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Abstract

Third-party IME (Input Method Editor) apps are often the preference means of interaction for Android users’ input. In
this paper, we first discuss the insecurity of IME apps, including the Potentially Harmful Apps (PHAs) and malicious IME
apps, which may leak users’ sensitive keystrokes. The current defense system, such as I-BOX, is vulnerable to the prefix
substitution attack and the colluding attack due to the post-IME nature. We provide a deeper understanding that all
the designs with the post-IME nature are subject to the prefix-substitution and colluding attacks. To remedy the
above post-IME system’s flaws, we propose a new idea, pre-IME, which guarantees that “Is this touch event a sensitive
keystroke?” analysis will always access user touch events prior to the execution of any IME app code. We design an
innovative TrustZone-based framework named IM-Visor which has the pre-IME nature. Specifically, IM-Visor creates
the isolation environment named STIE as soon as a user intends to type on a soft keyboard, then the STIE
intercepts,Android event sub translates and analyzes the user’s touch input. If the input is sensitive, the translation of
keystrokes will be delivered to user apps through a trusted path. Otherwise, IM-Visor replays non-sensitive keystroke
touch events for IME apps or replays non-keystroke touch events for other apps. A prototype of IM-Visor has been
implemented and tested with several most popular IMEs. The experimental results show that IM-Visor has small
runtime overheads.
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Introduction
Nowadays, people are experiencing a booming growth
of Android smartphone apps and enjoying their con-
venience. According to Google Play’s statistics(Google
2007), the number of available apps in the Google Play
Store was most recently placed at 3.3 million apps in
September 2017, after surpassing 1 million apps in July
2013. Most popular apps in the real world can be cat-
egorized into six groups: tools, communication, social
interaction, efficiency, anime and sports. For example, ES
app as a tool app can help users transfer their files in
smartphone to a PC desktop.
An Input Method Editor (IME) app is a user-installed

app that provides a soft keyboard to receive user input
in mobile devices. As shown in Fig. 1, a default IME app
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appears when a user intends to type characters in a user
app (e.g., type a location name in a map searching app).
Besides the default IME app, there are many kinds of third
party apps in Android market that a user can download
from. These third party apps can provide value added fea-
tures to a user app, such as cloud-based auto correcting,
word association and clipboard.
Although an IME app provides great convenience to

users, they can introduce serious security problems. An
attacker can use this kind of apps to steal users’ sensitive
keystrokes. As shown in Fig. 2, a keystroke processing in
Android works as follows: When a user types a charac-
ter (e.g., a “K”) in a soft keyboard, the touch screen driver
will receive a coordinate(x,y), then the event subsystem
transfers it into a touch event. Then, the input dispatcher
thread will send the event to the target IME app. Finally,
IME app will translate the event into a character (i.e., a
“K”), and sends it to the target user app. After sending,
an IME app can still revisit the buffer of that user app.
Here, we can see that an IME app is always the first service
to receive (sensitive or non-sensitive) keystrokes prior to
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Fig. 1 IME apps in the real world. An IME app is capable to provide a soft keyboard for user input. Typically, there are many kinds of third party apps
in Android market that a user can download with his own preference

a user app. Hence, if a user is typing sensitive informa-
tion (e.g., password, bank number, etc.) in a user app, a
malicious IME app can work as a key logger to record
and translate sensitive keystrokes, then store them in local
file system or send them to a remote server. This is a
typical man-in-middle attack. There are several ways to
construct such malicious IME apps, and repackaging is
a common way which has been widely used by attack-
ers. (Zhou and Jiang 2012) Besides malicious IME apps,
there are also threats posed by potentially harmful IME
apps (PHAs). Without users’ consent, they collect sensi-
tive keystrokes and send them to an ad network doing
targeted advertising based on the keywords in user inputs.
To get rid of the above attacks, researchers have recently

proposed post-IME defenses. Figure 3 shows the work

Fig. 2 Keystrokes porcessing in Android. An IME app obtains the
coordinate(x,y) from touch screen driver and translate it into a
character, then send it to a user app. It is always the first service to
receive (sensitive or non-sensitive) keystrokes prior to a user app

flow of I-BOX(Chen et al. 2015), which is a well-known
post-IME defense. Specifically, it saves the process state
of an IME app periodically and analyzes the translated
keystrokes from IME apps each time an input transaction
happens. If sensitive ones are found, it will let the IME app
“forget” sensitive keystrokes by a process roll-back. The I-
Box always checks whether a rollback is needed after the
IME has already processed keystrokes. And the salient fea-
ture of the post-IME nature is that sensitive keystrokes
appear in the dynamically allocated memory of an IME
app at least once.
Although post-IME defenses can prevent the sensitive

data leakage in most common cases, there are still three
security holes (discovered so far) in current defense sys-
tems, that is, prefix substitution attack, colluding attack
and sandbox bypassing attack (newly discovered attack).
Prefix Substitution Attack. Figure 4 is an example of

prefix substitution attack to I-BOX. The policy engine in
I-Box is a status machine to detect whether the output
string of an IME app is sensitive. Assuming the current
input is sensitive data, but IME app developers use obfus-
cated code to replace the prefix of the typed string with
a non-sensitive one, then the policy engine is fooled and
the roll-back will not be triggered. So the sensitive data
obtained by the IME will not be cleaned and can still be
sent to a remote server.
Colluding Attack. Figure 5 is an example of colluding

attack to I-BOX. To launch a colluding attack, as a post-
IME design won’t do anything until it gets some output
from the IMEs, an IME app needs to send sensitive text to
a colluding app before it commits any text to a user app.
So it is really easy to launch the attack in the real world.
Sandbox Bypassing Attack. The “revisit” threat is dis-

covered by us and I-Box was not aware of it yet. It is
a threat for both post-IME and pre-IME defenses. From
the view of the I-Box, it regards the user input process
as a transaction, which begins when a user starts to enter
the input and ends when the input session ends. When
a user is typing sensitive data by a third party IME, the



Tian et al. Cybersecurity  (2018) 1:5 Page 3 of 17

Fig. 3 The work flow of a post-IME defense namely I-BOX. It always checks if a rollback is needed after the IME has already processed keystrokes. And
the salient feature of the post-IME nature is that sensitive keystrokes appear in the dynamically allocated memory of an IME app at least once

current transaction will be marked as sensitive by I-Box.
During this sensitive transaction, I-Box believes that the
restriction of network and roll-back can prevent sensitive
keystroke leakage. However, the sensitive text exist not
only in an IME app while also in the buffer of a user app.
The roll-back only cleans the sensitive text in the IME app
but remains the one in the user app. In light of the fact that
some functions likegetTextBeforeCursor in BaseIn-
putConnection can be used to revisit the buffer of a user
app, an IME app can launch a sandbox bypassing attack
by calling revisited APIs at the beginning of the next new
transaction. If the user app has not flush the buffer yet,
the IME can obtain the sensitive text committed in the
last transaction. As a result, the sandbox of I-Box has been
bypassed. Figure 6 shows how does the sandbox bypassing
attack case work. It is worth noting that the bypass attack
is not universally true. In other words, only when the user
app does not flush the buffer, there exists such an attack.

Problem statement. How to fill the three security holes
through providing the following security property: the
analysis on whether a touch event is a sensitive keystroke

will always access the touch event prior to the execution
of any IME app code.
This work seeks to solve the above problem by design-

ing, implementing and evaluating the first pre-IME
defense based on 3 key ideas. The defense should ensure
that touch events are intercepted before arriving at the
system (Key idea 1). Sensitive touch events are never sent
to IME apps (Key idea 2). Insensitive touch events should
be replayed (Key idea 3).

Challenges. To leverage the above three key ideas, we
are facing three main challenges. First, in the existing
modern mobile devices, an IME app is the first service
to receive (sensitive or non-sensitive) keystrokes from
Android event subsystem, and translates them to text.
Distinct from a post-IME design which does a rollback
after the IMEs translating keystrokes, in a pre-IME design,
how can we intercept and isolate sensitive keystrokes
ahead of IME translation? This is called the “Isolation
ahead of IME translation issue” (Challenge 1). Second,
after we succeeding in intercepting and isolating those

Fig. 4 Prefix-substitution attack. I-Box uses a policy engine to search substring in the output of an IME app. Malicious IME apps can obfuscate
sensitive string into non-sensitive string to fool I-Box and leak it out to a remote server
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Fig. 5 Colluding attack. To lauch such attack, an IME app just needs to send sensitive text to a colluding app before it commits any text to a user app

sensitive keystrokes, how can we build a trusted path for
user apps to access these sensitive keystrokes? We call it
the “Trusted path issue” (Challenge 2). Finally, recalling
the reason why users got incentives to use IMEs in the
first paragraph, an IME app does provide convenience and
extra benefits. In a pre-IME design, how can we retain the
value added feature for user apps? We call it the “Benefits
retaining issue” (Challenge 3).
To address Challenge 1, we leveraged Trustzone and

achieved interception ahead of IME translation. The iso-
lation mechanism includes detection of soft keyboards,
initialization of STIE (Secure Typed Isolation Environ-
ment, touch event processing and keystrokes translation,
and sensitiveness analysis. To address Challenge 2, we
built a trusted path for sensitive keystrokes to be trans-
ferred to the user app through creating a new IPC between
the commit-proxy and the user app. To address Challenge
3, we proposed a keystroke replay mechanism.
Our main contributions are summarized as follows.

• We propose a new idea “pre-IME”, which guarantees
that “Is this touch event a sensitive keystroke?”
analysis will always access user touch events prior to
the execution of any IME app code.

• We provide a deeper understanding that all the
designs with the post-IME nature are subject to the
prefix-substitution and colluding attacks. Addressing
the two attacks, designs with the pre-IME nature

have a clear security advantage over post-IME
designs. This is a key new insight of this work.

• We build a concrete pre-IME defense named
IM-Visor which leverages TrustZone to isolate
sensitive keystrokes before the IMEs could access
them. IM-Visor resolves three main challenges: the
“Isolation ahead of translation issue”, the “Trusted
path issue” and the “Benefits retaining issue”.

• By noticing that sensitive keystrokes can generally
flow both way (i.e., from IME apps to user apps and
from user apps to IME apps), we discover a new
sandbox bypassing vulnerability of I-Box.

• We perform a thorough evaluation of IM-Visor. We
test a set of popular IME apps and the related user
apps, no sensitive keystroke leakage caused by IME
apps is found. The experimental results show that
IM-Visor has small runtime overheads.

Background
Android IME, Input Method Framework (IMF) and event
subsystem
Android IMF arbitrates interaction between applications
and the current input method (InputMethodManager
2016). A user app can use the standard TextView or
its subclass to interact with an IME app. InputMethod-
ManagerService (IMMS) in the IMF is a global system
service that manages the interaction across the above
processes. When a user touches on the TextView of a

Fig. 6 Sandbox bypassing attack. The pink and blue color represent two different state of an IME app. As shown in blue color, after the roll-back, an
IME app can still access the user app’s data buffer for sensitive text by some revisited APIs and leak it out to a remote server at the beginning of next
input transaction
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user app, IMMS will start an IME app. What’s more,
some functions in IMMS such as showSoftInput,
hideCurrentInputLocked can control when a soft
keyboard will be shown up or hidden. If a user types
on the soft keyboard, TouchInputMapper in the
Android event subsystem is the first entity to handle user
touch events. After the process of TouchInputMapper,
an input dispatch thread in WindowManagerService
(WMS)(Windowmanager) is responsible to dispatch
keystrokes to the active IME app. Then the IME can trans-
late keystrokes to text and commits them to a user app by
BaseInputConnection (BIC)(InputConnection). BIC is the
connection between a user app and an IME app. BIC pro-
vides some functions such as getTextBeforeCursor,
getSelectedText for IME apps to revisit the data
buffer in a user app. The reason why these functions exist
is that an IME app may need to change some character
before finally committing or it just wants to verify the
committing. In this paper, we put hooks in some func-
tions in the IMF and event subsystem so that the “Is this
touch event a sensitive keystroke?” analysis can be invoked
before the IMEs access keystrokes.

TrustZone
Processor state isolation.As hardware-level security iso-
lation, TrustZone provides Secure Monitor Call (SMC)
instruction for the processor to enter secure world from
normal world. The SMC instruction is a privileged
instruction which is invoked in normal world. Program
in secure state can access resources across the system
including I/O, memory, etc. Normal program has a lower
execution privilege.

I/O device and memory isolation. A major feature of
TrustZone is that it can flexibly configure the secure
state of I/O devices using software. This function involves
TrustZone Protection Controller (TZPC) and Trust-
Zone Address Space Controller (TZASC). TZASC allows
secure and non-secure area partition for themobile device
DRAM memory. In existing mobile devices, touch screen
and display controller are usually configured as non-
secure.

Trustlets. An application in secure world is known as a
trustlet. It can access the normal world memory but not
vice-versa. Considering the TCB size of secure world, a
trustlet is usually designed to provide some higher secure
operation such as displaying trusted UI or encryption.

Threat model and assumptions
Threat model
As mentioned, in the Android IMF, due to extra benefits,
user apps got incentives to use an IME app to access a soft
keyboard. However, an IME app is capable of logging and

uploading whatever a user types on a soft keyboard. So
there is a risk of sensitive keystroke leakage through third
patry IMEs. A current defense with the post-IME nature
intends to discover sensitive input by analyzing the out-
put of an IME app and cleans it by a roll-back. However,
an IME app can fool the defense by committing a replaced
text (Prefix-substitution Attack ) or leaking out sensitive
keystrokes with a colluding app before the analysis is trig-
gered (Colluding Attack). In “Introduction” section, we
have pointed out that all the designs with the post-IME
nature are subject to the above two attacks. And a key
motivation of our work is that we intend to build a more
secure defense to get rid of the above attacks. Besides,
we discover a new data leakage path from a user app to
an IME app by some revisit APIs (Sandbox Bypassing
Attack). So the “revisit” is another threat to our security
concerns.
It is possible that a malicious user app can collude with

an IME app to steal sensitive keystrokes. However, we con-
sider this out of the scope of this paper. Because a user
app can get whatever a user types in a soft keyboard, it
is unnecessary to steal sensitive keystrokes through an
hacked IME app. Besides, from an attacker’s point of view,
it is much more easier to attack a single IME app than
attacking all kinds of user apps which often use an IME
keyboard. If an IME app is hacked, all user apps are hacked
since an IME app processes all of a user’s input in modern
mobile devices.

Assumptions
As third party IME apps may cause sensitive keystroke
leakage, we consider all third party IMEs (i.e., malicious
and PHAs) as untrusted. The goal of IM-Visor is to pre-
vent IME apps from accessing data when a user types
sensitive keystrokes, so we assume that the user app which
employs an IME app for keystroke translation is trusted.
Although there are lots of attacks targeting at user apps
(Zhou and Jiang 2012; Suarez-Tangil et al. 2013), such
threats are not in the scope of this work. We assume that
the Android System Server and the kernel are not on the
target list of attackers. As IM-Visor is a security scheme
based on TrustZone, so we assume the device is equipped
with TrustZone and the function of TrustZone has been
correctly implemented on the device. Considering Trust-
Zone is an isolation solution with hardware support, we
assume the hardware of the device is trusted. Hardware
attacks which may prevent the normal operation of Trust-
Zone are out of the scope of this work.
Although OS is not on the list of attack targets, consid-

ering the following facts, we still use TrustZone to imple-
ment our defense. First, TrustZone is widely deployed.
Data from Samsung shows that millions of modern
devices are outfitted with TrustZone (Azab et al. 2014).We
hypothesize that more andmore devices will use the ARM
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TrustZone in the future. Second, the Trusted Execution
Enviroment (TEE) is already deployed, there seems less a
need to reinvent wheels. Comparing to adding system or
kernel code, it is really more convenient to put our critical
code as a trustlet in secure world and only put some hooks
in Android. Third, it ensures minimum kernel modifica-
tion. In our design, only a TrustZone driver is needed to be
installed in kernel. No kernel instrumentation is needed.
Forth, no significant impact on system overheads by test-
ing withmost popular IMEs. Fifth, TrustZone does reduce
our attack surface. For example, using a gravity sensor
to launch a side channel attack is possible when a user
types on a soft keyboard. TrustZone can configure related
hardware as secure to thwart such attack.

Overview
Figure 7 shows the system components of IM-Visor, which
includes a Secure Typing Isolation Environment (STIE) in
secure world, a system service named commit-proxy, a
daemon thread named replay executor in the event sub-
system and some hooks. The STIE includes two parts:
secure hardware drivers and a trustlet named pre-IME
guard. As mentioned in “Introduction” section, in order
to create a defense with the pre-IME nature, there are
three main challenges: “Isolation ahead of IME translation
issue”, “Trusted path issue”, “Benefits retaining issue”. Now
we give a high-level overview of how IM-Visor resolves
them.
Isolation ahead of IME Translation Issue. In existing

mobile devices, an IME app is the first entity to receive
user touch events, and then translates keystrokes to text.
To achieve a pre-IME design, we must recognize sensitive

keystrokes and isolate them before an IME app could
access them.
One possible way is to leverage TrustZone to implement

a trusted IME app with a trusted GUI. When users intend
to type sensitive data, let them switch to the trusted IME.
However, this approach brings two disadvantages. First,
it is a burden for users to constantly keep this switch in
mind. Second, a friendly trusted GUI means a lot of extra
coding work, such as efficient graphics rendering. So we
have to look for a new approach.
In the light of the fact that keystrokes will be pre-

processed by the event subsystem before an IME app
could access them, we put some hooks in event sub-
system and leverage TrustZone to achieve the pre-IME
nature. Subsystem hooks make SMC calls and jump to
secure world. In secure world, IM-Visor provides the
STIE in which the touch screen and display devices
are only controlled by secure world. For touch input,
we implement a separate touch driver in secure world.
Hence, whenever a touch input interrupt arrives, IM-
Visor would be the first to access keystrokes prior to
the execution of any IME app code. The pre-IME Guard
receives keystrokes, translates them and analyzes whether
the char string is sensitive. Concerning about the flex-
ibility and efficiency, the STIE will be created only
when a user intends to type in a soft keyboard (see
“STIE initialization” section).
Compared to the development of an trusted IME app,

the STIE helps IM-Visor avoid the above two disadvan-
tages. First, as the STIE can be initialized automatically
when a user intends to type in a soft keyboard, a user does
not have to keep the keyboard switch in mind. Second,

Fig. 7 IM-Visor consists of the STIE in secure world, a new service named commit-proxy, a daemon thread named replay executor in event subsytem
and some hooks
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because the STIE reuses the UI of a soft keyboard and
isolates touch input, no trusted GUI lib is needed.

Trusted path issue. As mentioned in “Introduction”
section, after the isolation of sensitive keystrokes, wemust
build a trusted path from the pre-IME Guard to a user
app (Zhou et al. 2012; trustonic). Obviously, we can-
not use untrusted IME apps to commit sensitive text as
this violates our security principle. So we have to find
another data path isolated from IME apps. In light of
the fact that TextView of a user app uses a local binder
named IInputContext.Stub to receive text, we put
some hooks in the IMF and create a new connection
between a user app and our newly added service named
commit-proxy. In other words, we create a new inter-
process communication (IPC) between a user app and the
commit-proxy to commit sensitive text.

Benefits retaining issue. As an IME app does provide
convenience and extra benefits, in a pre-IME design, we
must retain the value added feature for user apps. The
key idea of IM-Visor is to replay a keystroke as soon as
the pre-IME Guard determines it as non-sensitive and let
the IMEs work for non-sensitive keystrokes. To achieve
this, we design replay executor running in System Server
process for replay. Specifically, the Replay Executor gets
touch event coordinates from the pre-IME Guard and
encapsulates them into Android touch event format, then
triggers event subsystem to dispatch events to IME apps.
Another issue related to replay is that we must replay
non-keystroke touch events for the other apps.

Design and implementation
Workflow of IM-Visor
As a pre-IME design, IM-Visor always recognizes and iso-
lates sensitive keystrokes before the IMEs could access
them. To achieve this, whenever a user intends to type
in a soft keyboard, the STIE will be initialized to inter-
cept touch events and analyze whether it is a sensitive
keystroke. From the perspective of how touch events (i.e.,
keystrokes or non-keystrokes) are handled, Fig. 8 shows
the workflow of IM-Visor after the STIE has been initial-
ized. The red data path indicates the trusted path from
touch screen to a user app. On the other hand, as shown
in green color, when non-sensitive touch events (i.e., non-
sensitive keystrokes or non-keystrokes) are found, the
pre-IMEGuard asks the Replay Executor to replay the cor-
responding touch event to the targeted apps (e.g., IME
apps or other apps).

Address challenge 1: isolation ahead of IME translation
At first, let’s recall some backgrounds about the IMF
and event subsystem in “Android IME, Input Method
Framework (IMF) and event subsystem” section. A

Fig. 8Workflow and data paths under the IM-Visor protection. For
sensitive keystrokes as shown in red color, a trusted path from the
secure touch screen to a user app is created by the STIE and
commit-proxy. For non-sensitive keystrokes, the Replay Executor
dispatches them to the targeted IME app

keystroke would be preprocessed by event subsys-
tem before any IME app could access it. Specifically,
TouchInputMapper in event subsystem is the class
for touch event processing. InputMethodManagerService
(IMMS) in the IMF is a global system service that man-
ages the interaction across IME apps and user apps.
Anytime a user app requests a soft keyboard, IMMS
would ask an IME app to show a soft keyboard by calling
showSoftInput.

STIE initialization
The primary technical challenge of the STIE initialization
is guaranteeing that IM-Visor is always aware of when a
user is typing in a soft keyboard prior to the execution
of any IME app code. If IM-Visor can create the STIE as
soon as a user firstly puts his or her finger on a soft key-
board in normal world, then the pre-IME Guard is able to
intercept user keystrokes from the start of input and the
pre-IME nature can be ensured. To address this challenge,
the key idea is to check whether a soft keyboard has been
shown up each time a touch event arrives in event sub-
system. In modern mobile devices with a touch screen, we
assume that a user intends to type text when he or she
taps on touch screen after a soft keyboard has been shown
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up. And the keyboard display information is maintained
in secure world.
Figure 9 shows how we initialize the STIE. The first user

tap on the edit box of a user app will ask IMMS to start up
an IME app. This process in fact invokes two hooks: sync
andshowSoftInput. IM-Visor will ignore the touch but
update keyboard display information in secure world. At
this moment, the STIE has not been initialized yet. Then
the user may taps on a soft keyboard. This behaviour of
course invokes sync again. At this moment, the STIE
must be initialized, because tapping on an IME soft key-
board is obviously a keystroke.We reconfigure peripherals
like display controller and touch screen as secure. Then
the pre-IME Guard receives touch events directly through
secure touch screen.

Touch event processing and keystroke translation
In order to intercept user keystrokes in secure world, the
touch screen is reconfigured to be only accessed by secure
world, and a separate touch screen driver is implemented
in secure world. As a result, anytime a touch interrupt
arrives, the driver will be the first to receive user touch
coordinates. In order to figure out which keystroke a user
types, we need two pieces of information: touch coordi-
nates and the current soft keyboard layout. The touch
screen driver in secure world provides a secure way to
obtain touch coordinates. Now we explain how the pre-
IME Guard gets the soft keyboard layout securely. The
soft keyboard layout is a piece of display data in nor-
mal world that an IME app puts in framebuffer. And
framebuffer is a region of memory which is allo-
cated by a Linux display driver. The display controller is
a peripheral to generate the necessary control signals for
data display. To obtain the soft keyboard layout on which a

user is typing, the pre-IME Guard takes two steps. Step 1)
The display controller is reconfigured as secure by Trust-
Zone TZPC so that normal world cannot change it. This
is important because display controller provides infor-
mation about the start region of framebuffer. If the
display controller is not controlled by secure world, nor-
mal world software can deceive the pre-IME Guard into
a wrong framebuffer and translated in a wrong soft
keyboard layout. Step 2) After a touch event happened,
the pre-IME Guard reads framebuffer and checks cor-
rectness of the layout. As a proof-of-concept prototype,
IM-Visor preloads the layout information of popular IME
apps and determines whether the layout is correct by com-
paring the hash of the current layout with the preloaded
standard one. As a future work, in step 2, instead of the
“preload&check” way, we will obtain the current layout by
an efficient optical character recognition (OCR).
Leaving framebuffer in normal world is not a secure

concern as it seems. Supposing an untrusted IME app
intends to figure out which keystroke a user types, it also
needs the above two pieces of information. But sensi-
tive touch coordinates only stay in secure world. So an
IME app cannot succeed in finding sensitive keystrokes
without touch coordinates.
After identifying a keystroke, the pre-IME Guard will

translate it into a character. Now we give an example of
keystroke translation. For Latin language, every keystroke
can directly correspond to a character, but for non-Latin
languages candidate words often need to be shown. Here,
we only discuss Latin language translation with a qwerty
keyboard. Supposing the user types “a” in the soft key-
board, then secure touch screen gets the touch point
C(x, y). The preloaded keyboard layout helps the pre-
IME Guard determine whether this point falls in the geo

Fig. 9 STIE initialization. Hooks in the IMF and event subsystem are invoked to notify the pre-IME Guard in secure world to initialize the STIE. In
modern mobile devices with a touch screen, we assume that a user intends to type text when he or she taps on touch screen after a soft keyboard
has been shown up
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range of “a” key button, which is defined by the top-left
point A(x1, y1) and the bottom-right point B(x2, y2). If
it falls in, the pre-IME Guard translate the keystroke as a
character “a”.

Sensitive keystroke analysis
In order to analyze whether keystrokes are sensitive, we
accept the I-BOX’s policy engine, which enforces a spe-
cific context-based policy and a specific prefix-matching
policy. In the IMF, text fields in user apps have different
types, such as dates and passwords. IM-Visor can lever-
age these information to decide whether current input is
sensitive or not. Specifically, the hook startInput in
IMMS can provide information of text fields. If the cur-
rent edit box works for passwords (or something sensitive
like that), the pre-IMEGuard will know it from the start of
a soft keyboard display and treat all following keystrokes
as sensitive. This is called the “Context-based Policy”. User
activities such as logging in is a typical case that IM-Visor
can enforce such policy. For general user input stream,
after translating keystrokes to string, IM-Visor leverages
prefix-matching to search all possible substrings when a
new char is typed (Aho and Corasick 1975). The sensi-
tive data set used for searching is defined by users. As
a user could consider large numbers of data instances
as sensitive, IM-Visor uses a trie-like structure to main-
tain it in secure world. This is called the “Prefix-matching
Policy”.

Address challenge 2: trusted path
After isolating and translating sensitive keystrokes, we
should commit them to the targeted user app. Obviously,
as a pre-IME defense, we cannot use untrusted IME apps
to commit sensitive string. So we have to find another
data path isolated from IME apps. Our main idea here is
to add an independent system service that can commit
sensitive string from secure world to a user app for the
trusted path.
Normally, the edit box of a user app uses a local binder

named IInputContext.Stub to receive char strings.
And the client of IInputContext.Stub is initialized
in the IMMS at the start of input. In light of the above
fact, we add some code in the IMF to make the IMMS
create an extra binder client for our newly added service
commit-proxy. And then the commit-proxy is capable of
committing sensitive string to the user app. Because the
new IPC and new service are independent of an IME app,
sensitive string in this data path cannot be accessed by any
IMEs.

Create a new IPC. Figure 10 shows how the commit-
proxy creates a new IPC with a user app. When a user
taps on the edit box, the user app asks IMMS to call-
back functions in the current active IME app. Hooks in

startInput will be invoked. The pre-IME Guard cre-
ates a token to IMMS, which contains a unique id to
identify the current user app. Then IMMS requests the
commit-proxy to bind the user app with two parameters
(token, InputConnection). When the commit-proxy
receives this bind request, it makes a SMC call to check
whether the id in token is valid. If it is valid, the commit-
proxy will add the new connection. Otherwise the bind
request will be refused. If any sensitive string is found,
the pre-IME Guard sends sensitive string to the commit-
proxy by a shared memory, and then the commit-proxy
will commit it with the above new IPC.

Address challenge 3: benefits retaining
To retain the extra benefits of IME apps (e.g., auto cor-
recting and word association), one possible way is to
implement the value added feature in IM-Visor. However,
this way makes all IME apps useless and means a lot of
extra coding works for IM-Visor (e.g., cloud-based word
association and local trusted GUI lib). We look for a more
efficient and elegant approach.
Our key idea here is to design a replay mechanism

and let IME apps work for non-sensitive keystrokes. We
designed a daemon thread named replay executor running
in System Server process to replay touch events. If some
touch events need to be replayed, the pre-IME Guard puts
them in a shared memory and then the Replay Executor
reads and replays them. We explain the detail as follows.
In Android system, every activity or service maintains a

thread loop to receive touch events or other input events
by an input channel. If the Replay Executor intends to
replay a touch event directly, it needs to maintain the
input channels and selects which activity or service will
receive the touch event. The selection is based on not
only touch coordinates but also window layouts and the
current window focus.
The key point is that the Replay Executor only receives

touch events from the pre-IME Guard and then triggers
event subsystem to complete the “maintain&selection”. As
mentioned in “Android IME, Input Method Framework
(IMF) and event subsystem” section, an input dispatch
thread inWindowManagerService is responsible for touch
events dispatching. In most cases, the input dispatch
thread sleeps on an input event queue. When a touch
event needs to be dispatched, it wakes up and dequeues
an event, then selects an activity or service for dispatch-
ing. If we can handle this input event queue and wake
up the thread when a replay is needed, we are able to let
the event subsystem do the “maintain&selection” work.
This is exactly how the Replay Executor works. The con-
text of WindowManagerService provides the event queue
of input dispatch thread. The Replay Executor encapsu-
lates non-sensitive keystrokes as required Android touch
event format and enqueues them. Then it simply wakes
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Fig. 10 How a user app binds the commit-proxy. Note that a token is necessary to detect the legitimacy of a user app for the binding

up the dispatch thread to do the rest work for our replay.
As a related issue, non-keystroke touch events also can be
replayed by this way.

Minor challenge 4: buffer revisiting threat
As discussed in “Threat model” section, we discover a new
data leakage path from a user app to an IME app by some
revisit APIs. To prevent this threat, we hook all revisit
APIs (see Listing 1) and analyze the revisited char string
again to detect and block sensitive text when a third-party
IME app revisits the buffer of a user app.

Implementation
We have implemented IM-Visor on Samsung 4412 devel-
opment board equipped with ARM TrustZone. Android
and kernel version on the board are 4.0 and 3.0.2
respectively.

Pre-IME guard and services. Specifically, the pre-IME
Guard runs as a trustlet in secure world and Android runs
in normal world. The commit-proxy is a system service
in Android System Server process. The Replay Executor
is a daemon thread running in System Server process.
Both of them are passively waiting to receive data from
the pre-IME Guard. When a user types in the STIE, the
pre-IMEGuard receives keystrokes from touch screen and
translates them into a char string. Corresponding to its
sensitiveness, we return it through green path or red path.
(see Fig. 8).

Hooks in the IMF and event subsystem. To min-
imize system overhead, we have to hook as less as
possible. Specifically, only three classes in Android
has been hooked: InputMethodManagerService,
BaseInputConnection and TouchInputMapper.
In order to jump into secure world, a TrustZone driver
is installed in Linux kernel. Hooks make SMC calls
through the newly installed driver. When these hooks are
invoked, the pre-IME Guard can intervene the data-flows

in Android IMF. Listing 1 shows all the hooks we put in
Android.

Secure touch screen and display controller reconfig-
uration. When a user intends to type in an IME soft
keyboard, some reconfiguration should be done for the
STIE initialization. We reconfigure Interrupt Security
Register(ICDISR), Priority Mask Register (ICCPMR) and
Enable Set Register (ICDISER) to make the touch input
as a secure interrupt and mask all non-secure intterupt.
In CPU Interface Control Register (ICCICR), FIQEn,
EnableS are set to 1 to enable FIQ interrupt. FIQ bit
in Secure Configuration Register (SCR) is also set to 1
to ensure FIQ interrupt routing to TrustZone monitor
mode. Besides, touch screen and display controller are
set to be secure peripherals with TZPC. As a proof-
of-concept prototype, we only implement single-touch
in the separate touch driver and leave multi-touch as a
future work.

Evaluation
Security evaluation
Malicious IME apps and PHAs will upload user sensi-
tive data to remote servers, which cause harm to users.
To evaluate the defense effectiveness of IM-Visor against
malicious IME apps, we construct malicious IME apps by
repackaging some popular ones to make them send sensi-
tive keystrokes to a remote server.We want to see whether
they can still leak out sensitive keystrokes during the IM-
Visor protection. To evaluate the defense effectiveness of
IM-Visor against PHAs, we analyze the commonly used
IME apps’ network packets. As we can see, without IM-
Visor, these IME apps may send user sensitive keystrokes
outside, andwith IM-Visor, user sensitive keystrokes won’t
be found in their network packets.

Defense against malicious IME Apps
We use repackaging to design malicious IME apps and
the targets of repackaging are the popular third party IME
apps. As many IME apps have their own different defenses



Tian et al. Cybersecurity  (2018) 1:5 Page 11 of 17

against repackaging, the difficulty of repackaging on dif-
ferent IME apps is different. Some IME apps just design
simple defense which are not difficult to be cracked, and
some construct complex solutions which will cost much
time to be repackaged. We repackaged three IME apps,
one is Sogou IME which is the most popular third party
IME, and the other two are QQ IME and TouchPal IME
which are also very popular third party IME apps. We can
get the smali code for each app after decompiling the APK
file and then add some code in several critical locations

in the smali file. For example, as most IME apps use the
Android IMF which provides various classes and APIs,
we can hook the API commitText to intercept all the
user input. The added code is inserted into the location of
commitText and the functionality of the added code is
to upload each user keystroke to a remote server by socket
connections. Finally, the modified code is recompiled,
signed and installed in the terminal. After installation, the
repackaged IME can be set as the default IME by mod-
ifying the system settings. Now we open an app which
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needs a user to type user name and password, and we find
that the entered user name and password are sent to the
remote server when the user is typing.
To verify the defense effectiveness of IM-Visor, we

repeat the above operations in the development board
with IM-Visor for several times. Figure 11 shows the
defense effectiveness of IM-Visor against malicious IME
apps. It is clearly shown from the above that IM-Visor
can prevent malicious third party IME apps from stealing
sensitive data.

Defense against PHAs
Most commercial-off-the-shelf (COTS) IME apps actually
collect the user input to improve user experience by ana-
lyzing the user input habits or to do targeted advertising.
To verify this, we use Wireshark to intercept the net-
work packets when users enter data using IME apps. After
experiments on commonly used IME apps, we indeed find
that a continuous sequence of packets will be captured
by Wireshark when user is typing. For further verifica-
tion, we need to analyze the content of captured packets.
Although some IME apps such as Baidu IME and iFly
IME use encryption to prevent the content analysis, there
are still other IME apps which upload users’ input in
plain-text with HTTP protocol. After experiments, IME
apps include Sogou (v8.0), QQ (v5.4.0), Octopus (v4.2.6)
and TouchPal (for pad, v5.4.5) have dawn our attention.
Taking the Sougou IME app as an example, after typing
the word “password” in the SMS, we use Wireshark to

intercept the network packets of Sogou IME app. Figure 12
shows the intercepted packets. This indicates that sen-
sitive keystrokes have been leaked out by the IME app.
With IM-Visor, these potentially harmful IME apps can no
longer access the user input when the input is sensitive, as
we don’t see Wireshark capturing any packets containing
sensitive keystrokes.

Correctness evaluation
IM-Visor is a pre-IME design, it intervenes in the com-
munication between user apps and IME apps. As an IME
app cannot trigger input by itself, it must be employed by
a user app which has edit boxes. So in this section, we
need test if user apps and IME apps can normally run with
IM-Visor deployed.
First, we need test if user apps and IME apps can

run without crashing. To implement this, we first down-
load and install the top 10 IME apps from Android
Market. Then we use the Android automated testing
tool MonkeyRunner to download 100 user apps from
the Android Market. As the touch events triggered by
MonkeyRunner are random, we restrict the screen area
where touch events can happen based on the location
analysis of edit boxes in many user apps. In this way,
MonkeyRunner can trigger more keystrokes. For each
IME app, we use MonkeyRunner to install and run these
100 user apps. After experiments, we find only 3 user
apps crashed and none of the 10 IME apps crashed.
For the 3 crashed user apps, we manually run them in

(a) (b) (c)
Fig. 11 The defense of IM-Visor on repackaged IME apps. The repackaged IME apps are capable of uploading user names and passwords to the
remote server without IM-Visor. However, with the IM-Visor protection, they cannot leak out sensitive information. a Email log-in using the
repackaged Sogou IME. bWeChat log-in using the repackaged QQ IME. c AliPay log-in using the repackaged TouchPal IME
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Fig. 12 The analysis on Sogou IME app’s network packets. The leaked data “password” appears in one of Sogou IME app’s packets

the development board without IM-Visor, however, they
still crashed. So we think these 3 user apps crashed
because of their bad compatibilities with our development
board.
Besides the crash problem, we also need to test if

IM-Visor can guarantee that a user app is able to run
without any input data missing or input data disorder
(the input data are from IM-Visor and IME apps). For
each user app, we design several different use cases, and
for each use case, we use some commonly used IME
apps including Sogou, QQ, TouchPal, Baidu and iFly to
test. We have tested 10 typical user apps including the
Email Client and SMS. For the Email Client we design
two use cases including normal log-in and resumed log-
in (i.e., the user is typing and then he picks up a phone
call and resumes to log in after hanging up). For the
SMS, we also design two use cases including normal
text-edit and resumed text-edit. After experiments for
20 times, we manually verify and find that a user app
can work normally without any data missing or data
disorder.

Usability evaluation
In this evaluation, we need to test how long it costs when
a user app can get user input data. This refers to the dura-
tion from the time when the first keystroke in the test
string happens, to the time when the full string is com-
mitted to the user app. The IME apps used for test are
Sogou IME, Baidu IME, iFly IME, QQ IME and Touch-
Pal IME. The sensitive data set used for test contains
phones numbers, ID numbers, bank card numbers, and
email addresses. We select a phone number (11 charac-
ters) and an email address (19 characters) for sensitive
data test.

Excluding irregular touches (e.g., fumbling phones) and
multi-touch behaviour (e.g., zooming gestures), our test
is focused on the most common case that a user types
characters on a qwerty soft keyboard with his or her
single-touch behaviour. The user app used for test is SMS.
When a user types text in SMS, the translation results of
keystrokes will be analyzed by IM-Visor to decide whether
the keystrokes are sensitive. The conclusions can be classi-
fied into two types: Sensitive keystrokes and non-sensitive
keystrokes.

Sensitive keystrokes. We choose a phone number of
11 characters and an email address of 19 characters
which are in the sensitive data set. Then for each IME
app, we type the phone number and email address 50
times separately and calculate the average elapsed times,
respectively. The results are shown in the left half of
Table 1.
Based on the results for sensitive keystrokes in Table 1,

we find that the elapsed time taken for the user app
to get user input data in IM-Visor is 1.84% longer than
the time without IM-Visor deployed. This is mainly
due to the overhead of world switches between secure
world and normal world. The secure kernel we port
is a Linux-like kernel, it takes about 110ms to switch
from user mode in secure world (the context of pre-IME
Guard) to user mode in normal world (the context of
java hooks ).
One additional issue is about user experience. For the

whole sensitive phone number, although IM-Visor brings
only 1.84% reception latency, the display latency may be
user-perceptible. Recalling policies in “Sensitive keystroke
analysis” section, IM-Visor enforces two different policies
(i.e., context-based policy and prefix-matching policy) to
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Table 1 Elapsed time for the user app to get the data. We compare the time without/with IM-Visor

IME apps

Sensitive Keystrokes Non-Sensitive Keystrokes

Phone Number Email Address Phrases of 15 Characters Phrases of 25 Characters

Without
IM-Visor (ms)

With IM-Visor
(ms)

Without
IM-Visor (ms)

With IM-Visor
(ms)

Without
IM-Visor (ms)

With IM-Visor
(ms)

Without
IM-Visor (ms)

With IM-Visor
(ms)

Sogou 6143 6256 11028 11132 8565 9315 14658 15972

Baidu 6090 6192 10960 11063 8543 9316 14632 15933

iFly 6302 6408 11332 11433 8890 9632 15130 16456

QQ 6085 6184 10971 11079 8507 9275 14601 15899

TouchPal 6098 6112 10948 11061 8513 9269 14613 15925

analyze user input. With the context-based policy, IM-
Visor will treat every single number as sensitive and com-
mit it to a user app one by one, so the display latency is
non-perceptible. With the prefix-matching policy, the dis-
play latency is user-perceptible for sensitive keystrokes.
For a sensitive numeric string like phone number, the
prefix-matching of IM-Visor cannot determine the sen-
sitiveness of input until the last number has been typed.
Hence, from the view of a user, no character is displayed
until the last number of whole sensitive data has been
typed. To strike a balance between user privacy and expe-
rience, those long sensitive string in user-defined sensitive
data set will be maintained in the form of shorter pieces to
alleviate the uncomfortable display latency. For example,
a sensitive phone number “1320469299” will be automat-
ically maintained in the form of two shorter pieces like
“13204” and “69299”.

Non-sensitive keystrokes. We select some phrases from
the commonly used sentences set (Braden 1969). In order
to facilitate the average time calculation, we select 50 dif-
ferent phrases of 15 characters and calculate the average
time to input these 50 phrases. Then we select 50 different
phrases of 25 characters and calculate the average time.
The sensitive data set is the same as the above test, that
is, a phone number of 11 characters and an email address
of 19 characters. The results are shown in the right half of
Table 1.
Based on the results for non-sensitive keystrokes in

Table 1, we find that the elapsed time taken for the user
app to get user input data in IM-Visor is 9.5% longer
than the time without IM-Visor deployed. This is also
mainly due to the overhead of world switches between
secure world and normal world. Under the pre-fix match-
ing policy, the world switch for sensitive string only
needs twice(i.e., from normal world to secure world, and
return to normal world from secure world), but for non-
sensitive string, this switch may happen many times as
the replay mechanism results in a switch from secure
world to normal world, so the time taken by IM-Visor

for non-sensitive keystrokes is usually longer than that for
sensitive keystrokes.
For non-sensitive keystrokes, whether the display

latency is user-perceptible depends on how the prefix
of non-sensitive typed string matches the prefix of user-
defined sensitive data set (i.e., phone numbers in our case).
If there is no long common prefix between non-sensitive
string and items of sensitive data set, the display latency is
non-perceptible. Otherwise, it is perceptible.

Non-keystroke touch events. The above evaluation is
about keystrokes, but there are also non-keystroke touch
events which will be intercepted by IM-Visor. With the
display information in secure world, we optimized the
secure kernel to prevent trapping in user mode in secure
world when a non-keystroke touch event happened, that
is, when no keyboard is shown, the secure kernel will
return to normal world imediately without trapping into
the pre-IME guard. The optimized world switch here is
only 27ms and it will not affect the Android touch event
system to distinguish user gesture as the default timeout
of a long press in Android is 500 ms .

Performance evaluation
In order to test the performance of the impact of IM-Visor
on Android system, we use the CaffeineMark benchmark
and compare it to original Android. CaffeineMark is a
popular Android benchmarking tool that runs a series of
tests and gives an assessment score (John and Eeckhout
2005). We run the benchmark 15 times, each time with
a reboot to eliminate impact caused by different system
workload, then calculate the average score. The results are
in Fig. 13. Overall, IM-Visor performs only 1.53% worse
than stock Android. This is mainly due to the reason that
the IME is an event-driven service which makes IM-Visor
keep idle in most time.

Discussion and limitation
Discussion
We leverage TrustZone to implement the first “pre-IME”
defense with hooking Android framework. Recalling the
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Fig. 13 CaffeineMark results for original Android and Android with IM-Visor

goal of an attacker is to steal sensitive keystrokes, another
option is to implement it entirely inside OS kernel with-
out using the TrustZone. However, it would be unsecure
considering the following reasons: First, an IME app may
get the coordinates from the linux driver interface “/de-
v/input/event0” directly, which may result in the leakage
of sensitive keystrokes. Without the secure touch screen
driver in STIE, it can not guarantee the “pre-IME” if
not trusting the linux kernel touchscreen driver. Sec-
ond, the keyboard layout is a key to figure out which
keystroke is the user typing, without reconfiguring the
display controller by TrustZone, it can not ensure that
the framebuffer is the right one in current typing
environment.

Limitation
Although IM-Visor has made the first “pre-IME” attempt
to prevent sensitive keystroke leakage against third party
IMEs, some limitations still exist in its design and
implementation.

SystemServer attacks Recently, some vulnerabilities
have been discovered to attack System Server (Horn 2014;
Huang et al. 2015b; Ren et al. 2015; Shao et al. 2016). But
none of them can achieve a control flow hijacking, somali-
cious code cannot modify hooks in System Server to stop
IM-Visor from intercepting touch events.

GUI attacks A malicious app may mimic the user app’s
UI to mount phishing or click-jacking. However, at
present, there are quite a few prior systems which can
detect such attacks (Bianchi et al. 2015; Akhawe et al.
2014; Huang et al. 2015a).

Side channel attacks Malicious apps may use gravity
sensor and acceleration sensor to launch a side chan-
nel attack. IM-Visor provides the STIE for user typing,
in which we can also reconfigure those related sensors

as secure peripherals to thwart such threat (Nahapetian
2016; Aviv et al. 2012).

Related work
Defense against the Android third-party IME apps
belongs to a relatively new problem, I-Box(Chen et al.
2015) tries to establish a sandbox mechanism for third-
party IME apps, by analyzing the user keystrokes to
determine whether to rollback the IME app. As a post-
IME design, I-Box is vulnerable to the prefix-substitution
attack and colluding attack. In contrast, IM-Visor is a
defense with the pre-IME nature and it can defend against
the above attacks. Also the solution does not notice the
“Buffer revisiting threat”, so it can be cracked by sandbox
bypassing attack. With hooks in revisiting APIs, IM-Visor
can block the data leakage path from a user app to an
IME app.
To implement secure password entry, ScreenPass (Liu

et al. 2013) designs a trusted software keyboard to enter
the password. The use of trusted keyboard in ScreenPass
is guaranteed by using the Optical Character Recognition
(OCR), but the OCR itself can be cracked by attackers, so
the security of ScreenPass cannot be guaranteed. What’s
more, using a new keyboard instead of the original key-
board will inevitably harm the user experience and the
likelihood the user will adopt the new keyboard cannot
be guaranteed. In contrast, IM-Visor adopts TrustZone to
provide secure isolation, so the security of IM-Visor can
be guaranteed. Also IM-Visor reuses the original UI of an
IME soft keyboard.
For password and other privacy data protection,

researchers have also tried other solutions. Taint-tracking
(Kang et al. 2011) is a commonly used method. Taint-
tracking tracks the sensitive information flow in the tar-
get app and sets appropriate strategies to prevent the
outflow and abuse of sensitive data. TaintDroid (Enck
et al. 2010) is the first taint-tracking method used in
Android and it tracks the flow of sensitive data by



Tian et al. Cybersecurity  (2018) 1:5 Page 16 of 17

tagging these data. ScreenPass (Liu et al. 2013) also uses
taint-tracking to monitor the password flow to prevent
illegal outflow. SpanDex (Cox et al. 2014) tracks how
password information flows in an app, and compared to
the previous work, SpanDex focuses on the implicit infor-
mation flow in apps. Although the taint-tracking method
can get detailed information about sensitive data circula-
tion, it is not very suitable for tracking sensitive keystroke
leakage. IME apps usually use native code in their key
function such as the send of sensitive inputs, but taint-
tracking cannot track the data flow in native code. Reg-
ulating ARM (Brasser et al. 2016) thwarts the sensitive
information leakage through misused sensors or periph-
erals on smart personal devices. It replaces the original
peripheral drivers by a remote update when a user enters
restricted spaces such as a federal building, and doesn’t
cancel the enforcement of usage policies until the user
checks out. App Guardian (Zhang et al. 2015) thwarts
the runtime-information-gathering of malicious apps by
blocking the runtime monitoring attempt. To realize this,
App Guardian pauses the malicious app when sensitive
app is running. In contrast, IM-Visor will not pause the
normal run of malicious IME apps which results in lit-
tle impact on Android system. Screenmilker (Lin et al.
2014) constructs an app which exploits the malicious use
of the Android ADB capabilities to monitor the screen
and pick up a user’s password when he or she is typing.
Then it presents a mitigation mechanism that controls the
exposure of the ADB capabilities only to authorized apps.
While IM-Visor and Screenmilker both aim to protect
the sensitive keystrokes, there are substantial differences:
The threat in Screenmilker is caused by the flaws of the
Android permission system, whereas IM-Visor regards
IME apps as the threat. The complicated construction of
the attacks in Screenmilker makes the attacks difficult
to apply widely, while the attacks in IM-Visor commonly
exist and can be built using repackaging.
In recent years, TrustZone has obtained lots of research

and applications in many aspects. Some researchers aim
to improve the security and usability of TrustZone.
SecReT (Jang et al. 2015) mainly solves the establishment
of secure communication between the Rich Execution
Environment (REE) and Trust Execution Environment
(TEE). ICE (Sun et al. 2015b) runs the secure code in the
non-secure domain by designing isolated secure environ-
ment to restrict the code size of TEE environment.
Besides the above ones, more researchers aim to apply

TrustZone to protect the sensitive kernel operations and
sensitive service. Hypervision (Azab et al. 2014) uses
TrustZone to reinforce the Linux kernel by replacing sen-
sitive instructions in Linux kernel and controlling access
to sensitive kernel data. TrustOTP (Sun et al. 2015a) uses
TrustZone to protect the full process from generation
to use for one-time key. TrustDump (Sun et al. 2014)

is a TrustZone-based memory acquisition mechanism to
detect and prevent the newest malware, and the isola-
tion between the OS and the memory acquisition tool
is achieved by TrustZone. These solutions focus on the
underlying system especially the kernel, and they have
little relation to the Android frameworks. In contrast, IM-
Visor does much modification on the Android framework
besides the kernel. AdAttester (Li et al. 2015) uses Trust-
Zone to secure online mobile Ad attestation, leveraging
the secure world of TrustZone to implement unforge-
able clicks and verifiable display. (Marforio et al. 2014)
uses TrustZone to ensure the trusted execution envi-
ronment for the payment process. Similar to the two
solutions, IM-Visor aims to protect one certain functional
service in Android, but IM-Visor is more comprehensive
as the trustlet in IM-Visor needs to complete some func-
tional operation and needs more interaction with Android
framework while the trustlet in other two solutionsmainly
complete the operation such as signature and encryption.

Conclusion
In this paper, we discuss the insecurity of IME apps,
including the Potentially Harmful Apps (PHAs) and mali-
cious IME apps. We provide a deeper understanding that
all the designs with the post-IME nature are subject to the
prefix-substitution and colluding attacks. To remedy the
above post-IME system flaws, we propose a new idea, pre-
IME, which guarantees that “Is this touch event a sensitive
keystroke?” analysis will always access user touch events
prior to the execution of any IME app code, and designed
an innovative TrustZone-based framework named IM-
Visor which has the pre-IME nature. A prototype of
IM-Visor has been implemented and tested with several
most popular IMEs. The experimental results show that
IM-Visor has small runtime overheads.
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