
CybersecurityLi et al. Cybersecurity (2018) 1:6
https://doi.org/10.1186/s42400-018-0002-y

SURVEY Open Access

Fuzzing: a survey
Jun Li, Bodong Zhao and Chao Zhang*

Abstract

Security vulnerability is one of the root causes of cyber-security threats. To discover vulnerabilities and fix them in
advance, researchers have proposed several techniques, among which fuzzing is the most widely used one. In recent
years, fuzzing solutions, like AFL, have made great improvements in vulnerability discovery. This paper presents a
summary of the recent advances, analyzes how they improve the fuzzing process, and sheds light on future work in
fuzzing. Firstly, we discuss the reason why fuzzing is popular, by comparing different commonly used vulnerability
discovery techniques. Then we present an overview of fuzzing solutions, and discuss in detail one of the most popular
type of fuzzing, i.e., coverage-based fuzzing. Then we present other techniques that could make fuzzing process
smarter and more efficient. Finally, we show some applications of fuzzing, and discuss new trends of fuzzing and
potential future directions.

Keywords: Vulnerability discovery, Software security, Fuzzing, Coverage-based fuzzing

Introduction
Vulnerabilities have become the root cause of threats
towards cyberspace security. Defined in RFC 2828 (Shirey
2000), a vulnerability is a flaw or weakness in a system’s
design, implementation, or operation and management
that could be exploited to violate the system’s secu-
rity policy. Attack on vulnerabilities, especially on zero
day vulnerabilities, can result in serious damages. The
WannaCry ransomware attack (Wikipedia and Wannacry
ransomware attack 2017) outbroke in May 2017, which
exploits a vulnerability in Server Message Block (SMB)
protocol, is reported to have infected more than 230,000
computers in over 150 countries within one day. It has
caused serious crisis management problems and huge
losses to many industries, such as finance, energy and
medical treatment.
Considering the serious damages caused by vulnera-

bilities, much effort has been devoted to vulnerability
discovery techniques towards software and information
systems. Techniques including static analysis, dynamic
analysis, symbolic execution and fuzzing (Liu et al. 2012)
are proposed. Compared with other techniques, fuzzing
requires few knowledge of targets and could be easily
scaled up to large applications, and thus has become the
most popular vulnerability discovery solution, especially
in the industry.

*Correspondence: chaoz@tsinghua.edu.cn
Tsinghua University, Beijing 100084, China

The concept of fuzzing was first proposed in 1990s
(Wu et al. 2010). Though the concept stays fixed dur-
ing decades of development, the way how fuzzing is
performed has greatly evolved. However, years of actual
practice reveals that fuzzing tends to find simple mem-
ory corruption bugs in the early stage and seems to cover
very small part of target code. Besides, the randomness
and blindness of fuzzing results in a low efficiency in find-
ing bugs. Many solutions have been proposed to improve
the effectiveness and efficiency of fuzzing.
The combination of feedback-driven fuzzing mode and

genetic algorithms provides a more flexible and cus-
tomizable fuzzing framework, and makes the fuzzing pro-
cess more intelligent and efficient. With the landmark of
AFL, feedback-driven fuzzing, especially coverage-guided
fuzzing, has made great progress. Inspired by AFL, many
efficient solutions or improvements are proposed recently.
Fuzzing is much different from itself several years ago.
Therefore, it’s necessary to summarize recent works in
fuzzing and shed lights on future works.
In this paper, we try to summarize the state-of-the-art

fuzzing solution, and how they improve the effective-
ness and efficiency of vulnerability discovery. Besides, we
show how traditional techniques can help improving the
effectiveness and efficiency of fuzzing, and make fuzzers
smarter. Then, we give an overview of how state-of-
the-art fuzzers detect vulnerabilities of different targets,
including file format applications, kernels, and protocols.

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-018-0002-y&domain=pdf
mailto: chaoz@tsinghua.edu.cn
http://creativecommons.org/licenses/by/4.0/

Li et al. Cybersecurity (2018) 1:6 Page 2 of 13

At last, we try to point out new trends of how fuzzing
technique develops.
The restof thepaper isorganized as follows: “Background”

section presents background knowledge on vulnerability
discovery techniques, “Fuzzing” section gives a detailed
introduction to fuzzing, including the basic concepts
and key challenges of fuzzing. In “Coverage-based
fuzzing” section, we introduce the coverage-based fuzzing
and related state-of-the-art works. In “Techniques inte-
grated in fuzzing” section we summarize that how other
techniques could help improve fuzzing, and “Fuzzing
towards different applications” section presents seve-
ral applications of fuzzing. In “New trends of fuzzing”
section, we discuss and summarize the possible new
trendsof fuzzing.Andweconclude our paper in “Conclusion”
section.

Background
In this section, we give a brief introduction to traditional
vulnerability discovery techniques, including: static anal-
ysis, dynamic analysis, taint analysis, symbolic execution,
and fuzzing. Then we summarize the advantages and
disadvantages of each technique.

Static analysis
Static analysis is the analysis of programs that is per-
formedwithout actually executing the programs (Wichmann
et al. 1995). Instead, static analysis is usually performed
on the source code and sometimes on the object code
as well. By analysis on the lexical, grammar, semantics
features, and data flow analysis, model checking, static
analysis could detect hiding bugs. The advantage of static
analysis is the high detection speed. An analyst could
quickly check the target code with a static analysis tool
and perform the operation timely. However, static analy-
sis endures a high false rate in practice. Due to the lack
of easy to use vulnerability detection model, static anal-
ysis tools are prone to a large number of false positives.
Thus identifying the results of static analysis remains a
tough work.

Dynamic analysis
In contrast to static analysis, in dynamic analysis of pro-
grams, an analyst need to execute the target program in
real systems or emulators (Wikipedia 2017). By monitor-
ing the running states and analyzing the runtime knowl-
edge, dynamic analysis tools can detect program bugs
precisely. The advantage of dynamic analysis is the high
accuracy while there exists the following disadvantages.
First, debugging, analyzing and running of the target pro-
grams in dynamic analysis cause a heavy human involve-
ment, and result in a low efficiency. Besides, the human
involvement requires strong technical skills of analysts.
In short, dynamic analysis has the shortcomings of slow

speed, low efficiency, high requirements on the technical
level of testers, poor scalability, and is difficult to carry out
large-scale testing.

Symbolic execution
Symbolic execution (King 1976) is another vulnerabil-
ity discovery technique that is considered to be very
promising. By symbolizing the program inputs, the sym-
bolic execution maintains a set of constraints for each
execution path. After the execution, constraint solvers
will be used to solve the constraint and determine what
inputs cause the execution. Technically, symbolic exe-
cution could cover any execution path in a program
and has shown good effect in tests of small programs,
while there exists many limitations, either. First, the
path explosion problem. As with the scale of program
grows, the execution states explodes, which exceeds the
solving ability of constraint solvers. Selective symbolic
execution is proposed as a compromise. Second, the envi-
ronment interactions. In symbolic execution, when tar-
get program execution interacts with components out
of the symbolic execution environments, such as sys-
tem calls, handling signals, etc., consistency problems
may arise. Previous work has proved that symbolic exe-
cution is still difficult to scale up to large applications
(Böhme et al. 2017).

Fuzzing
Fuzzing (Sutton et al. 2007) is currently the most pop-
ular vulnerability discovery technique. Fuzzing was first
proposed by Barton Miller at the University of Wisconsin
in 1990s. Conceptually, a fuzzing test starts with gen-
erating massive normal and abnormal inputs to target
applications, and try to detect exceptions by feeding the
generated inputs to the target applications and monitor-
ing the execution states. Compared with other techniques,
fuzzing is easy to deploy and of good extensibility and
applicability, and could be performed with or without the
source code. Besides, as the fuzzing test is performed in
the real execution, it gains a high accuracy. What’s more,
fuzzing requires few knowledge of target applications
and could be easily scaled up to large scale applications.
Though fuzzing is faced with many disadvantages such
as low efficiency and low code coverage, however, out-
weighed the bad ones, fuzzing has become the most effec-
tive and efficient state-of-the-art vulnerability discovery
technique currently.
Table 1 shows the advantages and disadvantages of

different techniques.

Fuzzing
In this section, we try to give a perspective on fuzzing,
including the basic techniques background knowledge
and challenges in improving fuzzing.

Li et al. Cybersecurity (2018) 1:6 Page 3 of 13

Table 1 Comparison of different techniques

Technique Easy to start ? Accuracy Scalability

static analysis easy low relatively good

dynamic analysis hard high uncertain

symbolic execution hard high bad

fuzzing easy high good

Working process of fuzzing
Figure 1 depicts the main processes of traditional fuzzing
tests. The working process is composed of four main
stages, the testcase generation stage, testcase running
stage, program execution state monitoring and analysis of
exceptions.
A fuzzing test starts from the generation of a bunch

of program inputs, i.e., testcases. The quality of gener-
ated testcases directly effects the test effects. The inputs
should meet the requirement of tested programs for the
input format as far as possible. While on the other hand,
the inputs should be broken enough so that processing on

Fig. 1Working process of fuzzing test

these inputs would very likely to fail the program. Accord-
ing to the target programs, inputs could be files with
different file formats, network communication data, exe-
cutable binaries with specified characteristics, etc. How
to generate broken enough testcases is a main challenge
for fuzzers. Generally, two kind of generators are used in
state-of-the-art fuzzers, generation based generators and
mutation based generators.
Testcases are fed to target programs after generated in

the previous phase. Fuzzers automatically start and finish
the target program process and drive the testcase han-
dling process of target programs. Before the execution,
analysts could configure the way the target programs start
and finish, and predefine the parameters and environ-
ment variables. Usually, the fuzzing process stops at a
predefined timeout, program execution hangs or crashes.
Fuzzers monitor the execution state during the exe-

cution of target programs, expecting exception and
crashes. Common used exception monitoring meth-
ods includes monitoring on specific system signals,
crashes, and other violations. For violations without
intuitive program abnormal behaviors, lots of tools
could be used, including AddressSanitizer (Serebryany
et al. 2012), DataFlowsanitizer (The Clang Team 2017a),
ThreadSanitizer (Serebryany and Iskhodzhanov 2009),
LeakSanitizer (The Clang Team 2017b), etc. When viola-
tions are captured, fuzzers store the corresponding test-
case for latter replay and analysis.
In the analyzing stage, analysts try to determine the

location and root cause of captured violations. The anal-
ysis is often processed with the help of debuggers, like
GDB, windbg, or other binary analysis tools, like IDA
Pro, OllyDbg, etc. Binary instrumentation tools, like Pin
(Luk et al. 2005), could also be used to monitor the exact
execution state of collected testcases, such as the thread
information, instructions, register information and so on.
Automatically crash analysis is another important field of
research.

Types of fuzzers
Fuzzers can be classified in various ways.
A fuzzer could be classified as generation based and

mutation based (Van Sprundel 2005). For a generation
based fuzzer, knowledge of program input is required. For
file format fuzzing, usually a configuration file that prede-
fines the file format is provided. Testcases are generated
according to the configuration file. With given file for-
mat knowledge, testcases generated by generation based
fuzzers are able to pass the validation of programs more
easily and could be more likely to test the deeper code of
target programs. However, without a friendly document,
analyzing the file format is a tough work. Thus muta-
tion based fuzzers are easier to start and more applicable,
and widely used by state-of-the-art fuzzers. For mutation

Li et al. Cybersecurity (2018) 1:6 Page 4 of 13

based fuzzers, a set of valid initial inputs are required.
Testcases are generated through the mutation of initial
inputs and testcases generated during the fuzzing process.
We compare generation based fuzzers andmutation based
fuzzers in Table 2.
With respect to the dependence on program source

code and the degree of program analysis, fuzzers could be
classified as white box, gray box and black box. White box
fuzzers are assumed to have access to the source code of
programs, and thus more information could be collected
through analysis on source code and how testcases affect
the program running state. Black box fuzzers do fuzzing
test without any knowledge on target program internals.
Gray box fuzzers works without source code, either, and
gain the internal information of target programs through
program analysis. We list some common white box, gray
box and black box fuzzers in Table 3.
According to the strategies of exploring the pro-

grams, fuzzers could be classified as directed fuzzing and
coverage-based fuzzing. A directed fuzzer aims at genera-
tion of testcases that cover target code and target paths of
programs, and a coverage-based fuzzer aims at generation
of testcases that cover as much code of programs as pos-
sible. Directed fuzzers expect a faster test on programs,
and coverage-based fuzzers expect a more thorough test
and detect as more bugs as possible. For both directed
fuzzers and coverage-based fuzzers, how to extract the
information of executed paths is a key problem.
Fuzzers could be classified as dumb fuzz and smart

fuzz according to whether there is a feedback between
the monitoring of program execution state and testcase
generation. Smart fuzzers adjustment the generation of
testcases according to the collected information that how
testcases affect the program behavior. For mutation based
fuzzers, feedback information could be used to determine
which part of testcases should be mutated and the way
to mutate them. Dumb fuzzers acquires a better testing
speed, while smart fuzzers generate better testcases and
gain a better efficiency.

Key challenges in fuzzing
Traditional fuzzers usually utilize a random based fuzzing
strategy in practice. Limitations of program analysis

Table 2 Comparison of generation based fuzzers and mutation
based fuzzers

Easy to start ? Priori
knowledge

Coverage Ability to
pass vali-
dation

Generation
based

hard needed, hard
to acquire

high strong

Mutation
based

easy not needed low, affected
by initial
inputs

weak

Table 3 Common white box, gray box and black box fuzzers

White box
fuzzers

Gray box fuzzers Black box fuzzers

Generation
based

SPIKE (Bowne
2015), Sulley
(Amini 2017),
Peach (PeachTech
2017)

Mutation
based

Miller (Takanen
et al. 2008)

AFL (Zalewski
2017a), Driller
(Stephens et al.
2016), Vuzzer
(Rawat et al.
2017), TaintScope
(Wang et al. 2010),
Mayhem (Cha
et al. 2012)

SAGE (Godefroid
et al. 2012),
Libfuzzer
(libfuzzer 2017)

techniques result in a present situation that fuzzers are
not smart enough. Thus fuzzing test still faces many
challenges. We list some key challenges as follows.
The challenge of how to mutate seed inputs. Mutation

based generation strategy is widely used by state-of-the-
art fuzzers for its convenience and easy set up. However,
how tomutate and generate testcases that capable to cover
more program paths and easier to trigger bugs is a key
challenge(Yang et al. 2007). Specifically, mutation based
fuzzers need to answer two questions when do mutation:
(1) where to mutate, and (2) how to mutate. Only muta-
tion on a few key positions would affect the control flow
of the execution. Thus how to locate these key positions in
testcases is of great importance. Besides, the way fuzzers
mutate the key positions is another key problem,i.e, how
to determine the value that could direct the testing to
interesting paths of programs. In short, blind mutation of
testcases result in serious waste of testing resource and
better mutation strategy could significantly improve the
efficiency of fuzzing.
The challenge of low code coverage. Higher code cover-

age represents for a higher coverage of program execution
states, and a more thorough testing. Previous work has
proved that better coverage results in a higher probabil-
ity of finding bugs. However, most testcases only cover
the same few paths, while most of the code could not be
reached. As a result, it’s not a wise choice to achieve high
coverage only through large amounts of testcase genera-
tion and throwing into testing resources. Coverage-based
fuzzers try to solve the problem with the help of pro-
gram analysis techniques, like program instrumentation.
We will introduce the detail in next section.
The challenge of passing the validation. Programs often

validate the inputs before parsing and handling. The vali-
dation works as a guard of programs, saving the comput-
ing resource and protecting the program against invalid
inputs and damage caused by malicious constructed

Li et al. Cybersecurity (2018) 1:6 Page 5 of 13

inputs. Invalid testcases are always ignored or discarded.
Magic numbers, magic strings, version number check, and
checksums are common validations used in programs.
Testcases generated by black box and gray box fuzzers are
hard to pass the validation for a blind generation strategy,
which results in quite low efficient fuzzing. Thus, how to
pass the validation is another key challenge.
Various methods are proposed as countermeasures to

these challenges, and both traditional techniques, like
program instrumentation and taint analysis, and new
techniques, like RNN and LSTM (Godefroid et al. 2017)
(Rajpal et al. 2017) are involved. How these techniques
can compromise the challenges will be discussed in
“Techniques integrated in fuzzing” section.

Coverage-based fuzzing
Coverage-based fuzzing strategy is widely used by state-
of-the-art fuzzers, and has proved to be quite effective
and efficient. To achieve a deep and thorough program
fuzzing, fuzzers should try to traverse as many program
running states as possible. However, there doesn’t exist
a simple metric for program states, for the uncertainty
of program behaviors. Besides, a good metric should be
easily determined during the process running. Thus mea-
suring the code coverage becomes an approximate alter-
native solution. Using such a scheme, increase of code
coverage is representative of new program states. Besides,
with both compiled-in and external instrumentation, code
coverage could be easily measurable. However, we say
code coverage is an approximatemeasurement, because in
practice, a constant code coverage does not indicate a con-
stant number of program states. There could be a certain
loss of information using this metric. In this section, we
take AFL as an example and shed light on coverage-based
fuzzing.

Code coverage counting
In program analysis, the program is composed by basic
blocks. Basic blocks are code snippets with a single entry
and exit point, instructions in basic blocks will be sequen-
tially executed and will only be executed once. In code
coverage measuring, state-of-the-art methods take basic
block as the best granularity. The reasons include that, (1)
basic block is the smallest coherent units of program exe-
cution, (2) measuring function or instruction would result
in information loss or redundancy, (3) basic block could be
identified by the address of the first instruction and basic
block information could be easily extracted through code
instrumentation.
Currently, there are two basic measurement choices

based on basic blocks, simply counting the executed basic
blocks and counting the basic block transitions. In the
latter method, programs are interpreted as a graph, and
vertices are used to represent for the basic blocks, edges

represent for the transition between basic blocks. The
latter method record edges while the former one record
vertices. While the experiment shows simply counting
executed basic blocks would result in serious information
loss. As shown in Fig. 2, if the program path (BB1, BB2,
BB3, BB4) is firstly executed, and then path (BB1,
BB2, BB4) is encountered by the execution, the new edge
(BB2, BB4) information is lost.
AFL is the first to introduce the edge measurement

method into coverage-based fuzzing. We take AFL as
an example and show how coverage-based fuzzers gain
coverage information during the fuzzing process. AFL
gains the coverage information via lightweight program
instrumentation. According to whether the source code
is provided, AFL provides two instrumentation mode,
the compile-in instrumentation and external instrumenta-
tion. In compile-in instrumentation mode, AFL provides
both gcc mode and llvm mode, according to the compiler
we used, which will instrument code snippet when binary
is generated. In external mode, AFL provides qemu mode,

Fig. 2 A sample of BB transitions

Li et al. Cybersecurity (2018) 1:6 Page 6 of 13

which will instrument code snippet when basic block is
translated to TCG blocks.
Listing 1 shows a sketch of instrumented code snippet

(Zalewski 2017b). In instrumentation, a random ID, i.e.,
the variable cur_location is instrumented in basic blocks.
The variable shared_mem array is a 64 KB shared mem-
ory region, each byte is mapped to a hit of a particular
edge (BB_src, BB_dst). A hash number is computed when
a basic block transition happens and the corresponding
byte value in bitmap array will be update. Figure 3 depicts
the mapping of hash and bitmap.

c u r _ l o c a t i o n = <COMPILE_TIME_RANDOM> ;
shared_mem [cu r _ l o c a t i o n ^ p r e v _ l o c a t i o n]
++;
p r e v _ l o c a t i o n = cu r _ l o c a t i o n >> 1 ;
Listing 1 AFL’s instrumentation

Working process of coverage-based fuzzing
Algorithm 1 shows the general working process of a
coverage-based fuzzer. The test starts from an initial given
seed inputs. If the seed input set is not given, then the
fuzzer constructs one itself. In the main fuzzing loop, the
fuzzer repeatedly chooses an interesting seed for the fol-
lowing mutation and testcase generation. Target program
is then driven to execute the generated testcases under the
monitoring of fuzzer. Testcases that trigger crashes will
be collected, and other interesting ones will be added to
the seed pool. For a coverage-based fuzzing, testcases that
reach new control flow edges are considered to be inter-
esting. The main fuzzing loop stops at a pre-configured
timeout or an abort signal.
During the process of fuzzing, fuzzers track the execu-

tion via various methods. Basically, fuzzers track the exe-
cution for two purposes, the code coverage and security
violations. The code coverage information is used to pur-
sue a thorough program state exploration, and the security
violation tracking is for better bug finding. As detailed in
the previous subsections, AFL tracks the code coverage
through code instrumentation and AFL bitmap. Security

violations tracking could be processed with the help of lots
of sanitizers, such as AddressSanitizer (Serebryany et al.
2012), ThreadSanitizer (Serebryany and Iskhodzhanov
2009), LeakSanitizer (The Clang Team 2017b), etc.

Algorithm 1 Coverage-based Fuzzing
Input: Seed Inputs S
1: T = S
2: Tx = ∅
3: if T = ∅ then
4: T .add(emptyfile)
5: end if
6: repeat
7: t = choose_next(T)

8: s = assign_energy(t)
9: for i from 1 to s do

10: t′ = mutate(t)
11: if t′crashes then
12: Tx.add(t′)
13: else if isInteresting(t′) then
14: T .add(t′)
15: end if
16: end for
17: until timeout or abort-signal
Output: Crashing Inputs Tx

Figure 4 shows the working process of AFL, a very rep-
resentative coverage-based fuzzer. The target application
is instrumented before execution for the coverage collec-
tion. As mentioned before, AFL supports both compile
time instrumentation and external instrumentation, with
gcc/llvm mode and qemu mode. An initial seed inputs
should also be provided. In the main fuzzing loop, (1) the
fuzzer selects a favorite seed from the seed pool according
to the seed selection strategy, and AFL prefers the fastest
and smallest ones. (2) seed files are mutated according to
the mutation strategy, and a bunch of testcases are gener-
ated. AFL currently employs some random modifications
and testcase splicingmethods, including sequential bit flip

Fig. 3 bitmap in AFL

Li et al. Cybersecurity (2018) 1:6 Page 7 of 13

Fig. 4Working process of AFL

with varying lengths and stepovers, sequential addition
and subtraction of small integers and sequential inser-
tion of known interesting integers like 0, 1, INT_MAX,
etc. (Zalewski 2017b) (3) testcases are executed and the
execution is under tracking. The coverage information is
collected to determine interesting testcases, i.e. ones that
reach new control flow edges. Interesting testcases are
added to the seed pool for the next round run.

Key questions
Previous introduction indicates that lots of questions need
to be solved to run an efficient and effective coverage-
based fuzzing. Lots of explorations have been done
around these questions. We summarize and list some
state-of-the-art works in this subsection, as shown in
Table 4.
A. How to get initial inputs? Most state-of-the-art

coverage-based fuzzers employ a mutation based testcase
generation strategy, which heavily depend on the quality
of initial seed inputs. Good initial seed inputs can signif-
icantly improve the efficient and effectiveness of fuzzing.
Specifically, (1) providing well format seed inputs could
save lots of cpu times consumed by constructing one, (2)
good initial inputs couldmeet the requirement for compli-
cated file format, which are hard to guess in the mutation
phase, (3) mutation based on well format seed input is
more likely to generate testcases that could reach deeper
and hard to reach paths, (4) good seed inputs could be
reused during multiple test.
Common used methods of gathering seed inputs

include using standard benchmarks, crawling from the

Internet and using existing POC samples. Open source
applications are usually released with a standard bench-
mark, which is free to use to test the projects. The
provided benchmark is constructed according to the char-
acteristics and functions of applications, which naturally
construct a good set of seed inputs. Considering the diver-
sity of target application inputs, crawling from the Inter-
net is the most intuitive method. You can easily download
files with certain formats. Besides, for some common used
file formats, there are many open test projects on the
network that provide free test data sets. Further more,
using existing POC samples is also a good idea. However,
too big quantity of seed inputs will result in a waste of
time in the first dry run, thus bring another concern, how
to distill the initial corpus. AFL provides a tool, which
extracts a minimum set of inputs that achieve the same
code coverage.
B. How to generate testcases? The quality of testcases

is an important factor affecting the efficiency and effec-
tiveness of fuzzing testing. Firstly, good testcases explore
more program execution states and cover more code in a
shorter time. Besides, good testcases could target poten-
tial vulnerable locations and bring a faster discovery of
program bugs. Thus how to generate good testcases based
on seed inputs is an important concern.
Rawat et al. (2017) proposed Vuzzer, an application

aware grey box fuzzer that integrates with static and
dynamic analysis. Mutation of seed inputs involves two
key question: where to mutate and what value to use
for the mutation. Specifically, Vuzzer extracts immediate
values, magic values and other characteristic strings that

Table 4 Comparison of different techniques

Initial inputs get Inputs mutation Seed selection Testing efficiency

Standard benchmarks; Vuzzer (Rawat et al. 2017) AFLFast (Böhme et al. 2017) Forkserver (lcamtuf 2014)

Crawling from Internet; Skyfire (Wang et al. 2017) Vuzzer Intel PT (Schumilo et al. 2017)

POC samples; Learn & Fuzz (Godefroid et al. 2017) AFLGo (2017) Work (Xu et al. 2017)

Faster Fuzzing (Nichols et al. 2017) QTEP (Wang et al. 2017)

Work (Rajpal et al. 2017) SlowFuzz (Petsios et al. 2017)

Li et al. Cybersecurity (2018) 1:6 Page 8 of 13

affect the control flow via static analysis before the main
fuzzing loop. During the program execution, Vuzzer uti-
lize the dynamic taint analysis technique to collect infor-
mation that affect the control flow branches, including
specific value and the corresponding offset. By mutation
with collected value and mutation at recognized loca-
tions, Vuzzer could generate testcases that are more likely
to meet the branch judgment condition and pass magic
value validations. However, Vuzzer still could not pass
other types of validation in programs, like hash based
checksum. Besides, Vuzzer’s instrument, taint analysis,
and main fuzzing loop is implemented based on Pin (Luk
et al. 2005), which result in a relatively slow testing speed,
compared to AFL.
Wang et al. (2017) proposed Skyfire, a data-driven

seed generation solution.S kyfire learns a probabilistic
context-sensitive grammar (PCSG) from crawled inputs,
and leverages the learned knowledge in the generation of
well-structured inputs. The experiment shows that test-
cases generated by Skyfire cover more code than those
generated by AFL, and find more bugs. The work also
proves that the quality of testcases is an important factor
that affect the efficiency and effectiveness of fuzzing.
With the development and widely use of machine

learning techniques, some research try to use machine
learning techniques to assist the generation of testcases.
Godefroid et al. (2017) from Microsoft Research use
neural-network-based statistical machine-learning tech-
niques to automatically generate testcases. Specifically,
they firstly learn the input format from a bunch of valid
inputs via machine learning techniques, and then lever-
age the learned knowledge guide the testcase generation.
They present a fuzzing process on the PDF parser in
Microsoft’s Edge browser. Though the experiment didn’t
give an encouraging result, it’s still a good attempt.
Rajpal et al. (2017) from Microsoft use neural networks
to learn from past fuzzing explorations and predict which
byte to mutate in input files. Nichols et al. (2017) use the
Generation Adversarial Network (GAN) models to help
reinitializing the system with novel seed files. The experi-
ment shows the GAN is faster and more effective than the
LSTM, and helps discover more code paths.
C. How to select seed from the pool? Fuzzers repeat-

edly select seed from seed pool to mutate at the beginning
of a new round test in the main fuzzing loop. How to
select seed from the pool is another important open prob-
lem in fuzzing. Previous work has prove that good seed
selection strategy could significantly improve the fuzzing
efficiency and help find more bugs, faster (Rawat et al.
2017; Böhme et al. 2017, 2017; Wang et al. 2017). With
good seed selection strategies, fuzzers could (1) prioritize
seeds which are more helpful, including covering more
code and be more likely to trigger vulnerabilities, (2)
reduce the waste of repeatedly execution of paths and

save computing resource, (3) optimally select seeds that
cover deeper and more vulnerable code and help identify-
ing hidden vulnerabilities faster. AFL prefers smaller and
faster testcases to pursue a fast testing speed.
Böhme et al. (2017) proposed AFLFast, a coverage-

based greybox fuzzer. They observe that most of the
testcases concentrate on the same few paths. For instance,
in a PNG processing program, most of the testcases gen-
erated through random mutation are invalid and trigger
the error handling paths. AFLFast divide the paths into
high-frequent ones and low-frequent ones. During the
fuzzing process, AFLFast measures the frequency of exe-
cuted paths, prioritize seeds that have been fuzzed fewer
number of times and allocates more energy to seeds that
exercise low-frequent paths.
Rawat et al. (2017) integrates static and dynamic analy-

sis to identify hard-to-reach deeper paths, and prioritizes
seeds that reach deeper paths. Vuzzer’s seed selection
strategy could help find vulnerabilities hidden in deep
path.
AFLGo (Böhme et al. 2017) and QTEP (Wang et al.

2017) employ a directed selection strategy. AFLGo defines
some vulnerable code as target locations, and optimally
select testcase that are closer to target locations. Four
types of vulnerable code are mentioned in the AFLGo
paper, including patches, program crashes lack enough
tracking information, result verified by static analysis tools
and sensitive information related code snippets. With
properly directed algorithm, AFLGo could allocate more
testing resource on interesting code. QTEP leverage static
code analysis to detect fault-prone source code and pri-
oritize seeds that cover more faulty code. Both AFLGo
and QTEP heavily depend on the effectiveness of static
analysis tools. However, the false positive of current static
analysis tools is still high and can’t give an accurate
verification.
Characteristics of known vulnerabilities could also be

used in seed selection strategy. SlowFuzz (Petsios et al.
2017) aims at algorithmic complexity vulnerabilities,
which often occurs with a significantly high comput-
ing resource consuming. Thus SlowFuzz prefers the
seeds that consume more resources like cpu times and
memory. However, gathering resource consuming infor-
mation brings a heavy overhead and brings down the
fuzzing efficient. For instance, to gather the cpu time,
SlowFuzz counts the number of executed instructions.
Besides, SlowFuzz requires a high accuracy of resource
consuming information.
D. How to efficiently test applications? Target applica-

tions are repeatedly start up and finished by fuzzers in
the main fuzzing loop. As we know, for fuzzing of user-
land applications, creation and finishing of process will
consume large amount of cpu time. Frequently create
and finish the process will badly bring down the fuzzing

Li et al. Cybersecurity (2018) 1:6 Page 9 of 13

efficiency. As a result, lots of optimizations are done by
previous work. Both tradition system features and new
features are used in the optimization. AFL employs a
forkserver method, which create an identical clone of
the already-loaded program and reuse the clone for each
single run. Besides, AFL also provide persistent mode,
which helps to avoid the overhead of the notoriously
slow execve() syscall and the linking process, and parallel
mode, which help to parallelize the testing on multi-core
systems. Intel’s Processor Trace (PT) (James 2013) tech-
nology is used in kernel fuzzing to save the overhead
brought by coverage tracking. Xu et al. (2017) aim at
solving the performance bottlenecks of parallel fuzzing
on multi-core machines. By designing and implementing
three new operating primitives, they show that there work
could significantly speed up state-of-the-art fuzzers, like
AFL and LibFuzzer.

Techniques integrated in fuzzing
Modern applications often use very complex data struc-
tures and parsing on complex data structures are more
likely to bring into vulnerabilities. Blind fuzzing strate-
gies that use random mutation methods result in massive
invalid testcases and low fuzzing efficiency. Currently
state-of-the-art fuzzers generally employ a smart fuzzing
strategy. Smart fuzzers collect program control flow and
data flow information through program analysis tech-
niques and consequently leverage the collected informa-
tion to improve the generation of testcases. Testcases
generated by smart fuzzers are better targeted, could be
more likely to fulfill the programs’ requirement for data
structure and logical judgment. Figure 5 depicts a sketch
of smart fuzzing. To build a smart fuzzer, a variety of
techniques are integrated in fuzzing. As mentioned in
previous sections, fuzzing in practice is facing lots of
challenges. In this section, we try to summarize the tech-
niques used by previous work and how these techniques
compromise the challenges in fuzzing process.
We summarize the main techniques integrated in

fuzzing in Table 5. For each technique, we list some
of the representative work in the table. Both tradi-
tional techniques, including static analysis, taint analysis,

code instrumentation and symbolic execution, and some
relatively new techniques, like machine learning tech-
niques, are used. We select two key phases in fuzzing, the
testcase generation phase and program execution phase,
and summarize how the integrated techniques improve
fuzzing.

Testcase generation
As mentioned before, testcases in fuzzing are generated
in generation based method or mutation based method.
How to generate testcases that fulfill the requirement of
complex data structure and more likely to trigger hard-to-
reach paths is a key challenge. Previous work proposed a
variety of countermeasures that integrated with different
techniques.
In generation based fuzzing, the generator generate test-

cases according to the knowledge of inputs’ data format.
Though several common used file format are provided
with documentation, much more are not. How to obtain
the format information of inputs is a hard open prob-
lem. Machine learning techniques and format methods
are used to solve this problem. Work (Godefroid et al.
2017) uses machine learning techniques, specifically, the
recurrent neural networks, to learn the grammar of input
files and consequently use the learned grammar to gen-
erate format-fulfilled testcases. Work (Wang et al. 2017)
uses format method, specifically, it defines a probabilistic
context-sensitive grammar and extract the format knowl-
edge to generate well-format seed inputs.
More state-of-the-art fuzzers employ a mutation-based

fuzzing strategy. Testcases are generated by modifying
part of the seed inputs in the mutation process. In a
blind mutation fuzzing process, mutators randomly mod-
ify bytes of seeds with random values or several special
values, which is proved to be quite inefficient. Thus how
to determine the location to modify and the value used
in modifying is another key challenge. In coverage based
fuzzing, bytes that could affect the control flow transfer
should be first modified. Taint analysis technique is used
to track the affection of bytes on control flow to locate
key bytes of seeds in mutation (Rawat et al. 2017). Known
the key locations is just the beginning. Fuzzing process

Fig. 5 A sketch of smart fuzz

Li et al. Cybersecurity (2018) 1:6 Page 10 of 13

Table 5 Techniques integrated in fuzzing

Testcase Generation Program execution

Techniques Generation Mutation Guiding Path exploration

Static analysis
√ √ √

Taint analysis
√ √

Instrumentation
√ √ √

Symbolic
execution

√

Machine
learning

√ √

Format
Method

√

are often blocked in some branches, including validations
and checks. For example, magic bytes and other value
comparison in condition judgment. Techniques includ-
ing reverse engineering and taint analysis are used. By
scanning the binary code and collecting immediate values
from condition judgment statements and utilizing the col-
lected values as candidate values in the mutation process,
fuzzers could pass some key validations and checks, like
magic bytes and version check. Rawat et al. (2017) New
techniques like machine learning techniques are also tried
to solve old challenges. Researchers fromMicrosoft utilize
machine learning techniques like deep neural networks
(DNN) to predict which bytes to mutate and what value
to use in mutation based on previous fuzzing experience
via LSTM.

Program execution
In the main fuzzing loop, target programs are executed
repeatedly. Information of program execution status are
extracted and used to improve the program execution.
Two key problems involved in the execution phase is how
to guide the fuzzing process and how to explore new path.
Fuzzing process is often guided to cover more code and

discover bugs faster, thus path execution information is
required. Instrumentation technique is used to record the
path execution and calculate the coverage information in
coverage based fuzzing. According to whether or not the
source code if provided, both complied-in instrumenta-
tion and external instrumentation are used. For directed
fuzzing, static analysis techniques like pattern recogni-
tion are used to specify and identify the target code,
witch is more vulnerable. Static analysis techniques could
also be used to gather control flow information, e.g. the
path depth, which could be used as another reference
in the guiding strategy (Rawat et al. 2017). Path exe-
cution information collected via instrumentation could
help direct the fuzzing process. Some new system fea-
tures and hardware features are also used in the execution
information collection. Intel Processor Trace (Intel PT)

is a new feature provided by Intel processors that could
expose an accurate and detailed trace of activity with
triggering and filtering capabilities to help with isolating
the tracing that matters (James 2013). With the advan-
tage of high execution speed and no source dependency,
Intel PT could be used to trace the execution accurately
and efficiently. The feature is utilized in fuzzing on OS
kernels in KAFL (Schumilo et al. 2017), and proved to
be quite efficient.
Another concern in testing execution is to explore new

path. Fuzzers need to pass complex condition judgment
in the control flow of programs. Program analysis tech-
niques including static analysis, taint analysis and .etc.,
could be used to identify the block point in the execution
for consequent solving. Symbolic execution technique has
a natural advantage in path exploration. By solving the
constrain set, symbolic execution technique could com-
pute values that fulfill specific conditional requirement.
TaintScope (Wang et al. 2010) utilize the symbolic exe-
cution technique to solve the checksum validation that
always block the fuzzing process. Driller (Stephens et al.
2016) leverages the concolic execution to bypass the con-
ditional judgment and find deeper bugs.
After years of development, fuzzing has become more

fine-grained, flexible and smarter than ever. Feedback-
driven fuzzing provides an efficient way of guided testing,
traditional and new techniques play roles of sensors to
gain various information during the testing execution and
make the fuzzing guided accurately.

Fuzzing towards different applications
Fuzzing has been used to detect vulnerabilities onmassive
applications since its appearance. According to character-
istics of different target applications, different fuzzers and
different strategies are used in practice. In this section,
we present and summarize several mainly fuzzed types of
applications.

File format fuzzing
Most applications involve file handling, and fuzzing is
widely used in finding bugs of these applications. Fuzzing
test could be operated with files both with or without
standard format. Most common used document files,
images and media files are files with standard formats.
Most researches on fuzzing mainly focus on file format
fuzzing, and lots of fuzzing tools are proposed, like Peach
(PeachTech 2017), state-of-the-art AFL and its extensions
(Rawat et al. 2017; Böhme et al. 2017, 2017). Previous
introduction has involved with a variety of file format
fuzzers, and we will not emphasize other tools here.
An important subfield of file format fuzzing is fuzzing

on web browsers. With the development of web browsers,
browsers are extended to support more function than
ever. And the type of file handled by browsers has

Li et al. Cybersecurity (2018) 1:6 Page 11 of 13

expanded from traditional HTML, CSS, JS files to other
types of files, like pdf, svg and other file formats han-
dled by browser extensions. Specifically, browsers parse
the web pages into a DOM tree, which interprets the
web page into a document object tree involved with
events and responses. Particularly, the DOM parsing
and page rendering of browsers are currently popular
fuzzing targets. Well known fuzzing tools towards web
browsers include the Grinder framework (Stephenfewer
2016), COMRaider (Zimmer 2013), BF3 (Aldeid 2013) and
so on.

Kernel fuzzing
Fuzzing on OS kernels is always a hard problem involved
with many challenges. First, different with userland
fuzzing, crashes and hangs in kernel will bring down
the whole system, and how to catch the crashes is an
open problem. Secondly, the system authority mechanism
result in a relatively closed execution environment, con-
sidering that fuzzers are generally run in ring 3 and how
to interact with kernels is another challenge. The cur-
rent best practice of communication with kernel is calling
kernel API functions. Besides, widely used kernels like
Windows kernel and MacOS kernel are closed source,
and is hard to instrument with a low performance over-
head. With the development of smart fuzzing, some new
progress has been made in kernel fuzzing.
Generally, OS kernels are fuzzed by randomly calling

kernel API functions with randomly generated parameter
values. According to the focus of fuzzers, kernel fuzzers
could be divided into two categories: knowledge based
fuzzers and coverage guided fuzzers.
In knowledge based fuzzers, knowledge on kernel API

functions are leveraged in the fuzzing process. Specif-
ically, fuzzing with kernel API function calls is faced
with two main challenges: (1) the parameters of API calls
should have random yet well-formed values that follow the
API specification, and (2) the ordering of kernel API calls
should appear to be valid (Han and Cha 2017). Represen-
tative work include Trinity (Jones 2010) and IMF (Han and
Cha 2017). Trinity is a type aware kernel fuzzer. In Trinity,
testcases are generated based on the type of parameters.
Parameters of syscalls are modified according to the data
type. Besides, certain enumeration values and the range
of values are also provided to help generating well-formed
testcases. IMF tries to learn the right order of API exe-
cution and the value dependence among API calls, and
leverage the learned knowledge into the generation of
testcases.
Coverage based fuzzing has proved a great success

in finding userland application bugs. And people begin
to apply the coverage based fuzzing method in find-
ing kernel vulnerabilities. Representative work include
syzkaller (Vyukov 2015), TriforceAFL (Hertz 2015) and

kAFL (Schumilo et al. 2017). Syzkaller instrument the ker-
nel via compilation and run the kernel over a set of QEMU
virtual machines. Both coverage and security violations
are tracked during fuzzing. TriforceAFL is a modified ver-
sion of AFL that supports kernel fuzzing with QEMU full-
system emulation. KAFL utilized the new hardware fea-
ture, Intel PT, to track the coverage and only track kernel
code. The experiment shows that KAFL is about 40 times
faster than Triforce and greatly improve the efficiency.

Fuzzing of protocols
Currently, a lot of local applications are transformed to
network service, in a B/S mode. Services are deployed
on network and client applications communicate with
servers via network protocols. Security testing on network
protocols becomes another important concern. Security
problems in protocol could result in more serious dam-
age than local applications, such as the denial of service,
information leakage and so on. Cooperate fuzzing with
protocols involves in different challenges compared to file
format fuzzing. First, services may define their own com-
munication protocols, which are difficult to determine the
protocol standards. Besides, even for documented proto-
cols with standard definition, it is still very hard to follow
the specification such as RFC document.
Representative protocol fuzzers include SPIKE, which

provides set of tools that allows users to quickly cre-
ate network protocol stress testers. Serge Gorbunov and
Arnold Rosenbloom proposed AutoFuzz (Gorbunov and
Rosenbloom 2010), which learns the protocol implemen-
tation by constructing a Finite State Automaton and fur-
ther leverage the learned knowledge to generate testcases.
Greg Banks et al. proposed SNOOZE (Banks et al. 2006),
which identifies the protocol flaws with a stateful fuzzing
approach. Joeri de Ruiter’s work (De Ruiter and Poll 2015)
propose a protocol state fuzzing method, which describe
the TLS working state in a state machine and process
the fuzzing according to the logical flow. Previous work
generally employs a stateful method to model the proto-
col working process and generates testcases according to
protocol specifications.

New trends of fuzzing
As an automated method for detecting vulnerabilities,
fuzzing has shown its high effectiveness and efficiency.
However, as mentioned in previous sections, there are still
a lot of challenges need to be solved. In this section, we
give a brief introduction of our own understanding for
reference.
First, smart fuzzing provides more possibilities for the

improvement of fuzzing. In previous work, traditional
static and dynamic analysis are integrated in fuzzing to
help improve this process. A certain improvement has
been made, but limited. By collecting the target program

Li et al. Cybersecurity (2018) 1:6 Page 12 of 13

execution information via various ways, smart fuzzing
provides a more elaborate control of the fuzzing process,
and lots of fuzzing strategies are proposed. With a deeper
understanding of different types of vulnerabilities, and uti-
lizing the characteristic of vulnerabilities in fuzzing, smart
fuzzing could help find more sophisticated vulnerabilities.
Second, new techniques could help improve vulnerabil-

ity in many ways. New techniques, like machine learning
and related techniques have been used to improve the test-
case generation in fuzzing. How to combine the advan-
tages and characteristics of new techniques with fuzzing,
and how to transform or split the key challenges in fuzzing
into problems that new techniques are good at is another
question worthy of consideration.
Third, new system features and hardware features

should not be ignored. Work (Vyukov 2015) and
(Schumilo 2017) has shown that new hardware features
greatly improved the efficiency of fuzzing, and gave us a
good inspiration.

Conclusion
Fuzzing is currently the most effective and efficient
vulnerability discovery solution. In this paper, we give
a comprehensive review and summary of fuzzing and
its latest progress. Firstly, we compared fuzzing with
other vulnerability discovery solutions, and then intro-
duced the concepts and key challenges of fuzzing. We
emphatically introduced the state-of-the-art coverage
based fuzzing, which have made great process in recent
years. At last, we summarized the techniques integrated
with fuzzing, the applications and possible new trends of
fuzzing.

Abbreviations
AFL: American Fuzzy Lop; BB: Basic Block; DNN: Deep Neural Networks;
LSTM: Long Short-Term Memory; POC: Proof of Concept

Acknowledgements
This research was supported in part by the National Natural Science
Foundation of China (Grant No. 61772308 61472209, and U1736209), and
Young Elite Scientists Spon- sorship Program by CAST (Grant No.
2016QNRC001), and award from Tsinghua Information Science And
Technology National Laboratory.

Authors’ contributions
JL drafted most of the manuscripts, BZ helped proofreading and summarized
parts of the literature, and Prof. CZ abstracted the classifier for existing
solutions and designed the overall structure of the paper. All authors read and
approved the final manuscript.

Competing interests
CZ is currently serving on the editorial board for Journal of Cybersecurity.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 3 January 2018 Accepted: 17 April 2018

References
Aldeid (2013) Browser fuzzer 3. https://www.aldeid.com/wiki/Bf3. Accessed 25

Dec 2017
Amini P (2017) Sulley fuzzing framework. https://github.com/OpenRCE/sulley.

Accessed 25 Dec 2017
Banks G, Cova M, Felmetsger V, Almeroth K, Kemmerer R, Vigna G (2006)

Snooze: toward a stateful network protocol fuzzer. In: International
Conference on Information Security. Springer, Berlin. pp 343–358

Böhme M, Pham V-T, Nguyen M-D, Roychoudhury A (2017) Directed greybox
fuzzing. In: Proceeding CCS ’17 Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, New York.
pp 2329–2344. https://doi.org/10.1145/3133956.3134020

Böhme M, Pham VT, Roychoudhury A (2017) Coverage-based greybox fuzzing
as markov chain. In: Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security. ACM. pp 1032–1043

Bowne S (2015) Fuzzing with spike. https://samsclass.info/127/proj/p18-spike.
htm. Accessed 25 Dec 2017

Cha SK, Avgerinos T, Rebert A, Brumley D (2012) Unleashing mayhem on
binary code. In: Security and Privacy (SP) 2012 IEEE Symposium on. IEEE,
San Francisco. pp 380–394. https://doi.org/10.1109/SP.2012.31

De Ruiter J, Poll E (2015) Protocol state fuzzing of tls implementations. In:
Proceeding SEC’15 Proceedings of the 24th USENIX Conference on
Security Symposium. USENIX Association, Berkeley. pp 193–206

Godefroid P, Levin MY, Molnar D (2012) Sage: whitebox fuzzing for security
testing. Queue 10(1):20

Godefroid P, Peleg H, Singh R (2017) Learn & fuzz: Machine learning for input
fuzzing. In: Proceeding ASE 2017 Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engineering. IEEE Press,
Piscataway. pp 50–59

Gorbunov S, Rosenbloom A (2010) Autofuzz: Automated network protocol
fuzzing framework. IJCSNS 10(8):239

Han H, Cha SK (2017) Imf: Inferred model-based fuzzer. In: Proceeding CCS ’17
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, New York. pp 2345–2358. https://doi.org/
10.1145/3133956.3134103

Hertz J (2015) Triforceafl . https://github.com/nccgroup/TriforceAFL. Accessed
25 Dec 2017

James R (2013) Processor tracing. https://software.intel.com/en-us/blogs/
2013/09/18/processor-tracing. Accessed 25 Dec 2017

Jones D (2010) trinity. https://github.com/kernelslacker/trinity. Accessed 25
Dec 2017

King JC (1976) Symbolic execution and program testing. Commun ACM
19(7):385–394

lcamtuf (2014) Fuzzing random programs without execve(). https://lcamtuf.
blogspot.jp/2014/10/fuzzing-binaries-without-execve.html. Accessed 25
Dec 2017

libfuzzer (2017) A library for coverage-guided fuzz testing. https://llvm.org/
docs/LibFuzzer.html. Accessed 25 Dec 2017

Liu B, Shi L, Cai Z, Li M (2012) Software vulnerability discovery techniques: A
survey. In: Multimedia Information Networking and Security (MINES), 2012
Fourth International Conference on. IEEE, Nanjing. pp 152–156. https://doi.
org/10.1109/MINES.2012.202

Luk C-K, Cohn R, Muth R, Patil H, Klauser A, Lowney G, Wallace S, Reddi VJ,
Hazelwood K (2005) Pin: building customized program analysis tools with
dynamic instrumentation. In: Acm sigplan notices, volume 40. ACM,
Chicago. pp 190–200

Nichols N, Raugas M, Jasper R, Hilliard N (2017) Faster fuzzing: Reinitialization
with deep neural models. arXiv preprint arXiv:1711.02807

PeachTech (2017) Peach. https://www.peach.tech/. Accessed 25 Dec 2017
Petsios T, Zhao J, Keromytis AD, Jana S (2017) Slowfuzz: Automated

domain-independent detection of algorithmic complexity vulnerabilities.
In: Proceeding CCS ’17 Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security. ACM, New York.
pp 2155–2168. https://doi.org/10.1145/3133956.3134073

Rajpal M, Blum W, Singh R (2017) Not all bytes are equal: Neural byte sieve for
fuzzing. arXiv preprint arXiv:1711.04596

Rawat S, Jain V, Kumar A, Cojocar L, Giuffrida C, Bos H (2017) Vuzzer:
Application-aware evolutionary fuzzing. In: Proceedings of the Network
and Distributed System Security Symposium (NDSS). https://www.vusec.
net/download/?t=papers/vuzzer_ndss17.pdf

https://www.aldeid.com/wiki/Bf3
https://github.com/OpenRCE/sulley
https://doi.org/10.1145/3133956.3134020
https://samsclass.info/127/proj/p18-spike.htm
https://samsclass.info/127/proj/p18-spike.htm
https://doi.org/10.1109/SP.2012.31
https://doi.org/10.1145/3133956.3134103
https://doi.org/10.1145/3133956.3134103
https://github.com/nccgroup/TriforceAFL
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://github.com/kernelslacker/trinity
https://lcamtuf.blogspot.jp/2014/10/fuzzing-binaries-without-execve.html
https://lcamtuf.blogspot.jp/2014/10/fuzzing-binaries-without-execve.html
https://llvm.org/docs/LibFuzzer.html
https://llvm.org/docs/LibFuzzer.html
https://doi.org/10.1109/MINES.2012.202
https://doi.org/10.1109/MINES.2012.202
https://www.peach.tech/
https://doi.org/10.1145/3133956.3134073
https://www.vusec.net/download/?t=papers/vuzzer_ndss17.pdf
https://www.vusec.net/download/?t=papers/vuzzer_ndss17.pdf

Li et al. Cybersecurity (2018) 1:6 Page 13 of 13

Schumilo S, Aschermann C, Gawlik R, Schinzel S, Holz T (2017) kAFL:
Hardware-assisted feedback fuzzing for OS kernels. In: Kirda E, Ristenpart T
(eds). 26th USENIX Security Symposium, USENIX Security 2017. USENIX
Association, Vancouver. pp 167–182

Serebryany K, Bruening D, Potapenko A, Vyukov D (2012) Addresssanitizer: A
fast address sanity checker. In: Proceeding USENIX ATC’12 Proceedings of
the 2012 USENIX conference on Annual Technical Conference. USENIX
Association, Berkeley. pp 309–318

Serebryany K, Iskhodzhanov T (2009) Threadsanitizer: data race detection in
practice. In: Proceedings of the Workshop on Binary Instrumentation and
Applications. pp 62–71

Shirey RW (2000) Internet security glossary. https://tools.ietf.org/html/rfc2828.
Accessed 25 Dec 2017

Stephenfewer (2016) Grinder. https://github.com/stephenfewer/grinder.
Accessed 25 Dec 2017

Stephens N, Grosen J, Salls C, Dutcher A, Wang R, Corbetta J, Shoshitaishvili Y,
Kruegel C, Vigna G (2016) Driller: Augmenting fuzzing through selective
symbolic execution. In: NDSS, volume 16, San Diego. pp 1–16

Sutton M, Greene A, Amini P (2007) Fuzzing: brute force vulnerability
discovery. Pearson Education, Upper Saddle River

Takanen A, Demott JD, Miller C (2008) Fuzzing for software security testing and
quality assurance. Artech House

The Clang Team (2017) Dataflowsanitizer. https://clang.llvm.org/docs/
DataFlowSanitizerDesign.html. Accessed 25 Dec 2017

The Clang Team (2017) Leaksanitizer. https://clang.llvm.org/docs/
LeakSanitizer.html. Accessed 25 Dec 2017

Van Sprundel I (2005) Fuzzing: Breaking software in an automated fashion.
Decmember 8th

Vyukov D (2015) Syzkaller. https://github.com/google/syzkaller. Accessed 25
Dec 2017

Wang J, Chen B, Wei L, Liu Y (2017) Skyfire: Data-driven seed generation for
fuzzing. In: Security and Privacy (SP), 2017 IEEE Symposium on. IEEE, San
Jose. https://doi.org/10.1109/SP.2017.23

Wang S, Nam J, Tan L (2017) Qtep: quality-aware test case prioritization. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. ACM, New York. pp 523–534. https://doi.org/10.1145/
3106237.3106258

Wang T, Wei T, Gu G, Zou W (2010) Taintscope: A checksum-aware directed
fuzzing tool for automatic software vulnerability detection. In: Security and
privacy (SP) 2010 IEEE symposium on. IEEE, Berkeley. pp 497–512. https://
doi.org/10.1109/SP.2010.37

Wichmann BA, Canning AA, Clutterbuck DL, Winsborrow LA, Ward NJ, Marsh
DWR (1995) Industrial perspective on static analysis. Softw Eng J
10(2):69–75

Wikipedia, Wannacry ransomware attack (2017). https://en.wikipedia.org/wiki/
WannaCry_ransomware_attack. Accessed 25 Dec 2017

Wikipedia (2017) Dynamic program analysis. https://en.wikipedia.org/wiki/
Dynamic_program_analysis. Accessed 25 Dec 2017

Wu Z-Y, Wang H-C, Sun L-C, Pan Z-L, Liu J-J (2010) Survey of fuzzing. Appl Res
Comput 27(3):829–832

Xu W, Kashyap S, Min C, Kim T (2017) Designing new operating primitives to
improve fuzzing performance. In: Proceeding CCS ’17 Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, New York. pp 2313–2328. https://doi.org/10.1145/3133956.
3134046

Yang Q, Li JJ, Weiss DM (2007) A survey of coverage-based testing tools. The
Computer Journal 52(5):589–597

Zalewski, M (2017) American fuzzy lop. http://lcamtuf.coredump.cx/afl/.
Accessed 25 Dec 2017

Zalewski M (2017) Afl technical details. http://lcamtuf.coredump.cx/afl/
technical_details.txt. Accessed 25 Dec 2017

Zimmer D (2013) Comraider. http://sandsprite.com/tools.php?id=16. Accessed
25 Dec 2017

https://tools.ietf.org/html/rfc2828
https://github.com/stephenfewer/grinder
https://clang.llvm.org/docs/DataFlowSanitizerDesign.html
https://clang.llvm.org/docs/DataFlowSanitizerDesign.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://clang.llvm.org/docs/LeakSanitizer.html
https://github.com/google/syzkaller
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1145/3106237.3106258
https://doi.org/10.1145/3106237.3106258
https://doi.org/10.1109/SP.2010.37
https://doi.org/10.1109/SP.2010.37
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/Dynamic_program_analysis
https://en.wikipedia.org/wiki/Dynamic_program_analysis
https://doi.org/10.1145/3133956.3134046
https://doi.org/10.1145/3133956.3134046
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://lcamtuf.coredump.cx/afl/technical_details.txt
http://sandsprite.com/tools.php?id=16

	Abstract
	Keywords

	Introduction
	Background
	Static analysis
	Dynamic analysis
	Symbolic execution
	Fuzzing

	Fuzzing
	Working process of fuzzing
	Types of fuzzers
	Key challenges in fuzzing

	Coverage-based fuzzing
	Code coverage counting
	Working process of coverage-based fuzzing
	Key questions

	Techniques integrated in fuzzing
	Testcase generation
	Program execution

	Fuzzing towards different applications
	File format fuzzing
	Kernel fuzzing
	Fuzzing of protocols

	New trends of fuzzing
	Conclusion
	Abbreviations
	Acknowledgements
	Authors' contributions
	Competing interests
	Publisher's Note
	References

