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Abstract 

The accurate weighting of pseudorange observations is important to improve the convergence time and positioning 
quality of Precise Point Positioning (PPP). Currently, the weight of a pseudorange observation is mainly determined 
with empirical stochastic models. However, in a complex environment, due to the inability to adapt for the dynamic 
changes of the user environment, the empirical stochastic models usually cannot reflect the real error level of pseu-
dorange observations. To address this problem, a resilient adjustment method to weigh pseudorange observations is 
proposed, which constructs the real-time estimation and inflation model for the variance of pseudorange multipath 
error and measurement noise to replace the empirical stochastic model to determine the weights of pseudorange 
observations. A set of static and dynamic Global Positioning System (GPS) test data are used to verify the effectiveness 
of the proposed method. The test results indicate that the proposed real-time estimation model can provide a better 
representation of the pseudorange accuracy, and the positioning performance of PPP using the real-time estima-
tion model is better than that with the empirical stochastic model. Compared with the optimal empirical stochastic 
model, the positioning accuracy of PPP with the real-time estimation model is improved by at least 20%, and the 
convergence time is reduced by at least 50%.
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Introduction
In a complex environment, due to the influence of vari-
ous error sources the accuracy of observation data is 
much related to the observed satellites, especially pseu-
dorange observations. In order to improve the conver-
gence time, positioning reliability and accuracy of Precise 
Point Positioning (PPP), it is necessary to properly weigh 
each observation. A stochastic model is used to describe 
the statistical characteristics of observation errors, which 
is the key to the determination of the weights of observa-
tions (Dovis et  al., 2015). Therefore, accurate stochastic 

model is important for improving the positioning 
performance.

In order to determine the weights of observations, 
researchers have proposed a variety of empirical stochas-
tic models, which are usually a function of the satellite 
elevation angle, signal-to-noise ratio, carrier-to-noise 
ratio, or multipath factor, to estimate the measurement 
variance (Parvazi et al., 2020; Zhang et al., 2019a, 2019b). 
The coefficients of an empirical stochastic model are usu-
ally fixed. However, in complex environments, measure-
ment error is related to many factors such as the signal 
power, the types of receivers and observations, the design 
of the antenna, the satellite constellation, and the satel-
lite elevation angle (Zhang et  al., 2018). Because those 
factors vary significantly during the process, it is difficult 
to accurately evaluate the statistical characteristics of the 
measurement error in real-time by using an empirical 
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stochastic model. Therefore, the empirical stochastic 
model used usually cannot reflect the real error level of 
observations in complex environments.

To deal with the time-varying and unpredictable obser-
vation errors in complex environments, many scholars 
have carried out extensive research on resilient stochas-
tic models and put forward various resilient adjustment 
methods (Yang, 2019; Zhang et  al., 2020), including 
Multiple Model Adaptive Estimation (MMAE), Variance 
Component Estimation (VCE), and covariance matching 
methods. The MMAE method (Shen et al., 2022) adopts a 
set of parallel filters with different observation covariance 
matrices to estimate the state parameters, and then fuses 
the state estimation according to the a posterior prob-
ability of each filter. This method can obtain the optimal 
state estimation theoretically, but needs to set many par-
allel filters, which will lead to serious memory resource 
consumption and affect the real-time performance. The 
VCE methods include Helmert Variance Component 
Estimation (HVCE) (Gao et  al., 2016), Minimum Norm 
Quadratic Unbiased Estimator (MINQUE) (Zhang et al., 
2019a, 2019b), the Best Invariant Quadratic Unbiased 
Estimator (BIQUE) (Zhang et al., 2019a, 2019b), and the 
Least-square Variance Component Estimator (LS-VCE) 
(Parvazi et al., 2020). They generally use the residuals to 
estimate the (co)variance of observations, which requires 
a lot of redundant observations to obtain reliable (co)
variances. Therefore, the VCE methods are mainly used 
for post-processing analysis or to determine the scale fac-
tors of different types or groups of observations (Parvazi 
et  al., 2020; Zhang et  al., 2019a, 2019b). The covariance 
matching methods include the Residual-based Adaptive 
Estimation (RAE) (Lee et  al., 2020) and the Innovation-
based Adaptive Estimation (IAE) (Liu et al., 2021), which 
calculate the measurement covariance matrix based on 
the numerical relationship between the measurement 
error and measurement residual or innovation, respec-
tively. Although the covariance matching methods have 
a strict mathematical basis, they require that the meas-
urement residual or innovation vectors are of the same 
dimension at all epochs, which limits their application in 
the field of satellite navigation and positioning where the 
number of observations changes with time (Yang & Gao, 
2006).

Although a resilient stochastic model can adjust the 
weights of observations adaptively, the resilient adjust-
ment methods mentioned above are not suitable for PPP. 
At present, the empirical stochastic models are mainly 
adopted to determine the weights of observations in PPP. 
Since the measurement error is the most intuitive mani-
festation of the measurement accuracy, using the meas-
urement error sequence extracted from the observations 
to analyze the measurement accuracy should best reflect 

the true error level of the observations (Zheng & Guo, 
2016). In view of this, a resilient adjustment method for 
pseudorange observation weighting is proposed in this 
paper. In this method, the real-time estimation model is 
constructed, which is used to estimate the pseudorange 
variance based on pseudorange multipath error and 
measurement noise sequences, to replace the empirical 
stochastic model for determining the weights of pseudor-
ange observations.

This article is arranged as follows. The observation 
function model and the empirical stochastic model of 
PPP are first introduced, and the advantages and disad-
vantages of the empirical stochastic model are analyzed. 
Then, the resilient adjustment method and model to 
establish the pseudorange observation variance are intro-
duced in detail. Afterwards, the performance of the pro-
posed model is evaluated and discussed using the Global 
Positioning System (GPS) observation data in a static and 
a dynamic tests. Finally, summary and conclusion are 
given.

Observation model of precise point positioning
There are two types of observations in PPP, namely pseu-
dorange and carrier phase. Considering the main error 
items, the pseudorange and carrier phase measurements 
can be modeled as (Pan, 2018)

where i represents the frequency index, c denotes the 
speed of light in vacuum, Pi and Li are the pseudorange 
and carrier phase measurements obtained with a receiver, 
respectively, ρ is the geometric range between the satel-
lite and the receiver antenna phase centers at emission 
and reception time, �ts is the satellite clock offsets, Tr 
is the tropospheric delay, Ii is the ionospheric delay, dmp 
and represent the carrier phase and pseudorange mul-
tipath errors, respectively, ε and ς are the pseudorange 
and carrier phase measurement errors, respectively, �tr 
and Bi are the receiver clock offset and the carrier phase 
bias, which are unknown parameters.

The error sources affecting the accuracy of observa-
tions include satellite orbit and clock errors, atmospheric 
transmission delay, multipath errors, and measurement 
noise. Among them, the satellite orbit and clock errors 
and tropospheric delay can be corrected by models (Guo 
et al., 2017; Ma et al., 2021; Stpniak et al., 2015). Consid-
ering that the ionospheric delay is inversely proportional 
to the square of the signal frequency, the ionospheric 
delay can be eliminated by the Ionospheric-Free (IF) 
observation model as follows (Pan et al., 2021).

(1)Pi = ρ + c(�tr −�ts)+ Tr + Ii + diMP + εi

(2)Li = ρ + c(�tr −�ts)+ Tr − Ii + Bi + dimp + ςi
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where PIF and LIF are IF pseudorange and carrier PIF 
phase observations, which are a linear combination of 
the pseudorange and carrier phase observations on fre-
quencies fj and fi, respectively. However, multipath error 
and measurement noise are difficult to model and usually 
cannot be eliminated (Seepersad & Bisnath, 2015; Lau, 
2017; Zhang et al., 2018). They are the main factors that 
reduce the accuracy of observations, especially in a com-
plex environment such as urban.

Empirical stochastic model
The classical method to weigh the observations is to use 
an empirical stochastic model to estimate the observa-
tion variance. Assuming that each error source obeys a 
Gaussian normal distribution with zero mean, and con-
sidering the contributions of all error sources, the obser-
vation variance for each satellite in view can be obtained 
as (Dovis et al., 2015)

where σi is the standard deviation of the measurement to 
the ith satellite. The details of the other symbols are as 
follows:

•	 σclk&eph is the standard deviation of the satellite clock 
and orbit errors, which is usually referred to User 
Range Accuracy (URA) (Bijjahalli & Sabatini, 2021). 
With broadcast ephemeris, the typical value of URA 
is 2.4 m, while with precise orbit and clock products, 
the URA is generally several centimeters or better 
(Guo et al., 2017).

•	 σtrop is the standard deviation of troposphere correc-
tion model. Because the troposphere delay correction 
error is mainly caused by the hydrostatic delay σTVE
correction model error, the standard deviation of 
troposphere delay is modeled by (Dovis et al., 2015)

where σTVE is the standard deviation of the zenith 
troposphere delay, which is set to an empirical value 
0.12 m, Mdry(βEL) is the dry mapping function, and 
βEL is the satellite elevation angle.

•	 σion denotes the standard deviation of the ionosphere 
correction model. For a dual-frequency or multi-fre-
quency receiver, the ionospheric delay can be elimi-
nated by dual-frequency IF linear combination, so 
the standard deviation of ionospheric delay can be 
set to σion = 0.

(3)
PIF(LIF) = aiPi(Li)− ajPj(Lj), al = f 2l /

(

f 2i − f 2j

)

, l ∈ i, j

(4)
σ 2
i = σ 2

clk&epch,i + σ 2
trop,i + σ 2

ion,i + σ 2
MP,i + σ 2

noise,i

(5)σtrop = σTVE ·Mdry(βEL)

•	 σnoise is the receiver noise standard deviation. 
Because receiver measurement noise has random 
characteristics, it is difficult to model and eliminate it, 
and the noise characteristics can only be determined 
by statistical analysis. Researchers have proposed 
many stochastic models for estimating receiver noise 
standard deviation. Those stochastic models are gen-
erally a function of satellite elevation angle or Signal 
to Noise Ratio (SNR) (Parvazi et  al., 2020). Among 
them, the sine stochastic function model based on 
satellite elevation angle is widely used (Parvazi et al., 
2020)

where σ0 is the nominal value of measurement noise 
standard deviation. For example, σ L

0 = 0.003 m for 
GPS P code pseudorange, and σ P

0 = 0.3 m for carrier 
phase observable.

•	 σMP is the standard deviation of multipath uncer-
tainty. The multipath error is usually treated as a 
noise, and an empiric stochastic function model 
based on the satellite elevation angle similar to the 
receiver measurement noise is used to estimate the 
standard deviation of the multipath error (Seepersad 
& Bisnath, 2015).

The above error model is based on the empirical 
model, which is simple in its implementation. However, 
in a complex environment, the empirical model can 
not reflect the real error level due to the mismatching 
of error model and the user environment (Dovis et  al., 
2015). In order to improve the reliability of the estimated 
Global Navigation Satellite System (GNSS) observation 
accuracy and the performance of the navigation system 
in dynamic and complex environments, we propose a 
resilient adjustment method to estimate the pseudorange 
variance by constructing a real-time estimation model.

Resilient adjustment method to weigh 
pseudorange observations
Because multipath error and measurement noise have 
random characteristics, especially multipath error is 
much dependent of the user environment, it is usually 
difficult to accurately estimate the variance using empiri-
cal stochastic models, which ultimately reduces the 
positioning performance of GNSS. Compared with car-
rier phase observations, pseudorange observations are 
more severely affected by multipath error and measure-
ment noise. Accurate construction of pseudorange vari-
ance is the key to improving the convergence time and 

(6)σ 2
noise =

σ 2
0

sin βEL
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positioning quality of precise point positioning (Seeper-
sad & Bisnath, 2015). Therefore, this paper will mainly 
focus on the research on resilient adjustment methods to 
weigh pseudorange observations.

Taking the pseudorange multipath error and measure-
ment noise together as a source of error, Eq.  (4) can be 
rewritten as

where σmp&noise,i is estimated in real time based on 
pseudorange multipath error and measurement noise 
sequences.

Pseudorange multipath error and measurement noise 
estimation model
In order to extract the multipath error and measurement 
noise from pseudorange observations, a Code-Minus-
Carrier (CMC) observable is adopted (Blanco & Haag, 
2011)

The CMC observations constructed by the above for-
mula also include two times of ionospheric delay and car-
rier phase multipath error and measurement noise, 
which in general are much smaller than the pseudorange 
multith error and measurement noise 
(

dimp ≪ diMP and ς ≪ ε

)

 , so dimp and ς can be neglected. 
There are two ways to handle the ionospheric divergence. 
For a single frequency receiver, the ionospheric term can 
be eliminated by fitting and removing a first or second 
order curve from the CMC observable (Braasch, 2017). 
For a dual-frequency receiver, the ionospheric delay can 
be estimated through the dual-frequency carrier phase 
linear combination (Seepersad & Bisnath, 2015):

Subtracting Eq.  (9) from Eq.  (8) and ignoring carrier 
phase multipath error mp and measurement noise ς , the 
dual-frequen.y ionospheric delay corrected CMC observ-
able on frequency fi can be obtained as

where diMP represents the pseudorange multipath error 
and measurement noise, and Bi is the carrier phase 
ambiguities.

In addition to pseudorange multipath error and meas-
urement noise, the CMC observation model in (10) also 

(7)σ 2
i = σ 2

clk&epch,i + σ 2
trop,i + σ 2

ion,i + σ 2
mp&noise,i

(8)Pi − Li = 2Ii + (diMP − dimp)− Bi + (εi − ςi)

(9)
2aj(Li − Lj) = 2Ii + 2aj(Bi − Bj + diMP − d

j
MP + ςi − ςj)

(10)

diCMC = Pi − Li − 2aj(Li − Lj)

≈ (diMP + εi)− (Bi + 2aj(Bi − Bj))

= d
i

MP − Bi

contains a constant component associated with phase 
ambiguities. Assuming that no cycles slip occurs in the 
carrier phase observations and the mean of multipath 
error and measurement noise is zero, the pseudorange 
multipath error and measurement noise can be estimated 
by (Seepersad & Bisnath, 2015; Zheng & Guo, 2016)

where si,kCMC is the average of si,tCMC from the time t = k0 

0of the first epoch or the cycle slip occurs to current 
time t = k, which is the estimation of the carrier phase 
ambiguities Bi and removed to eliminate the constant 
component.

Real‑time estimation model for pseudorange variance
Assuming that the multipath error and measurement 
noise obey the Gaussian normal distribution with zero 
mean, the pseudorange variance at the current epoch can 
be estimated based on the previous multipath error and 
measurement noise sequences (Wang et al., 2013)

where N is the number of epochs.

Variance inflation processing
In general, the variance estimated by (12) is very con-
servative, which cannot be used directly as the pseudor-
ange variance. So, it needs to be enlarged to reflect the 
pseudorange measurement error more accurately. Con-
sidering that the multipath error and measurement noise 
are related to the satellite elevation angle, the following 
model based on satellite elevation angle is adopted

where σ 2
mp&noise,k is the enlarged variance of pseudorange 

multipath error and measurement noise, and s is the 
amplification coefficient, which can be set to 2.0–3.0 
(Yang & Gao, 2006).

Variance robust estimation
Since the multipath error is very susceptible to the sur-
rounding environment, in dynamic situations, the 
changes in the surrounding environment sometimes 
cause sudden changes in multipath errors. In order to 
reduce the influence of the multipath error mutation 
on the σ̂mp&noise , it needs to be detected and processed. 

(11)

d
i,k
MP = si,kCMC − si,kCMC, s

i,k
CMC = mean





k
�

t=k0

si,tCMC





(12)
σ̂ 2
mp&noise, k =

N−1
∑

k=0

(d
i,k
MP)

2

N

(13)σ 2
mp&noise,k =

(s · σ̂mp&noise,k)
2

sin βEL
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Taking the mutation of the multipath error as an abnor-
mal disturbance, the following hypothesis test is con-
structed (Zhang et al., 2019a, b)

where r is test statistic, H0 is the null hypothesis that 
there is no multipath and H1 is the altervative hypoth-
esis that there is a multipath abnormal disturbance. The 
multipath abnormal disturbance is detected by compar-
ing the magnitude relationship between the test statistic r 
and the test threshold T.

Under normal circumstances, the measurement vari-
ances at adjacent epochs should be similar. So, in order 
to simplify the processing, the multipath error and meas-
urement noise can be simply regarded as a Gaussian nor-
mal distribution with a mean of zero and a variance of 
σ 2
mp&noise , and the test statistics can be formulated as

where a is the significance level. The detection thresh-
old T is determined by the significance level a and can 
be obtained from the standard normal distribution table.

According to the above detection method, if multipath 
abnormal disturbance is detected, the Huber weight 
function model is used to adjust the variance of pseudor-
ange multipath error and measurement noise as

where σ̃ 2
mp&noise,k is the updated variance of multipath 

errors and noise, and T0 is the threshold, which can be set 
to T0 = 1.0 (Yang & Gao, 2006).

In addition, when a cycle slip occurs in the carrier 
phase observations or the signal is blocked, the constant 
component associated with phase ambiguities need to be 
recalculated. At this time, the dMP is inaccurate in gen-
eral. In order to avoid the influence of inaccurate dMP on 
the variance estimation σ̂ 2

mp&noise , the estimation of dMP 
at the time of the cycle slip is not involved in the calcula-
tion. The processing of real-time estimation of pseudor-
ange variance is shown in Fig. 1.

Figure 2 illustrates an example of the results of pseu-
dorange variance estimation of σ̂ 2

mp&noise , σ
2
mp&noise 

with inflation processing, and σ̃ 2
mp&noise with inflation 

processing and robust estimation. The results show 
that the pseudorange variance estimation obtained by 
the proposed real-time estimation model is more con-
sistent with the contour of pseudorange error. Since 
the proposed real-time estimation model takes into 

(14)H0 : r ≤ T ,H1 : r > T

(15)r =
d
i,k
MP

σmp&noise,k−1
∼ N1−a/2(0, 1)

(16)σ̃ 2
mp&noisek = σ 2

mp&noise,k−1 ·

{

1 |r| ≤ T0
T0
|r| |r| > T0

account the influence of the surrounding environment 
on measurement noise and multipath errors, it can 
obtain a more accurate estimation of the pseudorange 
variance and provide better estimation of the pseudor-
ange error level than the empirical stochastic model.
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Experiment and analysis
In this section, two tests were conducted using a set 
of static data and a set of ship-borne dynamic data to 
evaluate the performance of the real-time estimation 
model. In each test, we first analyzed and compared the 
estimation accuracy of the real-time estimation model 
and the empirical stochastic model. To this end, the 
following three weighting schemes for pseudorange 
observations are designed:

Scheme  1: The empirical model is adopted, the 
parameter σ0 in (6) is set to a general value, σ0 = 0.3 . 
(the general empirical model)
Scheme  2: The empirical model is adopted, the 
parameter σ0 in (6) is set to the optimal value, which 
is obtained through post-processing analysis. (the 
optimal empirical model)
Scheme 3: The real-time estimation m.del is adopted, 
and the amplification coefficient is set to s = 3.0 . (the 
real-time estimation model)

The performance of the real-time estimation model 
was analyzed from the perspective of the positioning 
domain by comparing the positioning accuracy and 
convergence time of kinematic PPP. The positioning 
accuracy is described by the Root Mean Square (RMS) 
of positioning errors, which is calculated by

(17)
sRMS =

√

√

√

√

√

n
∑

i=1

(x̂i − xref,i)
2

n

where x̂ and xref are the state estimate and reference, 
and n is the number of epochs. The convergence time is 
measured as the time until the positioning error in the 
three directions of East (E), North (N) and Up (U) direc-
tions are all less than 0.5 m, which continues for 1 h. The 
detailed processing strategies of PPP are listed in Table 1.

Tests with static data
The static test data was collected from 00:00:00 to 
08:23:16 on Jan 07, 2019 (GPS time) by the C200-AT 
high-precise GNSS receiver produced by BDStar Navi-
gation company at a sampling frequency of 1  Hz. The 
receiver antenna was placed on the top of a building, and 
its surrounding environment is shown in Fig. 3. The coor-
dinates of the station is (− 2 610 957.4 m, 4 232 178.5 m, 
3 980 666.8  m) in Earth-Centered Earth-Fixed (ECEF) 
coordinate system, which is calculated by Canadian Spa-
tial Reference System (CSRS) PPP (Tétreault et al., 2005). 
The sky plot of visible GPS satellites is shown in Fig.  4, 
and the number of visible satellites in the test period is 
15. It should be noted that due to the long connecting 
cable (about 50  m) between the receiver and antenna, 
and the high-rise buildings around the antenna, and the 
serious multipath errors, the quality of the static observa-
tion data is not very good. For this test, the parameter σ0 
of the empirical model in Scheme 2 is set to the optimal 
value of 1.5 m.

Evaluation of variance estimation
Figure  5 shows the RMS of pseudorange measurement 
residuals and the standard deviation estimates at each 

Table 1  PPP processing strategy and models (Elmezayen and EI-Rabbany 2020)

Index Items Processing strategy

1 Navigation constellation GPS only

2 Satellite orbit and clock Multi-GNSS precise product ‘GBM’ from GeoForschungsZentrum (GFZ): precise satel-
lite orbit (15 min) and clocks (30 s)

3 Elevation mask angle 7.5°

4 Estimation method Extend Kalman filtering (EKF)

5 Observation model IF model

6 Processing mode Kinematic without dynamics

7 Weighting schemes Pseudorange: Scheme 1, Scheme 2 and Scheme 3
Carrier-phas using the general empirical model, the parameter is set to σ0 = 0.003m.

8 Receiver clock offset Estimated, modeled as white noise process with a spectral density 1 × 102 m2/s

9 Satellite and receiver antenna center 
offset

Corrected by igs14_2035.atx antenna file

10 Phase wind-up Corrected by model (Pan, 2018)

11 Site displacements Solid Earth tide, ocean tide, pole tide (Pan, 2018)

12 Tropospheric zenith delay Hydrostatic delay: using Saastamoinen model and NMF mapping functions model
Wet delay: modeled as a random walk process with a spectral density of 1 × 10–5 m2/s

13 Ambiguity parameter Float solutions, modeled as constants

14 Relativity effect Corrected by model (Pan, 2018)
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epoch. Figure 6 illustrates the pseudorange measurement 
residuals and standard deviation for each observed satel-
lite. In figures, the blue curve represents the pseudorange 
measurement residuals. The red, green, and black curves 
represent the pseudorange Standard Deviations (SD) 
estimated by the general empirical model in Scheme  1, 

the optimal empirical model in Scheme 2, and the real-
time estimation model in Scheme 3, respectively. The sta-
tistical results for each satellite are listed in Table 2.

It can be seen from Figs.  5, 6, and Table  2 that the 
standard deviation of pseudorange estimated by the 
general empirical model in Scheme  1 is very conserva-
tive, and the average standard deviation is about 1.19 m, 
which cannot reflect the true error level of the pseudor-
ange observations. The average pseudorange standard 
deviation calculated by the optimal empirical model 
in Scheme  2 and the real-time estimation model in 
Scheme 3 are 6.69 m and 8.01 m, respectively. The stand-
ard deviation of pseudorange obtained by these two 
models are very close to each other, and they can obtain 
more accurate evaluation results. The statistical results 
in Table  2 show that the average pseudorange standard 
deviation estimated by the optimal empirical model and 
the real-time estimation model is about 2 to 3 times the 
RMS of pseudorange measurement residuals. In addi-
tion, it can be seen from the graph of the pseudorange 
measurement residuals for each satellite in Fig. 6 that the 
pseudorange measurement residuals are correlated with 
satellite elevation angles, and the measurement residuals 
decrease as the satellite elevation angles increase.

Evaluation of Positioning performance
Figure  7, 8 and 9 show the positioning errors in E, N, 
and U directions, respectively. Table3 lists the statistical 
results of the 2 Double (2D) RMS of positioning errors in 
East (E),North (N) and Up (U) directions and the conver-
gence time.

Fig. 3  Sounding environment where the receiver antenna is located
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As can be seen from Figs. 7, 8, 9, the convergence time 
of PPP using the optimal empirical model in scheme  2 
and the real-time estimation model in scheme 3 are bet-
ter than that of the general empirical model in scheme 1, 
and the positioning results of PPP using the optimal 
empirical model and the real-time estimation model are 
more accurate and stable. It can be also seen from the 
statistical results in Table 3 that the positioning accuracy 
of PPP using the general empirical model in scheme  1 

is the worst, and the convergence can not be reached in 
the whole process. Compared with the general empirical 
model in scheme 1, the positioning performance of PPP 
using the optimal empirical model in scheme 2 and the 
real-time estimation model in scheme 3 are significantly 
improved.

The statistical results in Table  3 show that compared 
with the general empirical mode in scheme 1, the RMSs 
of PPP using the optimal empirical model in scheme 2 are 
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decreased by 0.538, 0.265, and 0.648 m in E, N, U direc-
tions respectively, and the convergence time is reduced 
from 30 195 to 4 087 s; the RMSs of PPP using the real-
time estimation model in scheme  3 are decreased by 
0.616, 0.303, and 0.68  m in E, N, U directions respec-
tively, and the convergence time is reduced to 1 964 s. By 
comparing the positioning results of PPP with scheme 2 
and scheme  3, it is found that the positioning perfor-
mance of PPP with scheme 3 is slightly better than that 
with Scheme  2. Compared with the optimal empirical 
model, the real-time estimation model reduces the RMSs 

of PPP by 0.078, 0.038, and 0.032 m in E, N, U directions 
respectively, and the convergence time by 2123 s.

In summary, both the optimal empirical model and 
the real-time estimation model can obtain more accu-
rate pseudorange variance estimates, and therefore can 
achieve better positioning performance than the gen-
eral empirical model. Compared with optimal empirical 
model, the real-time estimation model can adaptively 
adjust the pseudorange standard deviation estimates 
according to the changes in the measurement error level 
at each epoch, so the real-time estimation model can 

Table 2  Statistical results of the of pseudorange measurement residuals and standard deviation estimates for each satellite

GPS Pseudo Random noise (PRN) 
number

RMS (Residuals) Average pseudorange standard deviation estimates in different schemes

Results of scheme 1 
(general)

Results of scheme 2 
(optimal)

Results of 
scheme 3 (real-
time)

5 2.78 1.32 7.50 8.14

10 2.52 1.12 6.34 5.43

12 3.80 1.27 7.22 10.2

13 3.55 1.12 6.34 6.38

14 2.00 0.94 5.33 5.00

15 2.02 1.15 6.52 5.71

16 3.70 1.16 9.14 12.0

20 2.85 1.11 6.31 6.02

21 3.09 1.19 6.72 8.03

24 2.69 1.15 6.53 8.64

25 3.40 1.18 6.67 7.61

26 3.39 1.29 7.28 9.41

29 3.50 1.49 8.43 8.67

31 1.85 1.18 6.67 8.48

32 2.12 0.96 5.45 5.43

ALL 2.92 1.19 6.69 8.01
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better reflect the actual error level of the pseudorange 
observations at each epoch, and achieve better position-
ing performance.

Tests with ship‑borne dynamic data
To further assess the performance of the real-time esti-
mation model in dynamic environment, a ship-borne 
test was carried out on January 1, 2019, which lasted for 
about 3.5 h. The test data was collected by the NovAtel 
SPAN PwrPak7D-E1 receiver, and the sampling fre-
quency is 1 Hz. Figure 10 shows the reference trajectory, 
which is calculated by the NovAtel Inertial Explore 8.80 
post-processing software through the carrier phase Dif-
ferential Global Navigation Satellite System (DGNSS) 
positioning mode, with centimeter-level positioning 
accuracy. Figure 11 shows the GPS satellite sky plot, the 
number of visible satellites during the test period is 15. In 
this test, the parameter σ0 in Scheme 2 is set to the opti-
mal value of 2.5 m.

Evaluation of variance estimation
Figure  12 shows the RMS of pseudorange measure-
ment residuals and the standard deviation estimates 
at each epoch. Figure  13 illustrates the pseudorange 
measurement residuals and standard deviation for each 

Table 3  Statistical results of PPP positioning errors and convergence time based on the static test data

Weighting scheme 2D RMS in different directions (m) Convergence time 
(s) (Threshold is 
0.5 m)East direction North direction Up direction

Scheme 1 (general) 0.828 0.412 0.869 30 195

Scheme 2 (optimal) 0.290 0.147 0.221 4 087

Scheme 3 (real-time) 0.212 0.109 0.189 1 964
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satellite. The statistical results for each satellite are listed 
in Table 4.

It can be seen from the statistical results in Table  4 
that the RMS of pseudorange measurement residuals is 
about 3.63  m, while the average pseudorange standard 
deviation estimated by the general empirical model in 
Scheme 1 is about 1.26 m, which is obviously, conserva-
tive and cannot reflect the actual error level of pseudor-
ange observations. The average pseudorange standard 

deviations estimated by the optimal empirical model 
in scheme  2 and the real-time estimation model in 
Scheme 3 are 8.84 m and 8.96 m, respectively. They are 
equivalent, about 2–3 times the RMS of pseudorange 
measurement residuals. It can be seen that the real-time 
estimation model and the optimal empirical model have 
the same estimation accuracy and can better reflect the 
pseudorange error level.

Evaluation of Positioning performance
The convergence behavior of the positioning for the 
ship-borne test data in E, N, U directions are illustrated 
in Figs.  14, 15, 16. The statistical results of positioning 
errors and convergence time are listed in Table 5.

It can be seen from the position errors graph in Figs. 14, 
15, 16 and the statistical results of positioning perfor-
mance in Table 5 that the positioning results of PPP with 
Scheme 1 are the worst. This is because the model can-
not reflect the actual error level of pseudorange observa-
tions. Compared with the model in Scheme 1, the model 
in Scheme 2 can reduce the positioning RMS of PPP by 
0.207, 0.362, and 1.067  m in E, N, U directions respec-
tively, and the convergence time from 12974 to 2225  s; 
the model in Scheme 3 can reduce the positioning RMS 
of PPP by 0.269, 0.57, and 1.213 m in E, N, U directions 
respectively, and the convergence time to 1126  s. The 
positioning performance of PPP with the optimal empiri-
cal model and real-time estimation model has been 
greatly improved.
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Fig. 12  RMS of pseudorange measurement residuals and standard 
deviation estimates

Table 4  Statistical results of the RMS of pseudorange measurement residuals and average pseudorange standard deviation estimates 
for each satellite

GPS PRN RMS (Residuals) Average pseudorange standard deviation estimates in different schemes

Results of scheme 1(general) Results of scheme 2(optimal) Results of 
scheme 3(real-
time)

3 5.28 1.86 13.0 19.4

10 2.74 1.14 7.99 8.00

12 3.78 1.28 8.93 8.97

14 3.01 1.10 7.73 7.03

15 7.73 1.87 13.1 15.5

16 6.90 1.96 13.7 15.7

18 6.37 2.26 15.8 26.0

20 3.65 1.25 8.76 6.61

22 4.54 1.45 10.2 10.9

24 4.32 1.33 9.33 8.81

25 2.27 1.07 7.47 5.72

26 2.92 1.46 10.2 9.52

29 4.16 1.54 10.8 13.4

31 3.50 1.15 8.04 9.22

32 1.97 0.99 6.92 5.55

All 3.63 1.26 8.84 8.96
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In addition, compared with the model in scheme 2, the 
positioning accuracy of PPP with model in scheme  3 is 
further improved by 0.062, 0.208 and 0.146 m in E, N, U 
directions directions respectively, and the convergence 
time is reduced by 1099 s. The positioning performance 
of PPP with model in scheme 3 is slightly better than that 
with the model in scheme 2. This is because the real-time 
estimation model can dynamically adjust the pseudor-
ange standard deviation according to the degree of the 

influence of surrounding environment on the measure-
ment error, so it can obtain a more accurate estimation 
than the optimal empirical model.

Conclusions
In this paper, a resilient adjustment method to weigh 
pseudorange observations is proposed, which con-
structs a real-time estimation and inflation model for 
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the pseudorange variance of multipath error and meas-
urement noise to deal with the unpredictable and time-
varying of pseudorange observation error in a dynamic 
and complex environment. Since the influence of the sur-
rounding environment on measurement noise and mul-
tipath error is considered, the standard deviation of the 

pseudorange obtained by the real-time estimation model 
can provide a better representation of the pseudorange 
error level, and the positioning performance of PPP using 
the real-time estimation model is better than the empiri-
cal stochastic model. The experimental results illustrated 
that compared with the optimal empirical stochastic 
model, the positioning accuracy of PPP using the real-
time estimation model is improved by at least 20%, and 
the convergence time is reduced by at least 50%. However, 
it should be noted that the proposed resilient adjustment 
method is only suitable for dual-frequency pseudorange 
observations, and cannot adjust the weight of the carrier 
phase observations, also the influence of abnormal car-
rier phase observations cannot be handled. In addition, 
since ambiguity convergence takes some time, the pseu-
dorange variance estimated by the proposed real-time 
estimation model may be inaccurate during this period. 
Carrier phase is another important observation in GNSS. 
Setting appropriate weights for carrier phase observa-
tions is of great significance to improve the positioning 
reliability and accuracy of PPP. Therefore, how to realize 
the resilient adjustment of the weight of the carrier phase 
observation will be one of the further works.
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Table 5  Statistical results of PPP positioning errors and convergence time based on ship-borne dynamic test data

Weighting scheme 2D RMS in different directions (m) Convergence time 
(s) (Threshold is 
0.5 m)East direction North direction Up direction

Scheme 1 (general) 0.382 0.621 1.335 12974 s

Scheme 2 (optimal) 0.175 0.259 0.268 2225 s

Scheme 3 (real-time) 0.113 0.051 0.122 1126 s
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