.20% 
and 30.61% (Fig. 3).

According to the estimate, the swidden area covered 
about 100311.10 ha in 2016. It comprises a very large pro-
portion of the total land area of the country (about 0.15% 
of the total country area). If we exclude the cloud cover 
area from the total country area, the estimated swidden 
plots encompass about 0.17% of the total national area.

According to the estimate of the extent of swidden by 
the administrative boundaries in Myanmar (Table  3), 
swidden is estimated to be practiced in almost every state 
and region, except the Yangon Region. A disproportion-
ately large area of swidden cultivation was observed in 
Shan State with an area of 57733.90  ha (57.56% of the 
total detected swidden area in 2016), followed by Chin 
State (13409.73 ha, 13.37%).

Discussion
In Myanmar, due to extremely variable figures on swid-
den extent, even from the same governmental depart-
ment, we attempted to estimate the swidden at national 
level using free available Landsat images in combination 
with decision tree-based plot detection method in GEE 
platform.

Remotely sensed data, indices, thresholds, and models 
for detecting swidden system
To assess the overall system of swidden, several attempts 
were made in a number of studies (Das et al. 2021; Lentile 
et  al. 2006; Swe 2020; Landmann 2003). Due to the con-
straints of monitoring techniques and data at macroscopic 
scale, previous geographical studies of swidden agriculture 
used to be mainly descriptive (Inoue 2000). The advance-
ment of remote sensing techniques since 1970s, however, 
has made it possible to monitor environmental changes 

Table 2  Description and accuracy assessment for seven index pairs

Threshold in bold letter and value is considered as a best-fit pair

Threshold 
Name

Description No. of 
Ground 
truth Plots

No. of 
Model 
Plots

Overlap Plots Plot-based 
Accuracy %

Ground 
truth area 
(ha)

Model Area 
(ha)

Overlap 
area 
(ha)

Area-based 
Accuracy (%)

Pair_1 dNBR > 0.297 
and slope > 10 
and eleva-
tion > 150

100 97 72 74.23 129.42 103.76 81.95 78.98

Pair_2 RdNBR > 23 
and slope > 10 
and eleva-
tion > 150

100 88 68 77.27 129.42 81.27 66.68 82.04

Pair_3 dNDVI > 0.235 
and slope > 10 
and eleva-
tion > 150

100 55 41 74.55 129.42 44.80 32.58 72.72

Pair_4 dNBR > 0.297 
and 
RdNBR > 23 
and slope > 10 
and eleva‑
tion > 150

100 76 63 82.89 129.42 66.26 55.82 84.25

Pair_5 dNBR > 0.297 
and 
dNDVI > 0.235 
and slope > 10 
and eleva-
tion > 150

100 55 41 74.55 129.42 44.12 32.07 72.69

Pair_6 RdNBR > 23 and 
dNDVI > 0.235 
and slope > 10 
and eleva-
tion > 150

100 48 37 77.08 129.42 31.81 23.92 75.20

Pair_7 RdNBR > 23 and 
RdNBR > 23 and 
dNDVI > 0.235 
and slope > 10 
and eleva-
tion > 150

100 48 37 77.08 129.42 31.81 23.92 75.20
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ever more closely, in that remotely sensed data provide 
invaluable information on fire events and burned area with 
its synoptic, multi-temporal, multi-spectral and repetitive 

coverage capabilities (Vadrevu and Justice 2011). With 
a growing availability of remotely sensed data (Potapov 
et al. 2019; Potapov et al. 2012), the extent, dynamics, and 

Fig. 5  Maps showing the accuracies for [1] dNBR + Slop + Elevation (Pair_1), [2] RdNBR + Slope + Elevation (Pair_2), [3] dNDVI + Slope + Elevation 
(Pair_3), [4] dNBR + RdNBR + Slope + Elevation (Pair_4), [5] dNBR + dNDVI + Slope + Elevation (Pair_5), [6] RdNBR + dNDVI + Slope + Elevation 
(Pair_6), and [7] dNBR + RdNBR + dNDVI + Slope + Elevation (Pair_7)
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Fig. 6  Generated Swidden Land Cover Map Classified by Decision Tree Detection Method for Myanmar
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spatial characteristics of swidden agriculture are quanti-
fied at different scales in Southeast Asian countries (Hein-
imann et  al. 2007; Castella et  al. 2013; Hurni et  al. 2013; 
Liao et al. 2015; Molinario et al. 2017). Singh and Dubey 
(Singh and Dubey 2012) suggested that remote sensing 
provides land resource data in both digital form and differ-
ent bands of the electromagnetic spectrum. Satellite data 
that can be used for delineating swidden cultivation are 
Medium spatial resolution Landsat images such as Landsat 
TM, Enhanced Thematic Mapper (ETM), and Operational 
Land Imager (OLI), coarse spatial resolution by MODIS 
and Synthetic Aperture Radar (SAR). Medium spatial reso-
lution Landsat images were the most commonly used sat-
ellite data in many previous studies (Li et al. 2014). They 
are particularly suitable for mapping burned areas (Li et al. 
2014; Petropoulos et al. 2011). Therefore, we utilized free 
available Landsat imageries in this study to detect swidden 
patches.

Regarding the index selection, Swe and Nawata (2020) 
applied the NDVI break value to detect swidden plots in 
the Bago Yoma, Myanmar. They developed remote sens-
ing-based detection methods for swidden land use with 
the application of the Landsat images. Das et. al (2021) 
also used, dNBR, RdNBR and dNDVI indices to develop 
ways to observe long-term mapping of shifting cultiva-
tion. With the application Landsat data. they developed 
a decision tree-based multi-step threshold (DTMT) 
method in Northeast India. Thereafter, other studies 
applied the same vegetation indices to assess swidden 
agriculture and its trend (Lentile et  al. 2006; Miller and 
Thode 2007; Rozario et  al. 2018). In this study, we also 
applied these three common indices (dNBR, RdNBR and 

dNDVI), and the most appropriate thresholds figured out 
by a decision tree-based detection method.

Our accuracy assessment on three indices showed that 
dNBR_2 has the highest accuracy (76.60%), followed by 
dNDVI_3 (73.21%) and by RdNBR_4 (71.43%) in terms 
of the number of overlapped plots. In the aspect of swid-
den area, RdNBR_4 also showed the highest accuracy 
(81.33%), followed by dNBR_2 (77.67%) and by dNDVI_3 
(73.55%). In previous studies, dNBR- and RdNBR-based 
classifications showed a higher degree of accuracy in 
their research results (Miller and Thode 2007; Rozario 
et al. 2018; Miller et al. 2009) and NDVI and NDVI dif-
ference also provided a great performance in capturing 
burned areas in Northeast India (Das et al. 2022).

In addition, Swe and Nawata (2020) suggested that the 
maximum likelihood method was better than the NDVI 
method for swidden land use detection. In a case study by 
Das et al. (2021), the combination of dNDVI, dNBR, and 
RdNBR produced higher overall accuracy. However, in 
this study, NBR showed the better accuracy than NDVI. 
Of seven pairs, dNBR in combination with RdNBR pro-
duced the highest accuracy (84.25%) compared to any of 
these indices alone with slope and elevation, and among 
all pairs of indices. Therefore, the applicability of each 
index needs to be further assessed.

Swidden plot detection and accuracy assessment
Previous studies stated that the complex nature of swid-
den made it difficult to achieve an accuracy higher than 
70% by using Landsat images (Castella et  al. 2013; Liao 
et  al. 2015; Müller et  al. 2013; Thatheva and Yasuyuki 
2009). However, recent studies in Northeast India by Das 
et  al. (2021), in which the spatiotemporal dynamics of 
swidden cultivation was assessed using Landsat images 
and applying the decision tree multi-threshold classi-
fication framework based on vegetation indices such as 
dNDVI, dNBR, and RdNBR, showed the higher overall 
accuracy (above 85%). This study also produced the high-
est accuracy of 84.25% and the rest are also higher than 
72%. These degrees of accuracy could have resulted from 
the application of image composites during the study 
period. Similarly, Das et al. (2021) and Swe and Nawata 
(2020) pointed out that multi-image classifications can 
increase the accuracy of swidden detection methods.

Regarding the accuracy assessment on these selected 
indices with corresponding most appropriate thresholds, 
Swe and Nawata (2020) presented the area-based accu-
racy of 62.8% in SN village, and 42.2% in KC village.

In this study, we applied a similar accuracy assess-
ment method to Swe and Nawata (2020), and our deci-
sion tree-based detection method produced a relatively 
higher accuracy result. Similarly, Shimizu et  al. (2017) 
conducted a swidden plot level detection test in the Bago 

Table 3  Swidden Land Cover Areas of Myanmar

States/ Regions Area (ha) Percent

Ayeyarwady 83.33 0.08

Bago 1882.07 1.88

Chin 13,409.73 13.37

Kachin 3488.13 3.48

Kayah 3437.70 3.43

Kayin 8627.91 8.60

Magway 1805.56 1.80

Mandalay 2333.42 2.33

Mon 273.48 0.27

Naypyitaw 911.29 0.91

Rakhine 1348.87 1.34

Sagaing 739.32 0.74

Shan 57,733.90 57.56

Tanintharyi 4231.39 4.22

Yangon 0 0.00

Total 100,311.10 100
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Mountains, Myanmar, with Landsat images using a area-
based accuracy assessment method. In their findings, the 
producer’s and user’s accuracy levels for shifting culti-
vation during the period from 2000 to 2014 were 45.1% 
and 74.4%, respectively (Shimizu et  al. 2017). Although 
Sakai (2002) conducted a similar analysis to accurately 
detect “slash and burn” cultivation plots by considering 
the elements ˗ (i) the decrease in vegetation between two 
periods (ii) sizes of plots (iii) shapes of plots, the accu-
racy assessment results were not reported. In our study, 
the area-based accuracy was relatively higher compared 
to the accuracy result of Shimizu et. al. (2017) and Swe 
and Nawata (2020). Even though the accuracy levels 
vary, Das et al. (2022) demonstrated an overall accuracy 
of above 85% and Kappa values of above 0.69, for all four 
periods (a) 1975–1976, (b) 2000–2001 (c) 2014–2015 (d) 
2017–2018. The present study also produced the highest 
accuracy of 84.25% and the rest are also higher than 72%.

Therefore, the selection of indices, an appropriate 
threshold value for each index by DTD method pro-
vided better accuracy compared to other similar studies, 
although similar accuracy was given when assessed with 
different methods.

Moreover, to fully detect all ground truth swidden 
fields quite challenging in this study. Similar finding was 
reported by Swe and Nawata (2020), even the combina-
tion of the NDVI break value method and the Maximum 
Likelihood method allowed just over 70% of the actual 
swidden plots to be detected. Such detection failures 
were possibly due to incomplete burned fields and small-
sized swidden plots as well as the topography (Swe 2020). 
It is also possible that the most appropriate threshold 
was not selected for each of the applied methods. How-
ever, our study suggested that the use of ground truth 
data in combination with a decision tree-based detection 
method produces better accuracy in detecting swidden 
plots on the study sites and proved the applicability of 
our methodology to detect highly complex swidden plots.

Swidden extent at national level
This study is the first attempt of its kind to estimate the 
swidden extent at a national level in Myanmar, using 
free available Landsat images and the GEE platform. The 
results showed that swidden cultivation is mostly prac-
ticed in areas where ethnic minority groups live. Accord-
ing to this study, swidden was most extensive in Shan 
State, followed by Chin State. Win (2004) reported simi-
lar findings that swidden cultivation practice mostly pre-
vails in Chin and Shan states.

Without cloud cover areas, we estimated that there was 
a total swidden area of 0.1 million ha nationwide in 2016. 
Compared with other previously reported Figs.  (0.29 – 
10.18 million ha), our estimate is much smaller likely due 

to an actual reduction in swidden land use and its demise 
in some places due to several factors. Mertz et al. (2009b) 
and Schmidt-Vogt et  al. (2009) reported some farmers 
downscaled swidden farming and others ceased it alto-
gether. Swe and Nawata (2020; 2020) also presented a 
decreasing trend in swidden agricultural practice in two 
villages and the demise in one village that they studied. 
Whether or when such changes occurred in Myanmar is 
yet to be known and we need to make further time-series 
analyses using the same method for more details.

Limitations
Limitations in this study were heavy clouds and other 
atmospheric constituents mostly in regions such as 
Sagaing and Kachin. CF mask products were applied to 
exclude cloud pixels prior to image classification, and 
these pixels were treated as no data values. Even though 
the image classification was done and change detection 
was modelled based on the best classification result on 
the GEE platform, we could not avoid some degree of 
cloud cover when we detected the swidden patches at 
national level (Fig. 7).

Also, higher mapping accuracy would likely be 
achieved with larger ground truth data (Anders et  al. 
2021; Maglogiannis et  al. 2007). The ground truth data 
utilized during the testing phase in this study were lim-
ited in quantity and involved positional uncertainty, even 
though we collected them form 108 sample points in dif-
ferent parts of the country. A challenge we encountered 
was discrepancies in time between the available CF mask 
of Landsat 8 OLI/TIRS images and the ground truth data. 
Therefore, the accuracy needs to be further assessed with 
more ground truth data from other parts of the country. 
Despite all these limitations, the proposed method and 
the accuracy assessment provided a better performance 
in detecting swidden plots in Myanmar than ever before.

Conclusions
This study attempted to fill the gap of swidden land 
cover map of Myanmar at a national level. Our primary 
goal was to develop a swidden land cover map for the 
whole of Myanmar by applying free available Landsat 
images, and using GEE cloud computing in combina-
tion with the DTD method of several indices. When we 
applied the DTD method to select the most appropri-
ate indices, and to find the best suited threshold val-
ues for each index, our study suggested that the dNBR 
model combined with RdNBR, slope and elevation 
produced the highest accuracy (83% and 84% in terms 
of the number of plots and the area of the overlapped 
plots, respectively), while the all index pair (dNBR, 
RdNBR, dNDVI, slope, and elevation) showed lower 
accuracy even with the ground truth data. Therefore, 
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Fig. 7  Land 8 Composite images (April–May 2016, SWIR-NIR-RED Band combination) with the swidden plots detected by the best-fit model
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NBR is likely to outweigh NDVI in detecting burned 
areas like swidden patches, though we may need to fur-
ther assess the applicability of different indices. Using 
the best-fit combinations of the indices and thresholds 
(Pair_4 which is the combination of dNBR > 0.297 and 
RdNBR > 23 and slope > 10 and elevation > 150) with 
high accuracy, we could produce an overall national 
swidden land use map of Myanmar for 2016.

In addition, our estimate on the extent of swidden 
showed that about 100,311.10 hectares of land was 
used for swidden in Myanmar in 2016 with the high-
est extents in Shan State and Chin State. It showed a 
smaller Fig.  (0.1 million ha), compared to other previ-
ously reported data (0.29 – 10.18 million ha). This is 
likely due to transition away from, and in some areas, 
demise of swidden. The other factor is cloud cover. 
There was a very large proportion of cloud, especially in 
the Sagaing Region and Chin State. Without the cloud 
cover area, the estimated swidden plots comprised 
about 0.17% of the total national land area.

In conclusion, this study contributed to fill the gap 
between the actual swidden area and the area depicted 
on an existing available map of Myanmar with the 
use of free available images and the GEE platform. As 
Myanmar is the largest country in mainland Southeast 
Asia in area with a great majority of the population liv-
ing in rural areas, and many in the mountains, its land 
resources are of great relevance to the people’s liveli-
hoods and thereby the nation’s progress. This study 
using the DTD method with the appropriate vegetation 
indices and thresholds, also provided the potential to 
estimate swidden extents both at regional and national 
levels. This will largely contribute to land management 
planning, especially for the farmers in the mountainous 
areas.
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