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Abstract 

Background:  Fire danger indexes (FDIs) are used as proxies for fire potential and are often developed for specific 
locations. For practical purposes, the extrapolation of the underlying calculations into novel locations is common, but 
it is generally uncertain if the relationships between FDIs and fire potential observed in the environment in which the 
index was developed are equally relevant in others. For example, although a topographically, ecologically, and clima‑
tologically complex country, f ire danger forecasts in Peru use a standard set of nationwide thresholds applied to the 
Fire Weather Index. In this study, we validate the underlying assumption that weather-fire relationships are spatially 
uniform within Peru by (1) making cross-regional comparisons of the statistical distributions of four FDIs—Burning 
Index, Energy Release Component, Fire Weather Index, and Keetch-Byram Drought Index, and (2) making cross-
regional comparisons of the expected daily MODIS hotspot count percentiles conditioned on FDI values.

Results:  Significant regional differences in the distributions of daily FDI values were observed in every pair of regions 
within Peru, and with the exception of a pair of regions within the Amazon, little data ( < 90 days) were necessary to 
detect these differences. After controlling for FDI values and seasonal and annual effects with regressions, differences 
in predicted hotspot percentiles were common, differing by as much as 47 percentage points. Across the pairs of 
regions, the magnitude of these differences tended to decrease as climatic similarity increased, but some counterex‑
amples were also apparent.

Conclusions:  The noticeable differences in the distributions of daily FDI values suggest that a standard set of break‑
points may produce unreliable inferences regarding fire potential. We also find that even if the climatic conditions 
were similar across Peru, the same FDI values in two locations can produce substantially differing predictions of wild‑
fire activity. This suggests that other factors besides FDI values can strongly mediate wildfire activity and that better 
fire potential predictions could be produced if these factors are accounted for.

Keywords:  Fire weather index, Energy release component, Burning index, KBDI, Fire potential, Andes, Peru, Reference 
class problem, Ecological fallacy, Rainforest, Power analysis
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Background
Fire danger indexes (FDIs) are quantities that can be esti-
mated from meteorological data that communicate infor-
mation regarding the future likelihood and magnitude 
of wildfire parameters—hereafter fire potential. FDIs 
were developed to support decision-making for various 
firefighting and land management activities. Although a 
large suite of drought and fuel moisture indexes are avail-
able (Zargar et al. 2011; Littell et al. 2016), only a subset 
are commonly used as FDIs by fire researchers and prac-
titioners. The Keetch-Byram Drought Index (KBDI), 
Energy Release Component (ERC), Burning Index (BI), 
and Canadian Fire Weather Index (FWI) are four exam-
ples of commonly used FDIs. The KBDI was developed 
to predict forest fire activity in the Southeastern United 
States and is based on a water balance model of the upper 
soil layers (Littell et  al. 2016; Keetch and Byram 1968). 
The ERC and BI are used in the USA to inform firefight-
ing decisions (Jolly et  al. 2015; Cullen et  al. 2020) and 
are calculated from a complex equation of temperature, 
precipitation, wind, humidity, cloud cover, and some-
times fuel, topographic, and latitude data (Deeming et al. 
1977; Bradshaw et al. 1984). Structured similarly to the BI 
(Fujioka et al. 2008), the FWI was developed in the 1970s 
and is the preferred choice of FDI in Canada (Van Wag-
ner et  al. 1974). Developing and validating FDIs is a 

highly technical, labor-intensive, and costly task that can 
be difficult to accomplish in more resource-limited con-
texts. Consequently, it is common practice to predict fire 
potential using FDIs that were originally developed for 
other geographic contexts.

For instance, KBDI was first developed to communi-
cate fire potential in the Southeastern United States (Lit-
tell et al. 2016; Keetch and Byram 1968), but it has since 
been applied in other locations, including portions of 
the contiguous USA (Lorimer and Gough 1988; Carlson 
et al. 2002), Hawaii (Dolling et al. 2009), Australia (Hat-
ton et al. 1988), Turkey (Varol and Ertuğrul 2016; Fujioka 
et al. 2008), the Mediterranean (Garcia-Prats et al. 2015), 
and Malaysia (Livingston 1974). FWI is widely used 
operationally across the globe (Vitolo et al. 2020) and has 
been applied in locations including Portugal (Carvalho 
et al. 2008), Greece (Dimitrakopoulos et al. 2011), China 
(Tian et  al. 2011), the UK (Jong et  al. 2016), Argentina 
(Cardenas et  al. 2013), and Peru (SENAMHI 2018). In 
contrast, operational use of ERC and BI is largely limited 
to the USA, and few studies have experimented with the 
application of these indexes for fire potential prediction 
in novel geographic contexts (Van Wilgen 1984; Shmuel 
and Heifetz 2022). When used as fire potential proxies 
in global analyses, FDIs are implicitly applied in novel 
geographies, and BI (Jolly et  al. 2015), KBDI (Gannon 

Résumé 

Antecedentes:  Los índices de peligro de incendio (FDIs) son usados como indicadores del peligro de incendio para 
lugares específicos. Para propósitos prácticos, es común la extrapolación de cálculos previos para lugares sin datos 
previos, pero éstos son generalmente inciertos si las relaciones entre los FDIs y el peligro potencial del fuego en el 
ambiente en el cual el índice fue desarrollado es igualmente relevante que en otros. Por ejemplo, aunque el Perú es 
un lugar topográfica, ecológica, y climatológicamente complejo, el pronóstico de peligro de incendios usado a nivel 
país se basa en un conjunto de umbrales standard aplicando el índice de Peligro de incendios (FWI). En este estudio 
validamos las suposiciones de que las relaciones entre el tiempo meteorológico y el fuego son espacialmente uni‑
formes dentro del Perú mediante 1) una comparación regional cruzada de las distribuciones de cuatro FDIs - índice de 
Quema, Componente de Liberación de Energía, el Fire Weather Index (FWI), y el índice de sequía de Keetch-Byram- y 
2) mediante comparaciones regionales cruzadas obtenidas mediante percentiles del sensor de puntos calientes de 
MODIS condicionados sobre valores de FDI.

Resultados:  Diferencias regionales significativas en la distribución diaria de los valores de FDI fueron observados en 
cada par de regiones dentro del Perú y, con la excepción de regiones pares dentro de la Amazonía, muy pocos datos 
(< 90 días) fueron necesarios para detectar esas diferencias. Después de controlar valores de FDI, efectos estacionales 
y anuales mediante regresiones, fueron notables las diferencias entre valores predichos y los puntos calientes, difir‑
iendo en hasta 47 puntos porcentuales. Entre los pares de regiones, la magnitud de esas diferencias tendió a decrecer 
a medida que la similitud climática aumentaba, aunque algunos ejemplos contradictorios fueron también aparentes.

Conclusiones:  Las diferencias notables en la distribución de los valores de FDI sugieren que un conjunto standard 
de valores críticos puede producir inferencias inciertas relativas al peligro de incendio. Encontramos también que aún 
cuando las condiciones climáticas fueran similares a través de todo el Perú, los mismos valores de FDI en dos lugares 
diferentes pueden producir predicciones substancialmente diferentes en la actividad del fuego. Esto sugiere que otros 
factores más allá de los valores del FDI pueden mediar en la actividad del fuego, y que mejores predicciones poten‑
ciales pueden ser producidas si esos factores fuesen considerados.
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and Steinberg 2021; Liu et  al. 2010), and FWI (Abatzo-
glou et al. 2019; Vitolo et al. 2019) have been used in such 
global fire potential analyses. Even locations that are per-
ceived to be within the same geographic domain in which 
the FDI was developed for can have conditions that the 
FDI was never tested in. Environmental and anthropo-
genic conditions in which the FDIs were developed can 
be defined with multiple criteria (e.g., climate, vegetation, 
land management, season), and the real-world applica-
tion of FDIs inevitably brings about a combination of 
conditions that were never considered in the original 
formulation of the FDI. As an example, although KBDI 
was developed to predict forest fires in the Southeast-
ern United States (Littell et al. 2016), it assumes deep soil 
layers. KBDI might not then be expected to accurately 
reflect fire potential in a location with low fuel quanti-
ties (Keetch and Byram 1968), even if in the Southeastern 
United States. Given that many of the environmental and 
anthropogenic conditions that mediate fire potential—
such as fuel type and quantity—vary in space and time 
(Newman et  al. 2019), there are ubiquitous opportuni-
ties to unintentionally apply FDIs to conditions that differ 
from those that the index was developed for.

Even in these novel conditions, FDIs will often continue 
to be an adequate proxy for fire potential. For instance, 
KBDI is intended to measure deep soil moisture, but it is 
still reported to be a reasonable proxy for fire potential in 
the Amazon (Cavalcante et al. 2021), where fire typically 
burns in the shallow surface litter layer (Cochrane 2003; 
Ray et al. 2005). However, this robustness is not guaran-
teed and, without explicit validation, it can be unclear 
when and where the expected relationships between the 
FDIs and fire potential will breakdown (Regan et al. 2002; 
Hájek 2007). For instance, although KBDI is an impor-
tant predictor of the annual number of wildfires in the 
Southeastern United States (Addington et  al. 2015), the 
relationship has been shown to breakdown when used to 
predict fire size in the central USA (Krueger et al. 2017), 
and in general, an FDI’s predictive ability can break-
down even between locations that are spatially adja-
cent (Nogueira et  al. 2017). Part of this breakdown can 
be explained by the fact that the statistical distribution 
of a FDI likely differs between regions. In other words, 
FDI amounts considered abnormal in one region may 
be significantly more common in another (Vitolo et  al. 
2019), and as a result, any presumed effect of a FDI on 
fire potential would not be consistently observed across 
locations. For this reason, absolute FDI quantities are 
often converted into percentiles so that the relative rar-
ity of the fire weather conditions can be communicated 
(Jolly et al. 2019). Still, this scaling of FDI values cannot 
always account for other confounding non-meteorologi-
cal factors that also mediate fire potential. For instance, 

rescaling FDIs cannot account for the fact that long-term 
precipitation can have differing effects on fire activity 
depending on the ecological context. In forested loca-
tions, low precipitation can increase fire potential since 
flammable biomass is abundant but rarely dry, whereas 
in non-forested locations low precipitation can decrease 
fire potential since flammable biomass is often dry but 
not always in sufficient quantity to carry large fires (Meyn 
et  al. 2007). Human activities are another confounding 
factor to consider as they can influence fire-weather rela-
tionships through multiple means (Syphard et  al. 2007; 
Rodrigues et al. 2018; Monjarás-Vega et al. 2020) and, in 
some cases, may be of greater importance than meteoro-
logical predictors (Syphard et al. 2017). Topographic fac-
tors can directly influence fire behaviors (Deeming et al. 
1977; Bradshaw et al. 1984) and also mediate suppression 
effectiveness (Parisien et  al. 2012; Silva et  al. 2020). In 
addition to the spatial context, the relationship between 
FDIs and fire potential can sometimes breakdown if 
FDIs are applied outside specific temporal contexts. In 
China, for example, although KBDI is a strong predictor 
of seasonal fire counts and burned area, it is less useful 
than other fire proxies when predicting annual wildfire 
parameters (Zhao and Liu 2021). Similarly, in the Great 
Plains region, the predictive ability of some FDIs has 
been observed to be seasonally dependent (Krueger et al. 
2015). Hence, FDI values are at best an incomplete proxy 
for fire potential, and these confounding factors might 
explain why wildfire parameters can differ in two distinct 
locations that report the same FDI values.

Within Peru, the FWI is the preferred choice of FDI for 
identifying locations with elevated fire activity. To sup-
port fire fighting and public safety decisions, the National 
Meteorology and Hydrology Service of Peru (SENAMHI) 
applies a standard set of thresholds (SENAMHI 2018) to 
gridded FWI data to classify each location into one of five 
fire danger categories (Eq. 1).

Peru is also climatically and topographically variable. Dry 
lowland forests exist in the northwestern coastal por-
tions of the country and a desert-arid subtropical climate 
southward along the coast. The Andes mountains dissect 
the country along a North-South transect. The Andes 
mountains are topographically complex and predomi-
nately characterized by grassland and shrubland vegeta-
tion, with very small and isolated high Andean forests. 
The eastern portion of the country is part of the Ama-
zon rainforest and is characterized by high humidity and 

(1)d(FWI) =

Low, if FWI ≤ 6
Moderate, if 6 < FWI ≤ 12
High, if 12 < FWI ≤ 18
Very-high, if 18 < FWI ≤ 24
Extreme, otherwise

.
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warm temperatures with varying topographic complex-
ity depending on the proximity to the Andes (SENAMHI 
2021). Given the issues highlighted in the previous para-
graph, it is not obvious that the standard set of thresh-
olds applied to FWI will adequately capture fire potential 
in all regions. In other words, it is unclear whether the 
statistical distributions of FWI are sufficiently uniform 
across the country to use a standard set of thresholds to 
classify fire danger. Additionally, it is unclear whether the 
response of wildfires to changes in FWI is uniform across 
space and time.

In this study, we will empirically test both the assump-
tions of this fire danger classification model using a set of 
three statistical analyses. Firstly, we will compare descriptive 
statistics obtained from daily averages of four FDIs across 
bioclimatic geographic units in Peru. Secondly, we will use 
these data to determine the level of statistical similarity in 
the distributions of daily-average FDI values between the 
same bioclimatic geographic units. Thirdly, we will describe 
the relative sensitivity of wildfire activity to changes in FDI 
values between the same bioclimatic geographic units.

Methods
Data and preprocessing
Hourly ERA5-land reanalysis data for 2003–2020 were 
obtained from the European Centre for Medium-Range 
Weather Forecasts (ECMWF) using the CDS Python API 
(Muñoz-Sabater et  al. 2021). These data first were sum-
marized to daily values and then were used to derive 
gridded FDIs for four globally relevant indices: the US 
Burning Index (BI) and Energy Release Component 
(ERC) (Bradshaw et al. 1984), Fire Weather Index (FWI) 
(Van  Wagner and Pickett 1985), and Keetch-Byram 
Drought Index (KBDI) (Keetch and Byram 1968). BI 
and ERC were computed using Fuel Model G for spatial 
consistency (Jolly et al. 2015). FWI was computed using 
latitude corrections for the tropics (Lawson and Armit-
age 2008). For each FDI, a daily average time series was 
calculated from the gridded data for six zones. These 
zones were derived by blending Peruvian administrative 
boundaries (departments) with climate zones defined 
by SENAMHI (SENAMHI 2021) to create regions that 
were generally similar in terms of climate, vegetation, and 

Fig. 1  Regions and wildfire activity. Map of the biogeographical units considered in this study with 2003–2020 MODIS hotspot detects overlaid, 
and probability mass functions of MODIS hotspot occurrence. Biogeographical units include the Bosque Seco (dry deciduous forest), Selva Alta 
(humid upland tropical forest), Selva Baja (humid lowland tropical forest), Transicion (Andean rainforest ecotone), Sierra (Andean vegetation), and 
Arido (arid vegetation)
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topography. The administrative boundaries were deter-
mined as a priority factor following the official decision-
making structure governing the country. These clusters 
of departments were verified in consultation with local 
experts. Additionally, MODIS hotspot data for 2003–
2020 are used to produce a daily time series of hotspot 
counts for each of the six zones (Fig. 1).

Summary statistics and power analysis
The empirical cumulative distribution function was 
calculated using each of the 24 time series (4 FDIs ×  6 
regions). The empirical cumulative distribution function 
was used to find the 25th , 50th , and 75th percentiles, 
which are used to estimate the central tendency (median) 
and the dispersion (interquartile range). Additionally, 
for a given FDI and pair of regions, the similarity of the 
two distributions is measured using a model credibility 
index (Lindsay and Liu 2009). We define the model cred-
ibility index, N50 , as the minimum sample size such that 
a two-sample Kolmogorov-Smirnov test is expected to 
correctly reject the null hypothesis (at an α = 0.01 sig-
nificance level) with 0.5 probability. In other words, the 
model credibility index communicates how much data 
are required until known differences in the two probabil-
ity distributions have a 50-50 chance of being detected. 
If the distributions of the FDIs are very different in two 
different regions, then the model credibility index will be 
low. If the distributions are similar, then the model credi-
bility index will be high.1 We estimate the model credibil-
ity index via resampling, where the statistical power of a 
two-sample Kolmogorov-Smirnov is estimated from 1000 
random samples of size n for each n ∈ 10, 11, 12, · · · , 400.

Comparison of MODIS hotspots to FDIs
For each of the six region, four generalized linear mod-
els were fit assuming a log-link and a Poisson distribution 
(Eq. 2).

Here, the random variable (Y) represents the daily 
total MODIS hotspot counts and the expected value is 
assumed to be a function (f) of three covariates (daily 
average FDI and two dummy variables for annual and 
seasonal effects). Each of the four seasons was defined 
using sets of three consecutive months (e.g., Decem-
ber–February, March–May, June–August, September–
November). The daily total MODIS hotspot counts were 
also used to estimate the empirical cumulative distribu-
tion function (g) (Eq.  3). The composite of the condi-
tional expected value of hotspot counts produced from 

(2)E[Y |FDI ,A, S] = f (FDI ,A, S) = exp{�3FDI + �2A + �1S + �0}.

the regression and the empirical cumulative distribu-
tion functions (h) was then calculated as a proxy for the 
expected relative fire potential conditional on season, 
year, and FDI (Eq. 4).

Note here y represents arbitrary hotspot value and Y is 
our sample of observed daily hotspot values. The dif-
ference in h—the percentile of the predicted hotspot 
counts—was calculated for all 

(

6

2

)

= 15 possible combina-
tions of regions (Fig. 1) to assess the relative fire poten-
tial conditional on days with identical fire weather. The 
maximum possible absolute difference in h, across all 
seasons, was recorded for each pair of regions to measure 
the maximum dissimilarity of predicted wildfire activity 
when FDI values are identical. The ability of the models 
to recreate historic trends in MODIS hotspot counts was 
represented using percent error as a performance sta-
tistic, which was estimated using resubstitution (Rafało 
2021). The scatterplot of the model credibility index and 
the maximum absolute difference in h was produced for 
each FDI to identify the similarity of regions in terms 
of climate and fire-weather relationships. Moreover, the 
Pearson correlation coefficient of these two quantities 
was estimated to determine the degree to which cross-
regional climatic similarity implied similar fire-weather 
responses. All calculations were performed using the R 
programming language (Computing et al. 2013).

Results
Descriptive statistics
Descriptive statistics calculated for each FDI revealed 
where pairs of biogeographical regions had similar fire 
weather. The largest differences were apparent between 
the tropical rainforest regions (Selva Alta and Selva Baja) 
and the dry coastal regions (Bosque Seco and Arido), 
with the median FWI, BI, and ERC being noticeably 
lower in the tropical rainforests than in the dry coastal 
regions. The median FWI was particularly sensitive to 
changes in location, and this value differed by as much as 
a factor of 60, ranging from 0.45 in the Selva Alta to 27.79 
in the Bosque Seco. Even when two regions had similar 
median FDI values, the probability distributions could 
differ in terms of other statistics. With values of 32.95 
and 34.69 respectively, the median ERC value was fairly 
similar in the Arido and Bosque Seco regions, but the 
interquartile range was nearly twice as high in the former 
(22.27) than in the latter (11.61). Likewise, the median 
FWI value was fairly similar in the Transicion (2.09) and 
Sierra (2.49) regions, but the interquartile ranges were 

(3)g(y;Y ) =
1

n

∑

1y<Yi ;

(4)h(FDI ,A, S,Y ) = g ◦ f .

1 
N50 is infinite if the samples are generated from the same distribution.
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2.97 and 7.64, respectively. The  smallest regional differ-
ences were observed in tropical forest regions. In the 
Selva Alta and Selva Baja, the median and interquartile 
range of FWI, BI, and ERC were similar, although notice-
able differences in the median and interquartile range of 
KBDI were apparent (Fig. 2, Table 1).

Power analysis
The apparent differences observed from the graphi-
cal inspection of empirical cumulative distribution 
curves and comparisons of descriptive statistics were 
confirmed by the application of two-sample Kolmogo-
rov-Smirnov tests. For each FDI and pair of regions, in 
every case, the null hypothesis of a common probability 

distribution generating both samples was rejected. 
Because it was known a priori that these probability 
distributions should be different, the model credibility 
index was used to gauge how well each pair of prob-
ability distributions approximates one another. Differ-
ences in the distributions usually required little data 
to detect. At an α = 0.01 significance level, a sample 
size of 30 was sufficient to conclude the data were not 
generated from the same probability distribution for 
most FDIs and pairs of regions (Table 2). In the tropi-
cal forests, where FDI values tend to be similarly dis-
tributed, more data were usually needed. Specifically, 
in the Selva Alta and Selva Baja for the FWI, ERC, and 
BI, model credibility index values ranged from 180 to 

Fig. 2  Cumulative distribution functions. Regional empirical cumulative distribution functions for a FWI, b KBDI, c BI, and d ERC. The gray line 
identifies the median of each distribution and the thicker portion of the curve identifies the interquartile range of each distribution

Table 1  Regional daily average fire danger index quartiles

Region FWI BI ERC KBDI

  Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3

Bosque Seco 21.09 27.79 31.92 18.40 20.50 22.00 27.92 34.69 39.53 342.15 464.29 548.74

Selva Alta 0.17 0.45 1.36 8.59 9.24 10.00 10.52 11.67 13.36 64.13 108.03 194.25

Selva Baja 0.25 0.68 2.14 8.81 9.59 10.52 10.66 12.15 14.44 137.90 230.80 342.72

Transicion 1.03 2.09 4.00 9.45 10.31 11.48 11.70 13.63 16.40 42.33 74.73 148.79

Sierra 0.35 2.49 7.99 10.25 12.67 15.90 12.35 17.88 25.83 15.09 34.78 75.67

Arido 9.71 16.84 22.85 13.79 18.21 20.89 19.71 32.95 41.99 126.09 170.41 199.61
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301. On the other hand, differences in the distributions 
of KBDI were easily detectable in the Selva Alta-Selva 
Baja, with sample sizes of 30 usually being sufficiently 
large enough to correctly reject the null hypothesis in 
the majority of cases. Lesser, but still notable, statistical 
similarities were occasionally observed in other pairs 
of regions for some FDIs, including the Bosque Seco-
Arido, Selva Alta-Transicion, Selva Alta-Arido, Selva 
Baja-Transicion, Selva Baja-Sierra, and Transicion-
Sierra (Fig. 3, Table 2).

Comparison of MODIS hotspots to FDIs
The generalized linear models well-approximated his-
torical hotspot activity with low levels of bias. For most 
regions, the absolute mean percent error between model 
predictions and hotspot count observations was less than 
18%, although FWI-based models noticeably underes-
timated hotspot counts in the Bosque Seco and Sierra 

regions relative to other regions, and KBDI-based mod-
els underestimated hotspot counts in the Selva Baja 
(Table 3).

The composite (Eq. 4) of regressions between historical 
FDIs and hotspot counts (Eq. 2) and empirical distribu-
tion functions of hotspots (Eq. 3) suggest that the relative 
wildfire activity levels can vary drastically in regions with 
the identical FDI values (Fig.  4, Supplementary materi-
als S1, S2 and S3). On a typical day from June to August 
2020, the largest percentile difference would be expected 
between the Selva Baja and Sierra regions at a KBDI 
value of approximately 171.56, resulting in a difference 
of nearly 41 points. On a typical day from September to 
November 2020, the largest percentile difference would 
be expected between the Selva Baja and Arido regions at 
a FWI value of approximately 1.89, resulting in a differ-
ence of nearly 44 points. On a typical day from December 
to February 2020, the largest percentile difference would 

Fig. 3  Power analysis. Simulated power curve for each of the 15 pairs of biogeographical units. The sample size is shown on the x-axis and the 
probability of correctly rejecting the null hypothesis at an 0.01 significance level. Each point of the power curve is estimated from 1000 bootstrap 
samples from each region’s empirical cumulative distribution function
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be expected between the Sierra and Arido regions at a 
KBDI value of approximately 151.07, resulting in a dif-
ference of nearly 45 points. Lastly, on a typical day from 
March to May 2020, the largest percentile difference 
would be expected between the Transcion and Arido 
regions at a BI value of approximately 12.72, resulting in a 
difference of nearly 47 points.

Fire‑weather relationship similarity
The Pearson correlation coefficient for the model cred-
ibility index and maximum absolute difference in h was 
negative for each FDI, suggesting that as the distribution 
of fire weather between two regions became more similar, 
the smaller the maximum difference in expected MODIS 
hotspot detect percentiles becomes. The Selva Alta and 
Selva Baja were usually highly climatically similar relative 
to the other pairs of regions and likely disproportionately 
effected these statistics. Moreover, there was still a large 
amount of variability in this overall trend. Although the 
Selva Alta and Selva Baja had similarly distributed FDIs, 
the predicted hotspot percentiles could still differ by 

nearly 20 points in identical fire weather conditions. Con-
versely, some regions were climatically dissimilar but had 
similar fire potential under the identical fire weather con-
ditions. For example, despite the Bosque Seco-Selva Alta 
having noticeably different KBDI distributions (Fig.  2, 
Tables  1  and  2), the maximum difference in MODIS 
hotspot percentile under identical KBDI conditions was 
approximately 10 points (Fig. 5).

Discussion
Summary statistics and power analysis
Each pair of daily FDI time series was generated from 
distinct locations with unique climates, vegetation types, 
topography, and anthropogenic influences. It is then 
unsurprising that, given enough data, differences in the 
statistical distributions of FDIs were detectable in the 
summary statistics and power analysis. In some contexts, 
the differences in the distributions, though statistically 
significant, are not of practical significance (Daniel 1977). 
For instance, in the Selva Alta and Selva Baja, randomly 
generated FDI data in the Selva Alta and Selva Baja are 
likely statistically indistinguishable in sample sizes that 
are less than a few months in duration (Fig.  3). Given 
that the large majority of hotspot detects occur over only 
a couple months’ time, it is likely that the statistics that 
are derived from FDI data will be similar in the Selva 
Alta and Selva Baja. This means that the output of simple 
fire danger models (Jolly et al. 2019) is likely to be simi-
larly distributed in both regions, and the frequency with 
which the original SENAMHI fire danger model (Eq. 1) 
classifies days into low, moderate, high, very high, and 
extreme categories is likely to be similar in the Selva Baja 
and Selva Alta.

Although the differences in the distribution of FDIs 
were sometimes small enough to be ignored, more often 
it was the case that there existed detectable differences 
that made extrapolation of results across regions prob-
lematic. The differences in the distributions of FDIs were 
most noticeable between the interior tropical rainforests 
and the coastal desert-arid regions (Fig. 3). FDI values in 
the lower quartile of the Bosque Seco region could cor-
respond to values in the upper extremes of the distribu-
tion of the Selva Alta region (Fig.  2, Table  1), and little 
data are required to detect differences in the pair of sta-
tistical distributions (Table 2). Consequently, the output 
of a simple fire danger model with standard thresholds is 
likely to be distributed much differently in both regions. 
If the fire danger model were optimized with data from 
a region with lower average FDI values, and predictions 
were then produced for a new region with higher average 
FDI values, then the model is likely to have an inflated 
false positive rate in the new region. On the other hand, 
if the fire danger model were instead optimized with data 

Table 2  Estimated model credibility index by region pair and fire 
danger index

Pair FWI BI KBDI ERC

Selva Alta-Selva Baja 272 180 23 301

Selva Alta-Transicion 18 26 96 37

Bosque Seco-Arido 18 42 10 89

Selva Baja-Transicion 27 66 12 83

Transicion-Sierra 80 22 31 31

Selva Baja-Sierra 41 15 10 22

Selva Alta-Arido 10 10 32 10

Selva Alta-Sierra 26 11 15 15

Sierra-Arido 11 19 10 19

Selva Baja-Arido 10 10 19 10

Transicion-Arido 10 10 15 10

Bosque Seco-Selva Baja 10 10 14 10

Bosque Seco-Sierra 10 10 10 11

Bosque Seco-Transicion 10 10 10 10

Bosque Seco-Selva Alta 10 10 10 10

Table 3  Mean percentage error estimated via resubstitution

Region FWI BI ERC KBDI

Bosque Seco 346.79 8.01 17.89 1.19

Selva Alta −0.33 −0.47 −0.48 −0.25

Selva Baja −4.75 10.18 6.51 55.51

Transicion 8.93 3.99 3.37 3.78

Sierra 67.48 −0.75 −0.92 12.67

Arido 16.55 7.68 10.02 6.89
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from a region with higher average FDI values, and pre-
dictions were then produced for a new region with lower 
average FDI values, then the model would likely have an 
inflated false negative rate in the new region.

It is important to note that for a given pair of regions, 
strong statistical similarity in the distributions of one FDI 
does not necessarily imply strong statistical similarity in 
another FDI. For example, although the distribution of 
ERC, BI, and FWI is very similar in the Selva Alta and 
Selva Baja (Table  2, Fig.  2), the distribution of KBDI is 
not similar. Conversely, in the Selva Alta and Transicion 
region, the distribution of KBDI is similar, whereas ERC, 
BI, and FWI are much less so (Table 2). These contrasts 
across FDIs can help identify pairs of regions that share 
common meteorological processes. Although to some 
extent all four FDIs are based on fuel moisture, they also 
include or omit certain variables in the calculation of the 
indexes. KBDI is measured solely using temperature and 

precipitation data (Keetch and Byram 1968), whereas 
ERC also includes information about solar radiation and 
relative humidity (Bradshaw et  al. 1984; Deeming et  al. 
1977). Similarly, BI and FWI include components that 
increase the index in windy conditions, which are com-
ponents not included in KBDI and ERC (Littell et  al. 
2016; Tian et  al. 2011; Bradshaw et  al. 1984; Deeming 
et  al. 1977). We might then expect that pairs of regions 
(e.g., Selva Alta and Selva Baja) that have similar fuel 
moisture patterns but dissimilar wind patterns to have 
fairly low model credibility index values for BI and FWI, 
but higher model credibility index values for KBDI and 
ERC. We might also expect pairs of regions (e.g., Selva 
Alta-Transicion) that have similarly distributed tem-
perature and precipitation but dissimilar distributions 
of other meteorological variables might have fairly high 
model credibility for KBDI but lower model credibility 
for FWI, BI, and ERC.

Fig. 4  Relative fire potential gradient. Difference in predicted hotspot percentile estimates between pairs of biogeographical units (y-axis) across a 
gradient of daily average FDI values (x-axis) during June–August 2020



Page 10 of 14Podschwit et al. Fire Ecology           (2022) 18:25 

Comparison of MODIS hotspots to FDIs
Hitherto in our discussion of the results, we ignored the 
possibility that fire potential may vary between regions 
with similarly distributed FDIs. In general, we found 
that the more climatically similar two regions are, the 
more similar relative fire potential will be under identi-
cal meteorological conditions (Fig. 5). However, this does 
not mean that one can simply just assume that because 
a FDI-based model has high performance in one loca-
tion that it would always also do well in another climati-
cally similar one. Indeed, even though the Selva Alta 
and Selva Baja have similar statistical distributions of BI, 
FWI, and ERC, MODIS hotspot count percentiles are 
still expected to differ by as much as 18–27 percentage 
points under identical fire weather conditions (Fig.  5). 
Moreover, as was the case in the Bosque Seco-Selva Alta 
regions, approximately similar estimates of fire potential 

can also be produced from FDI-based models that were 
developed in climatically dissimilar places (Fig.  5). One 
potential explanation for these exceptions is that the 
effects of FDIs sometimes play a subordinate role in fire 
potential in comparison to other non-meteorological fac-
tors. If we hypothetically assumed that fire potential was 
largely independent of fire weather, as might be expected 
in a region with a great deal of anthropogenic influence 
(Syphard et  al. 2017), then it would be possible for the 
MODIS hotspot detection percentiles to be close in both 
regions for any arbitrary shared FDI value. Given that it 
is the dry coastal regions—the Bosque Seco and Arido 
regions—with the largest anthropogenic influence, this 
explanation is at least somewhat plausible, but there are 
a suite of other competing non-meteorological factors 
that could also mediate fire potential here as well. It is 
worth noting that in some contexts, this assumption of 

Fig. 5  Two-factor regional similarity. Scatterplot of model credibility index and maximum absolute differences in predicted hotspot count 
percentiles. Pearson correlation coefficients are reported in the upper left
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geographic portability of fire-weather relationships could 
be adequate, even in climatically dissimilar regions. For 
instance, if FDI values are extremely high/low, then the 
conclusion that fire potential is high/low is still likely to 
be reasonable regardless of which region’s perspective 
you are considering (Fig.  4). We observed that it was 
mostly at intermediate FDI values, where there was a 
greater risk associated with extrapolating fire potential 
relationships observed in one location to another.

Applying FDI-based fire potential models to regions that 
they were not developed for may appear as a contrived 
modeling exercise, but our analysis illustrates the risks 
associated with assuming that the relationship between an 
FDI and wildfire activity is spatially uniform. This assump-
tion may arise explicitly when fire potential models that 
work well in one location are assumed to also work well 
in another. Doubtless, the fire classification model in Peru 
is informative of fire danger in at least some locations, but 
it is also likely to produce misleading risk assessments in 
others. Beyond this specific case, we can also see that the 
assumption of geographic portability can also arise implic-
itly if spatial comparisons of fire potential are derived 
using FDI values only (Vitolo et al. 2019) or if fire potential 
is interpreted at a spatial scale that is different from that of 
the FDI products (Regan et al. 2002). In each of these cases, 
it is assumed that the conditional probability distribution 
of a wildfire parameter is the same across regions. How-
ever, because the fire potential can noticeably differ even 
in regions that are climatically similar, we can see that this 
assumption is problematic. Given that climatic similarity is 
no guarantee that fire potential will respond the same to 
identical fire weather conditions, we can see that although 
normalizing FDIs is a commonly recommended method 
for interpreting fire potential from FDIs across regions 
(Hall et al. 2003; Heinsch et al. 2009), bias can nevertheless 
remain. Ideally then, fire potential predictions should be 
locally calibrated using the statistical distributions of FDIs 
and a relevant wildfire parameter (e.g., MODIS hotspot 
counts) so that fire potential can be explicitly described in 
terms of a relevant wildfire parameter. However, climatic 
similarity (model credibility index) was at least weakly cor-
related similar fire potential responses (h), so the chances 
of producing grossly misleading fire potential forecasts 
from models produced in other locations with similar cli-
mates are likely small. Still, given the occasional exceptions 
to this trend, fire potential forecasts should, at a minimum, 
avoid drawing overconfident conclusions solely on the 
basis of FDIs and consider presenting important contex-
tual information alongside FDI estimates.

Future research
As mentioned in the previous subsection, non-meteor-
ological factors such as vegetation (Syphard et  al. 2018; 

Meyn et  al. 2007), anthropogenic effects (Syphard et  al. 
2007, 2017; Rodrigues et  al. 2018; Monjarás-Vega et  al. 
2020), topography (Parisien et al. 2012; Silva et al. 2020), 
and temporal autocorrelation of fire activity (Vega-Nieva 
et  al. 2018) are also important for gauging fire poten-
tial. Given the potential for these factors to be of greater 
importance than meteorological factors (Syphard et  al. 
2017), future work should seek to include these factors 
into fire risk predictions and assess their regional port-
ability. For instance, anthropogenic influences have been 
observed to reduce the importance of climate on wild-
fire activity in Mediterranean California (Syphard et  al. 
2017), and it is worth testing if this relationship (1) is 
observed in other locations and (2) can explain the appar-
ent robust relationship between FDIs and fire potential 
in climatically dissimilar locations like the Bosque Seco 
and Selva Alta. There are also a large set of meteorologi-
cal variables, beyond those explored in this study, that 
have the potential to influence fire (Zargar et  al. 2011; 
Littell et  al. 2016; Vega-Nieva et  al. 2018; Sismanoglu 
and Setzer 2005; Vega-Nieva et  al. 2019). Identifying 
regional differences in the distribution of these variables, 
as well as in their presumed effect on fire activity, can 
further advance our understanding on when and where 
relationships between weather and fire can be reliably 
extrapolated. Repeating this analysis using a large suite of 
alternative FDIs may identify some that are more region-
ally robust than those examined in this study, so that 
accurate predictions of fire potential can be produced 
with little need for regional calibration. For at least two 
reasons, it is also important to see how the substitution 
of other wildfire parameters can influence the results of 
this analysis. Firstly, patterns and trends observed in one 
wildfire parameter may not be observed in others (Doerr 
and Santín 2016), and secondly, the practical relevance 
of a given wildfire parameter can vary depending on the 
specific decision-maker or constituency being considered 
(Podschwit and Cullen 2020). As an example, it is possi-
ble that daily MODIS hotspot counts are a relevant proxy 
for assessing smoke impacts of fire, but are not also a rel-
evant proxy for firefighting effectiveness. The latter appli-
cation may instead require the consideration of another 
wildfire parameter that correlates with FDIs in a way that 
drastically differs from daily MODIS hotspot counts. 
Simple rescalings—for example transforming MODIS 
hotspot counts into per-unit area rates—might also be 
used to produce alternative wildfire parameters that can 
be used to understand the sensitivity of FDIs to substi-
tutions of fire potential proxies. Many defensible spatial 
aggregations different from those presented in this study 
(e.g., ecoregions) could have been proposed, which may 
lead to differing results than those presented in this study 
(Dark and Bram 2007), and the sensitivity of these results 
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to varying spatial aggregations is another area of research 
that should be considered.

Conclusions
The extrapolation of relationships between fire danger 
indexes and fire potential observed in one location into 
others is an often necessary assumption when modeling 
fire risk. This assumption of geographic portability of 
fire-weather relationships is observed in the existing fire 
danger classification model in Peru, which uses the same 
critical values to classify low, moderate, high, very high, 
and extreme fire danger across biogeographical regions. 
However, this analysis has shown that the assumption 
of geographic portability of fire-weather relationships is 
often unrealistic for at least two reasons. Firstly, spatial 
variability in the distribution of fire weather can make it 
difficult to establish standard rules classifying fire dan-
ger. Secondly, the response of wildfire parameters to 
fire weather can vary spatially even in climatically simi-
lar regions. In Peru specifically, we observed large dif-
ferences in the statistical distributions of the four FDIs, 
with the largest differences being between regions in 
the tropical rainforests and the coastal desert-arid sub-
tropical regions. Moreover, the counterfactual hotspot 
analysis demonstrated that under identical fire weather 
conditions the predicted MODIS hotspot detect percen-
tiles can substantially differ depending on which part of 
the country one is located. Finally, while these methods 
were demonstrated specifically for Peru, the methods can 
be applied to any area of the world to explore the similar-
ities and differences in fire weather between regions, and 
the results can inform the development of more robust 
fire prediction systems.
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