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Abstract 

Background  Forests are an essential natural resource to humankind, providing a myriad of direct and indirect ben-
efits. Natural disasters like forest fires have a major impact on global warming and the continued existence of life on 
Earth. Automatic identification of forest fires is thus an important field to research in order to minimize disasters. Early 
fire detection can also help decision-makers plan mitigation methods and extinguishing tactics. This research looks at 
fire/smoke detection from images using AI-based computer vision techniques. Convolutional Neural Networks (CNN) 
are a type of Artificial Intelligence (AI) approach that have been shown to outperform state-of-the-art methods in 
image classification and other computer vision tasks, but their training time can be prohibitive. Further, a pretrained 
CNN may underperform when there is no sufficient dataset available. To address this issue, transfer learning is exer-
cised on pre-trained models. However, the models may lose their classification abilities on the original datasets when 
transfer learning is applied. To solve this problem, we use learning without forgetting (LwF), which trains the network 
with a new task but keeps the network’s preexisting abilities intact.

Results  In this study, we implement transfer learning on pre-trained models such as VGG16, InceptionV3, and Xcep-
tion, which allow us to work with a smaller dataset and lessen the computational complexity without degrading 
accuracy. Of all the models, Xception excelled with 98.72% accuracy. We tested the performance of the proposed 
models with and without LwF. Without LwF, among all the proposed models, Xception gave an accuracy of 79.23% 
on a new task (BowFire dataset). While using LwF, Xception gave an accuracy of 91.41% for the BowFire dataset and 
96.89% for the original dataset. We find that fine-tuning the new task with LwF performed comparatively well on the 
original dataset.

Conclusion  Based on the experimental findings, it is found that the proposed models outperform the current state-
of-the-art methods. We also show that LwF can successfully categorize novel and unseen datasets.
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Resumen 

Antecedentes  Los bosques son un recurso natural esencial para la humanidad, proveyendo una miríada de ben-
eficios directos e indirectos. Los desastres naturales como los incendios forestales tienen un gran impacto sobre el 
calentamiento global y la existencia continua de la vida sobre la tierra. La identificación automática de los incendios 
forestales es entonces un campo importante para la investigación de manera de evitar desastres. La detección tem-
prana de incendios puede también ayudar a los decisores a planificar métodos de mitigación y tácticas de extinción. 
Esta investigación se enfoca a la detección de fuegos/humos desde imágenes usando técnicas de visión computa-
cional basada en Inteligencia artificial. Las redes neuronales convolucionles (CNN) es un tipo de aproximación de la 
inteligencia artificial (AI) que ha demostrado superar al estado del arte de los métodos de clasificación de imágenes 
y otras técnicas de visión mediante computadoras, aunque su tiempo de entrenamiento puede ser prohibitivo. 
Además, una persona previamente entrenada en CNN puede bajar su performance si el conjunto de datos resulta 
insuficiente. Para enfocar este problema, la transferencia en el aprendizaje es ejercitado en modelos pre entrenados. 
Por supuesto, esos modelos pueden perder sus habilidades clasificatorias del conjunto de datos originales cuando se 
aplica la transferencia de conocimientos. Para resolver este problema, usamos el Conocimiento sin Olvidos (LwF), el 
cual entrena a la red con una nueva tarea pero mantiene intactas las habilidades preexistentes.

Resultados  En este estudio, implementamos la transferencia de aprendizaje en modelos pre entrenados como el 
VGG16, Inception V3, y Xception, que nos permite trabajar con conjuntos de datos pequeños y simplifican la comple-
jidad computacional sin degradar la exactitud. De todos los modelos, Xception dio una exactitud de 79,23% en una 
nueva tarea (Bow Fire dataset). Cuando usamos LwF, Xception dio una exactitud de 91,41% para el Bow Fire dataset, y 
96,89% para el conjunto de datos original. Encontramos que sintonizando de manera fina la nueva tarea con LwF, éste 
se comportó comparativamente bien en el conjunto de datos original.

Conclusiones  Basados en los resultados experimentales, encontramos que los modelos propuestos tienen mejores 
resultados que los métodos que representan el actual estado del arte. También mostramos que LwF puede exitosa-
mente caracterizar conjuntos de datos noveles y nunca vistos.

Introduction
Forest fires are a common occurrence worldwide due to 
climate change, which results in severe economic losses 
and ecological destruction (Bot 2022; Castelli et al. 2015). 
Forest fires can be natural or man-made forest fires and 
summer forest fires caused by debris and other biomes, 
as well as human negligence. Even though, wildfires can 
benefit local vegetation, animals, and ecosystems, but 
they can also cause major damage to property and human 
life. In recent years, the frequency of forest fire accidents 
has been continuously increasing. Hence, there has been 
a rise in interest of implementing systems for automated 
observation and detection of forest fires, as a means of 
protecting forests from destruction.

There are a number of conventional and cutting-edge 
fire and smoke detection techniques that have been pro-
posed to reduce damage brought on by fire disasters. 
Sensor-based and vision-based smoke detection systems 
have garnered a lot of interest in the research commu-
nity among these techniques. Based on sensor types and 
applications, the fire detection technique is split into five 
basic groups: smoke-sensitive, light-sensitive, gas-sensi-
tive, temperature-sensitive, and composite (Saeed et  al. 
2018). Temperature and smoke sensors are frequently 
used for this purpose (Kizilkaya 2022). The sensor-based 

approach has significant limitations in terms of detection 
range and detection speed (Park and Ko 2020). Since fire 
spreads quickly, it is important to keep the delay as short 
as possible. Then, as video surveillance technology came 
up, researchers gathered fire images and used their color 
characteristics to look for fires. Orange or yellow flames 
moving side to side are the most common visual repre-
sentations of fire in videos and images. Soot or burnt par-
ticles can be seen in smoke as a blend of white, gray, and 
black plumes. Smoke detection in videos and images has 
its own set of difficulties. To be effective, a system must 
be able to find the difference between images that truly 
contain the fire and those that appear to have flames but 
are not. False alarm rates are higher when using simple 
color features for fire detection (Hu et  al. 2022). So, in 
order to capture the properties of a fire, such as color, 
shape, flickering, frequency, and dynamic textures, image 
processing-based methods have been developed. These 
techniques detect fire by utilizing the RGB, YUV, YCbCr, 
and CIELab color spaces (Yang 2022; Al-Duryi 2022; 
Fang 2022; Seydi 2022).

Along with color information, motion data has also 
been incorporated. The reliance on fire detection tech-
nology has grown as a result of methods discussed in 
(Anh et  al. 2022). But, the use of surveillance camera 
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images has introduced a new image processing issue. 
Video cameras produce a continuous stream of images 
that must be stored and processed which would be more 
expensive. As a result, several approaches and systems for 
fire detection have been presented to make the system as 
precise and autonomous as feasible. As video surveillance 
technology expanded in recent years, image processing 
technology in machine vision also advanced (Zhao et al. 
2022), speeding up transmission and sensing. As a result, 
computer vision-based fire and smoke detection technol-
ogy has been developed, enabling a greater variety of fire 
detection approaches. By utilizing video surveillance to 
collect and extract features from the images of fire and 
smoke, a computer vision-based fire and smoke detection 
technology can develop a detection model that relies on 
these images. Hence, to assess the presence of fire and 
smoke in images, traditional machine learning and deep 
learning-based computer vision approaches have been 
advocated.

Machine learning has been used in a range of appli-
cations, including forest fire prediction and detection. 
(Abid 2021; Arif et  al. 2021; Ko et  al. 2009; Kong et  al. 
2016; Bouguettaya et  al. 2022; Friggens 2021) provides 
a wide-ranging overview of the use of machine learning 
techniques for forest fire detection. Machine learning-
based fire detection algorithms rely on manually extract-
ing visible information from images. These characteristics 
only focus on the shallow characteristics of the flame, 
which could lead to data loss when extracting manu-
ally. Unlike machine learning algorithms, deep learning 
(Schmidhuber 2015) can automatically extract and learn 
complicated feature representations. CNN’s success in 
image classification and deep learning’s breakthrough 
growth in computer vision (Ha 2018; Mao et  al. 2018; 
Saeed et  al. 2020; Yang et  al. 2019; Li et  al. 2020; Majid 
et al. 2022; Fouda 2022) make fire detection a promising 
area of research. CNN-based methods use frames from 
surveillance systems as input, and the prediction result is 
sent to an alert system. Inception (Szegedy 2015), VGG-
Net (Simonyan 2014), Xception (Chollet 2017), and many 
more CNN variants have been applied in fire detection 
tasks.

Classifying images of fire and smoke has proven dif-
ficult in the past due to the large parameter space used 
by off-the-self deep architectures such as VGG16, 
DenseNet, Inception, and Xception, among other 
options. When faced with large parameter spaces, how-
ever, transfer learning may be a viable option. Knowledge 
learned in one domain can then be transferred to another 
where there is fewer data. Even with a few images, deep 
architectures using pre-trained models can be built (Best 
et  al. 2020). When trained on a large number of exam-
ples, deep learning models outperform (Tian 2015). 

When training samples are inadequate, overfitting and 
slipping into a local optimum can occur (Krizhevsky et al. 
2017). Transfer learning can aid us in resolving such situ-
ations. Many computer vision tasks, such as object detec-
tion and face recognition, have seen recent success with 
deep learning, but the use of these approaches for fire 
detection has been sparse. Fire detection research may be 
lacking due to a shortage of data for deep learning mod-
els. This has motivated us to focus on the collection of a 
considerable quantity of fire/smoke images from different 
sources. Further, even if a pre-trained CNN classifier is 
trained to classify particular types of tasks using transfer 
learning, the fact is that the model can work well on rec-
ognizing tasks on which it has been trained, but it under-
performs when a new, but similar task is given. This is 
known in machine learning, as “the catastrophic forget-
ting phenomenon.” This phenomenon further motivated 
us to explore the concept of LwF for detecting forest fire 
/smoke images from a new dataset. The focus of the pro-
posed research work is highlighted below:

Research focus
Following are the research questions we would like to 
address in this work.

RQ1: How are pre-trained models adaptable?

To address this question, we compared the perfor-
mance of pre-trained models as feature extractors and 
fine tuners.

RQ2: How well do pre-trained models categorize new 
dataset images?

To address this, we refined and trained numerous pre-
trained CNN models and compared them to models 
employed solely as feature extractors.

RQ3: To what extent may fine-tuning hyperparam-
eters for various CNN models be effective?

Because the choice of values of hyperparameters is crit-
ical for evaluating a model’s performance, we employed 
Bayesian Optimization to determine the ideal values for 
the hyperparameters.

RQ4: Is the knowledge gained by models from one 
dataset transferable to another?

We used BoWFire, a small yet challenging dataset, to 
investigate this issue.

The objective of this work is to build a set of models 
that automatically recognize and detect the presence of 
fire/smoke in images using pre-trained CNN models like 
VGG16, InceptionV3, and Xception architectures. By uti-
lizing two techniques namely freezing the convolutional 
base (feature extractor) and training some convolutional 
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layers while freezing others (fine-tuner), we can use pre-
viously learned models for new tasks. Furthermore, we 
use the LwF, which trains the network using only new 
task data while preserving its baseline capabilities. Addi-
tionally, Bayesian optimization is used in this study to 
identify the best hyperparameter configuration because it 
is crucial and challenging to select the right hyperparam-
eters when training CNN architectures.

Research contributions
The contributions to this work include:

	(i)	 Examined various pre-trained CNN models and 
identified the methods to explore the pre-trained 
models.

	(ii)	 Developed low-cost computation models and ana-
lyzed the performance of the variants of CNNs.

	(iii)	 Optimized the values for various hyperparameters 
of CNN models using Bayesian optimization.

	(iv)	 Transferred the knowledge learned by the pro-
posed models to a standard, but challenging data-
set, BoWFire using LwF.

As far as we are aware, there is not any work in the lit-
erature that discusses transfer learning utilizing LWF, 
fine-tuning procedures, and optimization approach 
for categorizing fire and smoke images. The remain-
der of the article is organized as follows: the “Literature 
survey” section discusses recent developments in the 
field of fire and smoke detection. In the “Materials and 
methods”  section, we discuss the dataset, deep neural 
network architectures, tuning of hyperparameters, and 
fine-tuning procedures. This section also introduces 
LwF. The “Experiments and results” section  presents 
the experimental results. The “Findings and discussion” 
section  summarizes the findings from the study. In the 
“Findings and discussion” section, an in-depth look at 
how the images were wrongly classified by the proposed 
models is also given. Finally, in the “Conclusion and fea-
ture direction” section, we recapitulate our study and give 
a direction for future works.

Literature survey
This section discusses the many research efforts that have 
been conducted to build models for detecting fire and 
smoke detection systems. With the growth of AI, numer-
ous research attempts have been made to detect the pres-
ence of fire/smoke in images using machine learning and 
deep learning models. However, in this work, we exam-
ined CNN-based models for fire/smoke detection.

In a range of computer-based vision applications, such 
as visual recognition and image classification, the intro-
duction of CNNs has resulted in significant performance 
gains. By recognizing hand-written characters, LeNet-5, a 

CNN algorithm presented by LeCun et al. (1998), achieved 
one of the first successful outcomes in this field. Due to the 
availability of large-scale datasets and the advent of incred-
ibly powerful GPUs, researchers have lately been able to 
generate extremely deep CNNs. For instance, Krizhevsky 
et al. (Best et al. 2020) introduced AlexNet, a deep CNN 
network that performed exceptionally well in the 2012 
ImageNet Challenge. Additionally, numerous CNN vari-
ations have exhibited exceptional performance in image 
categorization (Namozov and Im Cho 2018).

CNNs in smoke and fire detection were examined in 
a survey (Li and Zhao 2020). Further, this effort also 
discussed current datasets and overviews of modern 
computer vision approaches. In conclusion, the authors 
highlighted the obstacles and potential solutions for 
furthering the development of CNNs in this field. 
Mahmoud et  al. (2022) developed a time-efficient fire 
detection system using CNN and transfer learning. This 
model leveraged a CNN architecture with an accept-
able computing time for real-time applications and 
asserted that the proposed model required less train-
ing and classification time than existing models in the 
literature due to the use of transfer learning. Bari et al. 
(Bari 2021) used their curated v3-base dataset of online 
and recorded videos to fine-tune the InceptionV3 and 
MobileNetV2 models. The authors found that when 
trained on a small dataset, transfer learned models out-
perform fully trained models. The authors of (Cheng 
2021) developed an approach using a Fast Regional 
Convolutional Neural Network (Fast R–CNN). A selec-
tive search method was used to locate candidate images 
from the sample images. As proven by the results, fast 
R-CNN smoke detection showed an increased detec-
tion rate and decreased false alarms. Pu and Zhao (Li 
and Zhao 2020) proposed novel fire detection methods 
based on advanced object identification CNN models 
such as Faster-RCNN, R–FCN, YOLO v3 etc. A com-
parison of proposed and existing fire detection algo-
rithms indicated that those based on object detection, 
CNNs outperformed other algorithms in terms of accu-
racy. And, YOLOv3-based model gave an average preci-
sion of 83.7%, which is much greater than the precision 
of the other proposed algorithms.

Sousa et  al. (2020) summarized recent research 
attempts to present the common challenges and limita-
tions of these approaches, as well as issues about the 
dataset quality. Furthermore, they devised a method for 
transfer learning and utilizing data augmentation tech-
niques that were validated using a tenfold cross-valida-
tion scheme. The proposed framework enabled the use 
of an open-source dataset containing images from over 
35 real-world fire events. Unlike video-based works, 
this dataset contains a high degree of variation between 
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samples, allowing us to test the method in a variety of 
real-world scenarios. Fernandez et  al. (2021) demon-
strated a system that can acquire real-time images and 
process them to perform object detection tasks using 
RetinaNet and Faster-RCNN. To help contain wildfires, 
this system is capable of detecting smoke plumes over a 
large area and communicating with and alerting authori-
ties. Luo et al. (2018) developed a smoke detection system 
using a CNN and the motion characteristics of smoke. To 
begin, they identified candidate regions using a combina-
tion of the background dynamic update and a priori dark 
channel technique. Following that, using a CNN, the can-
didate region’s features were extracted automatically.

With the use of optical images and retrained VGG16 
and ResNet50 models, the authors of (Sharma 2017) 
were able to distinguish between images that included 
and did not contain the fire. It’s worth noting that they 
created an unbalanced training dataset that included a 
higher proportion of non-fire images. For fire detection 
and disaster management, the authors of (Muhammad 
et  al. 2018) integrated AlexNet as a foundation archi-
tecture. This system incorporated an adaptive priority 
mechanism for surveillance cameras, enabling high-res-
olution cameras to be activated to confirm the fire and 
assess the data in real time. Inspired by GoogleNet archi-
tecture, Muhammad et al. (2018) proposed a fine-tuned 
CNN model for fire detection in surveillance systems. 
The tests demonstrated that the suggested architecture 
outperformed both existing hand-crafted feature-based 
and AlexNet-based fire detection systems. The authors 
of (Nguyen et al. 2021) suggested a unique approach for 
fire detection based on the use of CNN to extract both 
spatial and temporal information for fire classification 
from video image sequences. The system extracted image 
features using a CNN network and then classified them 
using short- and long-term stages. Experiments on read-
ily accessible public datasets indicated encouraging per-
formance outcomes when compared to prior studies.

Qin et al. (2021) suggested a system for detecting and 
locating the firing position in images using a depth-wise 
separable CNN and YOLOv3. To begin, fire images have 
been classified using a depth-wise separable CNN, which 
greatly reduces detection time while retaining detection 
accuracy. Second, YOLOv3 is utilized to locate the posi-
tion of fire from the images labeled as fire, thus avoiding 
the problem of detection accuracy being degraded when 
YOLOv3 is used. Simultaneously, for images without fire, 
the detection time for target regression is greatly lowered. 
Validated against a publicly available network database, 
the tests obtained a detection precision of approximately 
98%. In the work by (Jeon et al. 2021), the authors devel-
oped a framework for multi-scale prediction using the 
feature maps created by densely stacked convolutional 

layers. This approach presented a feature-squeeze block 
as a mechanism for incorporating feature maps with 
varying scales into the final forecast. The feature-squeeze 
block efficiently utilized the multi-scale prediction infor-
mation by spatially and channel-wise compressing the 
feature maps. The suggested strategy outperformed cur-
rently available CNN-based methods in experiments.

A CNN-based fire detection system appropriate for 
power-constrained devices was proposed by Vinicius 
et  al. (de 2022). To decrease the computational cost of 
a deep detection network while attempting to maintain 
its original performance, this method involves training 
the network and then eliminating its less crucial convo-
lutional filters. Dampage (2022) presented a system and 
technique for using a wireless sensor network to identify 
forest fires in their earliest stages. In addition, for more 
precise fire detection, a machine learning regression 
model is proposed. In their work, Dogan et. al.(2022) 
suggested deep learning models using ResNet and Incep-
tionNet to detect fire from images. These models have 
been used for extracting the features and these features 
have been classified using SVM. The authors demon-
strated that ResNet gave better performance.

From the above review works, it is clear that CNNs 
offer tremendous promise for fire detection and can aid 
in the creation of a robust system capable of significantly 
reducing human and financial loss due to fires. From the 
investigation of the literature, we find that even though, 
the detection of forest fire/smoke from images has been 
focused on, no work has focused on the forgetting phe-
nomenon when the trained models are used for new 
tasks of fire/smoke images. Additionally, some gaps in the 
application of CNN for fire and smoke detection remain 
including faster training, parameter efficiency, hyper-
parameter tuning, and transfer learning over the new 
datasets. Although a few experiments employed transfer 
learning to expedite the training process, none of the studies 
mentioned above attempted to tune hyperparameters. To 
recap, we create a few classification models that can dif-
ferentiate between fire and smoke in images by combining 
deep learning and transfer learning with hyperparam-
eter tuning, reducing time and ensuring early detection. 
In addition, we employ LwF to keep the original network 
capabilities while training the models on a new data.

Materials and methods
Dataset description and augmentation
Geostationary weather satellites including MODIS, 
VIIRS, Copernicus Sentinel-2, and Landsat-8 were used 
to construct the dataset for the proposed study (Kaulage  
2022). These satellites are used for fire detection all 
around the world due to their excellent temporal pre-
cision and ability to detect fires in far-off locations. In 
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addition to images from Google and Kaggle (https://​
www.​kaggle.​com/​datas​ets/​phyla​ke1337/​fire-​datas​et, 
http://​github.​com/​aifor​manki​nd/​wildf​ire-​smoke-​datas​
et, http://​www.​kaggle.​com/​datas​ets/​datac​luste​rlabs/​fire-​
and-​smoke-​datas​et), satellite imagery of the forest fire 
has also been compiled. Manual labeling has been applied 
to the images, designating them as Fire, No Fire, Smoke, 
and Smoke Fire. There are 4800 images in the obtained 
dataset. To expand the number of images, image aug-
mentation techniques such as shifting, flipping, rotating, 
scaling, blurring, padding, cropping, translation, and aff-
ine modification were applied. The collection comprises 
6,911 images after augmentation. Then, the datasets for 
training, validation, and testing were divided, with 80% of 
the dataset going toward training the classifier and 10% 
going toward testing and validation. The distribution of 
images in the dataset for training, testing, and validation 
is shown in Table 1. Sample images from the dataset are 
shown in Fig. 1.

In addition to the compiled dataset, we have used the 
BoWFire dataset to assess how well the suggested mod-
els transfer the knowledge gained from classifying for-
est fire and smoke images. The BoWFire dataset (http://​
bitbu​cket.​org/​gbdi/​bowfi​re-​datas​et/​downl​oads/) con-
tains 240 images divided into four categories: fire images, 
no-fire images, smoke fire and smoke images. Despite its 
tiny size, this dataset presents significant challenges due 
to the presence of fire-like sunset and sunrise situations, 
fire-colored objects, and architectural lighting. A sample 
from each class is shown in Fig. 2.

CNN variants
Complex vision issues have been efficiently solved 
using a variety of CNN basic architectures. Convo-
lution and pooling are the two fundamental opera-
tions in CNN. The ability to extract features from the 
images using the convolution operation with various 
filters allows for the preservation of the correspond-
ing spatial information. Reducing the dimensionality 
of feature maps produced by the convolution opera-
tion using the pooling technique is known as subsam-
pling. The two most popular pooling methods utilized 
by CNN are max pooling and average pooling. CNNs 
are utilized as feature extractors and classifiers in 
image processing applications, notwithstanding their 
utility in image processing and classification. Rather 

Table 1  Dataset description

Dataset Fire No Fire Smoke Smoke Fire Total

Train 2161 2150 490 510 5311

Validation 200 200 200 200 800

Test 200 200 200 200 800

Fig. 1  Sample images from each class in dataset

https://www.kaggle.com/datasets/phylake1337/fire-dataset
https://www.kaggle.com/datasets/phylake1337/fire-dataset
http://github.com/aiformankind/wildfire-smoke-dataset
http://github.com/aiformankind/wildfire-smoke-dataset
http://www.kaggle.com/datasets/dataclusterlabs/fire-and-smoke-dataset
http://www.kaggle.com/datasets/dataclusterlabs/fire-and-smoke-dataset
http://www.bitbucket.org/gbdi/bowfire-dataset/downloads/
http://www.bitbucket.org/gbdi/bowfire-dataset/downloads/
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than relying solely on stacked convolutional layers like 
LeNet, AlexNet, and VGG, current network designs 
like ResNet, Inception, and Xception are exploring 
innovative approaches to create convolutional layers 
to enhance learning efficiency. VGG is a typical CNN 
architecture, yet it’s extensively used because of its 
simplicity. In this study, we train VGG16, InceptionV3, 
and Xception to classify fire images. The following sec-
tion discusses the pre-trained models that have been 
employed in this study.

VGG16
VGG16 (Visual Geometry Group) is extensively used 
CNN architecture that is utilized in ImageNet, a big 
visual database project. VGG16 is widely utilized in a 
variety of deep learning image classification approaches 
due to its simplicity of implementation. Despite its 
2014 introduction, it remains one of the greatest vision 
architectures to date. Without altering the receptive 
fields, VGG uses 1 × 1 convolutional layers to make 
the decision function less linear. VGG can have a lot 
of weight layers because the convolution filters are 
tiny; of course, having more layers results in better 
performance.

InceptionV3
Inception-v3 is a CNN architecture derived from the 
Inception family by several changes such as smoothed-
label, batch normalization etc. InceptionV3 focuses 
mostly on using less computing power by changing the 
previous Inception architectures so that they are more 
efficient. It has been found that, in comparison to VGG-
Net, Inception networks are more computationally effi-
cient. As a result of this efficiency, Inception networks 
create fewer parameters and utilize fewer resources than 
their predecessors. To make InceptionV3 work better for 
the project, we used factorized convolutions, regulariza-
tion, dimension reduction, and parallel computations to 
make the network more efficient.

Xception
Separable Convolutions are replaced with depth-wise 
Separable Convolutions in the Xception Architecture. 
Xception is an “extreme” variation of an Inception mod-
ule. Xception outperforms InceptionV3 on the ImageNet 
dataset and significantly excels it on a larger dataset 
with 17,000 classes. Depthwise Separable convolutions 
will require only less computation compared to separa-
ble convolutions. Hence, Xception requires less number 

Fig. 2  Sample images from BoWFire dataset
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of parameters compared to other CNN variants. On the 
downside, depth-wise 2D convolutions can actually be 
slower than standard 2D convolutions, although using 
less memory. Importantly, it has the same number of 
model parameters as Inception, which results in greater 
computing efficiency. Xception and Inception vary in yet 
another way. After the first operation, the existence or 
absence of non-linearity. Non-linearity is introduced in 
the Inception model by filtering and compressing input 
space, but Xception does not.

VGG16, which was developed as a deep CNN, sur-
passes ImageNet on multiple tasks and datasets. It is 
intended to reduce the number of parameters in con-
volution layers and accelerate training time. This makes 
VGG16 one of the most popular models for image rec-
ognition. InceptionV3 cuts processing costs dramatically 
while retaining speed and precision. In InceptionV3, 
directed acyclic graphs allow powerful processing. The 
Xception architecture outperformed VGG16, ResNet, 
and InceptionV3 on the ImageNet dataset and in the 
majority of classical classification problems. Traditional 
network architectures, such as VGG16, are exclusively 
built of stacked convolutional layers, but newer network 
architectures, such as InceptionV3 and Xception, seek 
novel and innovative ways to construct convolutional lay-
ers in order to increase learning efficiency. Therefore, in 
this study, the VGG16, InceptionV3, and Xception CNN 
architectures have been utilized.

Transfer learning
Transfer learning is a machine learning method that 
involves applying knowledge from a source domain (for 
example, ImageNet) to a target domain with significantly 
fewer samples. In practice, this typically entails initial-
izing a model with pre-trained weights from VGGNet, 
Inception, or another source of pre-trained weights and 
then either using it as a feature extractor or fine-tuning 
the final few layers on a new dataset. Transfer learning 
enables us to repurpose these models for any relevant 
task, from object identification for self-driving vehicles to 
caption generation for video clips. We customize a pre-
trained model as a feature extractor and fine-tuner in this 
work, and a brief note on customization follows:

Feature extractor
This method uses previously learned representations to 
extract meaningful features from new samples. On top 
of the pre-trained model, we constructed a new classi-
fier to reuse the feature mappings extracted by the pre-
vious dataset (ImageNet). It is not necessary to retrain 
the entire model in this method. The fundamental con-
volutional network already has features that can be used 

to identify images in general. However, the pre-trained 
model’s final classification layer is specific to the Ima-
geNet dataset, but we have layers that are specific to the 
set of classes on which the model is retrained.

Fine‑tuner
In this technique, we unfreeze a few top layers of the 
models and train both the newly added classification and 
unfrozen layers of the models. The higher-order feature 
representations of the underlying model can be “fine-
tuned” in this way to make them more relevant to the 
dataset under consideration. In addition to the classifi-
cation layers, the weights of a few top layers of the con-
volution base will be retrained throughout the process 
of fine-tuning. Due to the fact that the early convolu-
tion layers learn extremely generic characteristics, as we 
ascend the network, the layers tend to learn increasingly 
task-specific features. Consequently, for fine-tuning, the 
early layers are maintained frozen while the upper lay-
ers are retrained. Applying fine-tuning enables us to use 
pre-trained networks to distinguish classes in untrained 
datasets. Since the weights of the uppermost layers are 
retrained on a new dataset, fine-tuning will result in more 
accuracy than feature extraction-based transfer learning.

Learning without forgetting
The fact that the shared parameters do not effectively 
reflect discriminative features of the new tasks indicates 
that feature extraction performs poorly when applied 
to the new task in most cases. Fine-tuning reduces per-
formance for previous tasks because shared parameters 
are changed without changing task-specific parameters. 
Retraining a model on a new dataset may result in the 
loss of original task-specific parameters and an inability to 
perform well on the original tasks. This problem has been 
addressed by implementing the LwF concept proposed by 
(https://​www.​kaggle.​com/​datas​ets/​phyla​ke1337/​fire-​datas​
et) and LwF trains the network with new images while 
keeping its previous capabilities. With this strategy, the 
old network’s capabilities are preserved while the samples 
from the new task are used to optimize the accuracy of 
the new task. However, the old task’s images and labels are 
unnecessary for this approach. We used 240 images from 
the BoWFire dataset to test this method. The LwF proce-
dure used for the proposed work is given below:

1.	 Variables

	 Shared parameters →  PS ( network parameters 
updated for original forest fire dataset)

https://www.kaggle.com/datasets/phylake1337/fire-dataset
https://www.kaggle.com/datasets/phylake1337/fire-dataset
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	 Task-specific parameters for original forest fire data-
set → PO

	 Task-specific parameters for BowFire dataset → Pn

	 (Xn, Yn) ◊ training data and class label for the Bow-
Fire dataset

2.	 Procedure

1.	 Yo =Pre-trained CNN(Xn, PS, PO) → find Yo for 
each image in the BowFire dataset.

2.	 Add nodes in the output layer for each class in 
the BowFire dataset.

3.	 Initialize Pn with random weights.

Train the network with BowFire dataset images.

4.	 Compute Ŷo =Pre-trainedCNN(Xn, P̂s,P̂o)
5.	 Compute Ŷn =Pre-trainedCNN(Xn, P̂s,P̂n)
6.	 Compute loss functions for images in the original 

and BowFire dataset and update PS,PO, and Pn.
7.	 Repeat from step 4 till convergence

From the above steps, it can be seen that goal of LwF 
is to make a model learn new capabilities while keeping 
its old capabilities working well, without using training 
data from the old tasks. Figure 3 shows how the proposed 
models would be used.

Fig. 3  Proposed workflow
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Optimization of hyperparameters
Choosing the appropriate hyperparameters for deep 
learning models is critical for maximizing their poten-
tial. A more objective way to do it would be to search 
for different hyperparameter values and pick the subset 
that works best on a given dataset. This is referred to as 
hyperparameter optimization or tuning. The first step in 
any optimization procedure is defining the search space. 
The simplest and most frequently used methods for 
searching are Bayesian optimization, random search, and 
grid search. In this work, we use Bayesian optimization to 
choose ideal values for hyperparameters and it runs the 
models multiple times with different sets of hyperparam-
eter values, but it evaluates previous model information 
to choose the values for hyperparameters for the newer 
model. Bayesian Optimization method is said to take 
less time than other methods to reach the models with 
the highest accuracy. Hence, we used this search tech-
nique for finding the optimal values for the hyperparam-
eters. From the literature survey, we find that learning 
rate, optimizer, activation function, batch size, number 
of epochs, and number of neurons have been tuned in 
many research attempts. Hence, in the proposed work, 
the above hyperparameters have been optimized using 
Bayesian Optimization. Table  2 highlights the tuned 
hyperparameters and their respective search spaces. The 
tuned values of hyperparameters for different models are 
presented in Table 3.

Experiments and results
We designed experiments to evaluate the performance 
of the pre-trained models based on feature extraction, 
fine-tuning, and learning without forgetting. Since the 
proposed models are deeper, we have used GPU-ena-
bled kernels from Kaggle to train them. Tensorflow and 
Keras frameworks are used for training the models. The 
models have been trained using the hyperparameters 
presented in Table 2. Table 3 shows the tuned values of 
hyperparameters that generated the best results during 
training. The models were run for 100 epochs, but we 
stopped them early. Early stopping is a method in which 

the model is trained for an arbitrary number of epochs 
and then stopped when there is no improvement in vali-
dation accuracy or reduction in validation loss. As men-
tioned earlier, we did two different sets of experiments. 
We took out the classifier from these models and added 
our own classifier so we could do these experiments. We 
added two fully connected layers and a softmax layer to 
VGG16. One fully connected layer and one softmax layer 
have been added to InceptionV3 and Xception. While 
fine-tuning the models, we have retrained 5, 8, and 7 top 
layers of VGG16, InceptionV3, and Xception respectively.

We compared the models to the test data to find out 
how well they worked. Table 4 gives a summary of how 
well all of the proposed models have been tested and 
validated.

As each image in the dataset must be classified into one 
of the four classes, we evaluated the performance of each 
model against each of the four classes using accuracy, pre-
cision, recall, and F1-score. To calculate TP, FP, TP, and TN, 
Eqs. (1) to (4) have been used.

(1)tpi = cii

(2)fpi =
∑n

l=1
cli − tpi

(3)fni =
∑n

l=1
cil − tpi

Table 2  Hyperparameters and their search space

Parameter Search space

Optimizer Adam, RMSProp, SGD, Adagrad, Adadelta

Number of neurons in cus-
tomized layers

64, 128, 256, 512, 1024

Activation function Relu, Elu, LeakyRelu and Tanh

Learning rate 1e−3, 1e−4, 1e−5, 1e−6

Number of epochs 100, 125, 150, 200

Batch size 32, 64, 128

Table 3  Hyperparameters with tuned values

Hyperparameters VGG16 InceptionV3 Xception

Optimizer Adam Adam Adam

Learning rate 1e−01 1e−05 1e−03

Activation function Elu Relu Relu

Number of neurons in 
customized layers

512 256 256

Number of epochs 100 70 75

Batch size 128 64 64

Table 4  Validation and testing accuracy of the proposed models

Models Validation 
accuracy (%)

Testing 
accuracy 
(%)

VGG16 Feature extractor 95.18 94.38

Fine tuner 96.32 95.46

InceptionV3 Feature extractor 93.93 92.04

Fine tuner 97.87 97.01

Xception Feature extractor 98.27 97.77

Fine tuner 99.12 98.72



Page 11 of 17Sathishkumar et al. Fire Ecology            (2023) 19:9 	

Accuracy, precision, recall, and F1-score are then calcu-
lated as given in Eqs. (5) to (8).

With Eqs. (1) to (4), we ran each model and computed 
TP, FP, FN, and TN using the confusion matrices. A con-
fusion matrix is a visual representation of how closely the 
prediction results match the actual values. The confu-
sion matrices obtained during model training are shown 
in Fig. 4. The confusion matrix’s diagonal elements stand 
in for the proper classification. The others, on the other 
hand, are incorrectly categorized. Predicted classes are 
shown on the X-axis, while actual classes are shown on 
the Y-axis. For example, VGG16 detected six images of 
type No Fire as Fire, three images of type Smoke as No 
Fire, and so on. Then, by using TP, FP, FN, and TN, the 
metrics such as accuracy, precision, recall, and F1-score 
have been calculated for each of the classes for all the 
proposed models and presented in Tables 5, 6, and 7.

In addition, we compared the performance of the pro-
posed models to that of recent deep learning models. But 
the datasets used by these models are not the same as the 
dataset that we compiled.

Transfer learning over BoWFire dataset using LwF
Now, we compare the performance of the LwF to that of 
previously proposed models on the BoWFire dataset. To 
train the network, LwF only uses new task data, retain-
ing the network’s original capabilities. While integrating 
LwF with the proposed models, the shared parameters 
(PS) of the feature extraction layers and task-specific 
parameters (PO) of the classification layers for the origi-
nal dataset (used for training) are retained and the task-
specific parameters of BoWFire (PN) dataset have been 
updated. Such models learned the parameters that work 
well on both datasets. For this training, we have used 
only the images from the BoWFire dataset, that is, the 
retraining has been done without using the original data-
set. To retrain the models on the BoWFire dataset, we 

(4)tni =
∑n

l=1

∑n

k=1
clk − tpi − fpi − fni

(5)Accuracy =
(TP + TN )

(TP + TN + FP + FN )

(6)Recall =
TP

TP + FN

(7)Precision =
TP

TP + FP

(8)F1score =
(2 ∗ precision ∗ recall)

(precision + recall)

have added neurons to the output layer, that is softmax 
layer, and initialized the weights randomly. The number 
of newly added parameters is the number of newly added 
output neurons multiplied by the last shared layer’s neu-
rons. This is a small portion of the network’s parameters. 
The procedure for training is enumerated in the “Learn-
ing without forgetting” section. To evaluate the perfor-
mance of LwF, we first tested the pre-trained models on 
the BoWFire dataset without LwF and then with LwF. The 
results are shown in Tables 8 and 9.

Findings and discussion
In this work, we intend to classify forest fire images into 
four classes using traditional and contemporary CNN 
models. The results of the experiments have been pre-
sented in the “Experiments and results” section. In this 
section, we provide the findings of our research work. To 
measure the effectiveness of transfer learning techniques 
used in this work, a set of indicators have been used: the 
first one being measuring whether the proposed models 
classify the forest fire dataset using only the transferred 
knowledge (Feature extractor) and then, finetuning a 
few top layers of the pre-trained models to find whether 
there is an increase in the classification accuracy (Fine-
tuner). Since the weights of the pre-trained models have 
been used as such during feature extraction, the accuracy 
of the developed models is comparatively less, whereas 
during finetuning, the weights of a few top layers have 
been retrained. As a result, the models are better able to 
learn the features unique to the dataset. Transfer learning 
works best when employing the network’s visual data-
trained knowledge on new or related tasks. This reduces 
training time and improves model accuracy. So, we got 
better results than other models in the literature and 
came to the conclusion that models based on transfer 
learning are better for evaluating classification problems. 
Among all the proposed models, the Xception model 
showed the highest performance. One reason for this is 
that Xception employs depth-wise separable convolution, 
which facilitates faster and more accurate learning.

While testing the effectiveness of the knowledge trans-
fer of the proposed models over the BoWFire dataset, we 
find that the accuracy of the models is not appreciable. 
This is because the models have not been retrained on 
the BoWFire dataset. And, when we retested the models 
again on the original forest fire test dataset, the accuracy 
is not the same as before. It becomes impossible to store 
and retrain such data as the number of tasks increases. 
Adding new capabilities to a CNN wipes out the train-
ing data for the existing capabilities. As a result, we 
turned to LwF, which retrains the network using the new 
task data while preserving the network’s original capa-
bilities. According to the results of the experiments, LwF 
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Fig. 4  Confusion matrix for the proposed models
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outperforms commonly used fine-tuning adaption tech-
niques on the BoWFire dataset and comparatively well on 
the original dataset. For increased performance on new 
tasks, LwF may be possible to replace fine-tuning using 
similar old and new task datasets. As a result, we may 
deduce that the accuracy of the old task will be equiva-
lent to that of the original network provided the model 

is maintained in such a way that task-specific character-
istics from previous datasets give identical outputs on all 
relevant images.

We have listed a number of research issues that the 
planned effort would attempt to answer in the “Introduc-
tion” section. Now, we briefly discuss how the suggested 
models have responded to these questions. To examine 

Table 5  Performance of VGG16

Types of images Accuracy (%) Precision (%) Recall (%) F1 score (%)

FE FT FE FT FE FT FE FT

Fire 92.63 93.75 86.15 88.66 84 86 85.06 87.31

Smoke 93.63 95.88 84.33 95.63 91.5 87.5 87.77 91.38

Smoke fire 92.75 95 85.5 90.4 85.5 89.5 85.5 89.95

No fire 89 90.63 79.79 77.78 75 87.5 77.32 82.35

Table 6  Performance of InceptionV3

Types of images Accuracy (%) Precision (%) Recall (%) F1 score (%)

FE FT FE FT FE FT FE FT

Fire 91.63 96.13 87.15 94.71 78 89.5 82.32 92.03

Smoke 92.25 98.25 84.5 96.5 84.5 96.5 84.5 96.5

Smoke fire 91.88 95.75 82.61 90.29 85.5 93 84.03 91.63

No fire 89.75 94.63 77.57 88.29 83 90.5 80.19 89.38

Table 7  Performance of Xception

Types of images Accuracy (%) Precision (%) Recall (%) F1 score (%)

FE FT FE FT FE FT FE FT

Fire 97.88 98.5 96.45 97.47 95 96.5 95.72 96.98

Smoke 98.63 98.75 96.55 96.57 98 98.5 97.27 97.52

Smoke Fire 98 98.75 96 97.5 96 97.5 96 97.5

No Fire 97.5 98.5 95 97.47 95 96.5 95 96.98

Table 8  Performance of proposed models on BoWFire and 
Original Forest Fire Dataset without LwF

Models Accuracy (%)

BoWFire Original 
Forest 
Fire

VGG16 FE 51.81 94.38

FT 55.37 95.46

InceptionV3 FE 72.04 92.04

FT 75.31 97.01

Xception FE 77.14 97.77

FT 79.23 98.72

Table 9  Performance of proposed models on BoWFire and 
Original Forest Fire Dataset using LwF

Models Accuracy (%)

BoWFire Original 
Forest 
Fire

VGG16 FE 76.32 92.71

FT 78.47 94.46

InceptionV3 FE 87.12 93.82

FT 89.26 95.64

Xception FE 89.41 94.66

FT 91.41 96.89
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the adaptability of pretrained models for the classification 
of forest fire/smoke dataset, we have used these mod-
els as feature extractor and fine-tuner. We refined and 
trained numerous pre-trained CNN models and com-
pared them to models employed solely as feature extrac-
tors and the results have been presented in Tables 4, 5, 6, 
and 7. As can be seen from these tables, the results very 
well support our research hypothesis. Instead of choos-
ing the values of hyperparameters at random and meas-
uring the performance, we chose the hyperparameters 
using Bayesian Optimization search algorithm. This opti-
mization helped us to get optimal values for the hyperpa-
rameters that yield better results. Further, to validate the 
performance of the fine-tuned models for a challenging 
dataset, we retrained these models using LwF on BowFire 
dataset and the results have been shown in Tables 8 and 
9. From these tables, it can be understood that LwF pro-
vides good accuracy for both old and new tasks.

Besides, while training the proposed models, we find 
that the imbalanced dataset introduced unique chal-
lenges to the learning process. Rather of using data-level 
strategies like resampling, we modified the learning pro-
cess so that the relevance of the smaller classes is raised 
throughout training time. This is accomplished by giving 
the loss function class weights. During model training, 
a total loss for each batch is determined, and the model 
parameters are then repeatedly modified to minimize 
this loss. The loss is the total of the errors between the 
actual and predicted values for all samples. The total is 
transformed to a weighted sum with class weighting 
such that each sample contributes proportionally to the 
loss depending on its class weight. This has solved the 
imbalance nature of the datasets. From Table  10, it is 
understood that the proposed work outperforms other 
methods in the literature. We believe that the finetuning 

and hyperparameter optimization approach led to the 
good results. Such attempts were missing in the other 
methods.

Error analysis
To gain a better understanding of the difficulties inher-
ent in this transfer learning process, we also looked 
at errors brought on by the suggested models. The 
process of evaluating test set images that the models 
incorrectly categorized in order to identify the main 
reasons for the errors is referred to as “Error Analy-
sis”. True positives, false positives, true negatives, and 
false negatives are all categories for the outcomes of 
the classification models on images. For example, in 
the VGG16 model’s confusion matrix, we can see that 
the true positive for the Fire class is 168. This means 
that out of 200 Fire image samples, 168 have been cat-
egorized as Fire and 32 have not. Similarly, only 183 
occurrences of the No Fire class have been accurately 
categorized as No Fire, while 17 instances have been 
incorrectly classed as not No Fire. We explore a few 
examples below.

Although the image in Fig. 5a is actually classified as 
No Fire, the VGG16 model predicted that it is classi-
fied as Fire. This is because the values of sunlight pixels 
are quite near to those of fire color intensities, despite 
the fact that they are not genuine fire. Although the 
feature map indicates the existence of sun-rise or set 
symptoms, we cannot be certain that this is the cause 
of the misclassification. However, other models have 
accurately classified the image. Similarly, the VGG16 
model predicts the Fire class image shown in Fig. 5(b) 
as a Smoke class. The VGG16 model’s failure to suc-
cessfully extract the features from the images could be 
one reason. As a result, reliable forest fire detection 

Table 10  Comparative analysis of proposed models with respect to different deep learning models

References Models Accuracy (%)

(Li and Zhao 2020) YOLO v3 83.7

(Mahmoud 2022) Deep ANN and AlexNet 95 and 98

(Cheng 2021) VGG16 with TL 97.83

(Guede-Fernández et al. 2021) Faster R-CNN 80

(Luo et al. 2018) CNN 90

(Muhammad et al. 2018) CNN 94.39

(Jeon et al. 2021) CNN with feature-squeeze block 97.89

Proposed models VGG16 – Feature Extractor 94.38

VGG16 – Fine Tuner 95.46

InceptionV3 – Feature Extractor 92.04

InceptionV3 – Fine Tuner 97.01

Xception – Feature Extractor 97.77

Xception – Fine Tuner 98.72
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algorithms continue to be a challenge, because cer-
tain objects share characteristics with fire, potentially 
resulting in a high false alarm rate. The details underly-
ing the misclassification must therefore be ascertained. 
As a result, we think that making use of the incorrectly 
categorized images can assist to increase classification 
precision. Assume that images are frequently mistak-
enly categorized as belonging to multiple classes when 
in reality they only belong to one. To gather useful data, 
we should concentrate on a few misclassified classes 
rather than analyzing all classes of images.

Furthermore, as compared to still image-based meth-
ods, video-based methods successfully enhance fire 
detection accuracy by lowering both false detections and 
misclassifications. Such approaches might be particu-
larly effective in distinguishing flames from fire-like video 
sequences.

Conclusion and feature direction
To mitigate the catastrophic impact of wildfires, it is criti-
cal to correctly and rapidly detect active flames in their 
early stages. There are a very few studies that focus on 
monitoring ongoing flames in near real-time using deep 
learning methods. In this work, we investigated the trans-
fer learning of pre-trained models for detecting forest 
fire/smoke. We used the models to extract features and 
fine-tune them. The results indicate that the Xception-
based model outperformed all other models with 98.72% 
accuracy. To preserve the characteristics of the old data-
set, we employed LwF and found that it outperforms fea-
ture extraction. More interestingly, fine-tuning the new 
task with LwF performed comparatively well on original 
dataset when using fine-tuned parameters. Recent stud-
ies indicate that it is critical to detect fire mishaps quickly 
and accurately in their early stages to prevent them from 

spreading. As a consequence, we want to continue our 
study in this field and enhance our findings. In the future, 
we plan to apply the latest CNN models to rapidly identify 
fire occurrences with a low rate of false positives. Further, 
we like to explore more on LwF and multitask learning.
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