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Abstract

Optimizing energy consumption in local energy communities is one of the key
contributions to the so-called smart grid. Such communities are equipped with rooftop
photovoltaic power plants or other forms of small power plants for local energy
production. In addition, a number of appliances allow for shiftable energy consumption,
e.g., heat pumps or electric vehicle charging stations. The ability to shift is, however,
dependent on customer preferences. In this paper, we present a trust-less approach for
optimizing the electricity consumption in a local energy community given forecasts of
energy production and customer demands, along with constraints for shiftable loads. In
larger communities, appointing a single party for managing load curtailment requires a
high level of trust. In the proposed trust-less approach, all parties can independently
propose optimal solutions for this optimization problem and then globally agree one
one solution that meets the defined requirements to the greatest extent.

Keywords: Local energy communities, Optimization, Directed acyclic graph

Introduction
Local energy communities (LECs) are defined as a number of residential households,
industrial facilities and small power plants that aim at balancing energy demand and
supply within a geographically bounded region (Van Der Schoor and Scholtens 2015).
In order to minimize the need for larger wide-spanning power transmission grids, pro-
duced energy should be consumed within the community right at the time of production.
The same concept holds – on a small scale – for residential households equipped with
photovoltaic power plants, where energy produced from these power plants is prefer-
ably consumed from appliances within the same household. Erol-Kantarci and Mouftah
(2010). Load shifting (i.e., adapting the running time of appliances to better meet the sup-
ply of currently available energy) and usage of household batteries is intended to optimize
self-consumption, see e.g., Babrowski et al. (2014); Caron and Kesidis (2010); Cao et al.
(2012); Rotering and Ilic (2011); Zakeri and Syri (2015).
For the smart grid, a decentralized network of energy producers and consumers, such

approaches for electricity optimization are crucial and integral to the concept of LECs.
Electricity consumption optimization is designed to avoid costly long-term investments
in electricity transportation networks and communication infrastructure and allows for
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the use of locally produced energy from small power plants and often renewable resources
(Khan and Khan 2013).
For curtailing load and optimizing electricity consumption for a mostly self-contained

local energy community, appliances adapt their demand to the available electricity by
shifting the load to times where, e.g., energy from photovoltaic power plants is available.
While batteries may act as buffers and some appliances such as heat pumps or electric
vehicles (EVs) allow for relatively easy load curtailment, other appliances are less flexible.
Above all, customer requirements need to be taken into account.
This paper introduces a trust-less and decentralized approach for achieving consensus

on a load curtailment plan. For a specified time period, all parties can announce electricity
supply and demand with their respective constraints. All parties can then independently
propose solutions for this optimization problem and globally agree on one solution that
meets the defined requirements (i.e., maximization of the consumption of self-produced
energy) to the greatest extent. The storage of the proposed solutions and each party’s
votes is based on a Directed Acyclic Graph (DAG).
The contribution of this paper is twofold: First, we present a trust-less approach for

electricity consumption optimization. This approach does not need a central trusted party
that is responsible for load curtailment and allows for a dynamic setting with changing
participating devices, e.g., electric vehicles. Second, the proposed approach guarantees
that a majority of the participants agree to the proposed load curtailment plan.
Note that the scope of this paper is primarily on the information layer, i.e., how

to optimize and balance produced and consumed energy, but not on the physi-
cal layer or the market layer. Any forms of billing or energy trading can, how-
ever, be built on top of the proposed protocol, following concepts such as, e.g.,
Munsing et al. (2017); Sorin et al. (2019).
The rest of the paper is structured as follows: “Related Work” section provides an

overview of state-of-the-art work in the field of energy consumption optimization.
“Preliminaries” section introduces the formalization for load curtailment requests and
optimizations, a notion of shiftable load and the concept of DAGs. “Optimization Proto-
col” section describes the proposed protocol to achieve consensus on a load curtailment
plan. “Evaluation” section evaluates the proposed protocol with respect to scalability,
malicious behavior as well as effectiveness and “Conclusion” section summarizes this
paper and gives an outlook regarding future work.

RelatedWork
Related work in the field of energy consumption optimization can be roughly clustered
in the following areas: (i) blockchain-based approaches that address the market layer and
balance demand and supply via pricing; (ii) approaches that incorporate social networks
for load balancing; (iii) peer-to-peer market approaches that focus on demand-side man-
agement; and (iv) battery-based approaches that aim at maximizing the consumption of
self-produced energy.
Mengelkamp et al. focus on energy markets for microgrids, see, e.g., Mengelkamp et al.

(2018a, b). Their work is mostly on balancing supply and demand on themarket layer with
a blockchain as a decentralized data structure. In our work, we focus on finding an optimal
solution for load curtailment, rather than focusing on pricing. We further use a DAG,
which is a more recent development and has some advantages over classical blockchains

(2019), 2(Suppl 1): 9



Knirsch et al. Energy Informatics Page 3 of 12

in terms of scalability and partition tolerance. In Munsing et al. (2017), blockchains are
used for the decentralized optimization of energy resources in microgrids and in Sorin
et al. (2019), a peer-to-peer market structure based on a multilateral economic dispatch
formulation is introduced. In contrast to this paper, where a DAG is used for finding a
solution the majority agrees on, their work uses smart contracts that automatically trigger
payments. The latter is out of scope for this work, as we focus on finding consensus for
load curtailment.
Social networks as a basis for the coordination of energy consumption in the form of

virtual energy communities are explored in, e.g., Skopik (2014) and Huang et al. (2015).
While the large-scale impact of social networks is an interesting aspect, this is out of the
scope of our work.
An overview and a taxonomy of demand side management measures, along with an

analysis of the various types of demand side management systems, is provided in Palen-
sky and Dietrich (2011). In order to explore the potential of such systems, the structural
design of a possible demand side management system for households is roughly outlined
in Lei et al. (2012).
Approaches aiming to maximize the amount of self-consumed PV production within a

household using battery storage can be found in, e.g., Weniger et al. (2014), Van der Kam
and Van Sark (2014) and Martins et al. (2016). The approaches proposed in these papers
can be used as a basis for the algorithm for finding the optimal solution. However, the
work presented in this paper is specifically designed to work in heterogeneous, dynamic
environments within a trust-less setting, rather than on a household level.
Lastly, Koirala et al. (2016) perform a review of key issues and trends shaping integrated

community energy systems. Their work draws a bigger picture and the identified roles
and responsibilities can serve as the basis for the future shaping of LECs.

Preliminaries
This section introduces the preliminaries for trust-less electricity consumption
optimization.

Participants

Participants are persons or legal entities controlling one or more devices that consume
and/or produce electrical energy. For instance, a participant may be a household includ-
ing a PV plant, a water heater, a washer-dryer and a dishwasher. In an LEC, temporary
visitors such as EV owners may also register as participants. Within the optimization
protocol, each participant is uniquely identified via a public-private key pair (see e.g.,
Johnson et al. (2001)) generated during the registration process. The private key can then
be used to sign transactions and to vote for solutions.

Formalization

In order to formalize algorithms that optimize the electricity consumption, a formal
representation of predictions for production and consumption is needed. Such a formal-
ization is presented in, e.g., Munsing et al. (2017); Sorin et al. (2019); Taneja and Culler
(2010); Chetto (2014). However, these formalizations do not allow individual appliances
or participants to formalize their forecast for demand and supply in a concise, self-
contained way that is suitable for decentralized optimization. For the proposed scheme,
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an approach that is tailored towards the specific needs of transaction-based process-
ing is needed. A transaction is a prediction that includes capacities and preferences for
curtailment scheduling.
Each request for energy consumption optimization Tk is partitioned into a total of Nk

non-overlapping arbitrary length time slots tk,0 to tk,N−1. For this paper, we assume such
a period to be one day (24 h) and the smallest addressable time slot to be 15 min. For
example, one day can be divided into 15 min intervals tk,0 to tk,95 of equal length or in
intervals of arbitrary length, e.g., tk,0 from 00:00 to 06:00, tk,1 from 06:15 to 20:00 and tk,2
from 20:15 to 23:45.
A transaction for a (shiftable) load T (index k is omitted for readability), which predicts

the energy demand for the next day, is defined as follows:

T = {
Etot; t0, . . . , tN

}
, ti =

{
Emin,Emax; tearliest, tlatest;�

}

where Etot is the total amount of energy needed between the total possible duration t0 to
tN−1 and each of the ti, 0 ≤ i ≤ N − 1 represents a request for energy between Emin and
Emax for time slot i with a duration of � given in numbers of 15 min intervals. tearliest and
tlatest defines the earliest beginning and the latest ending time for this time slot, which
can also be set to ∗ for an arbitrary starting and ending time, respectively. In some cases,
it might be necessary to define a time period spanning more than 24 h. When a time
refers to the next day, this is denoted by +1, e.g., 06:00 + 1. In order to shift the load of
an appliance which defined its demand or supply in a transaction T, all ti in T are in a list
and must occur in the specified order, i.e., for shifting load, ti+1 must not occur before
ti. This does, however, not affect the time slots defined by other transactions, which can
be scheduled independently. e represents a demand for energy and thus uses positive real
numbers, whereas a supply is represented by negative real numbers.
Table 1 provides a summary of the notation and symbols used in this paper.
Following this pattern, a non-shiftable, constant load is defined by

T = {e; t0} , t0 = (e, e; 00:00, 23:45; 96).

Table 1 Notation and Symbols for Transactions

Tk Transaction k for demand request or supply forecast

Etot Total demand or supply of energy

tk,i Time slot 0 ≤ i ≤ Nk for demand or supply forecast

Nk Total number of time slots in transaction k

Emin Min. demand (Emin ≥ 0) or supply (Emin < 0) for time slot

Emax Max. demand (Emin ≥ 0) or supply (Emin < 0) for time slot

tearliest Earliest start time for time slot, tearliesti+1 ≥ tlatesti

tlatest Latest end time for time slot, tlatesti−1 < tearliesti

� Duration of demand or supply during time slot

Time slot of fixed length � = tlatest − tearliest

Extended time slot of fixed length interrupted for display

Time slot of flexible length � ≤ tlatest − tearliest

Flexible demand or supply between Emin and Emax

Fixed demand or supply Emin
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The total amount of energy Etot = e, where e is both the minimum and maximum energy
(thus constant) for a single time slot spanning the entire day (covering 96 intervals of 15
min).
Additionally, transactions need a global ordering, i.e., the time at which the request first

occurred relatively to all other requests. This is denoted by an index k for each transaction
T.

Solutions

A solution Si ∈ S is a proposal for load curtailment that incorporates all of the transac-
tions for the current optimization period. The set of all solutions proposed at a given point
in time is denoted as S. In order to allow participants to agree on a solution, a global set of
criteria needs to be defined. Note that, while the criteria are public, the used optimization
algorithm can be chosen by each participant independently.
An optimal solution Sopt meets the following requirements, given the set of all transac-

tions Tprod (i.e., the set of transactions representing the energy produced) and Tcons (i.e.,
the set of transactions representing the energy consumed) that are currently available:

Sopt = argmax
Sk∈S

⎧
⎨

⎩

∑

i=0...N
min

⎛

⎝
∑

Tp∈Tprod∩Sk
|e(ti,Tp)|,

∑

Tc∈Tcons∩Sk
|e(ti,Tc)|

⎞

⎠

⎫
⎬

⎭
(1)

Non-formally, this can be expressed as the requirement that the amount of self-produced
energy that is consumed is maximal. In the set of transactions representing the energy
produced that are part of the currently evaluated solution Sk , the energy supply for each
time slot ti is summed up. Similarly, in the set of transactions representing the energy
consumed that are part of the same solution Sk , the energy consumption for each time
slot tj is summed up. The lower value corresponds to the amount of self-produced energy
that is also self-consumed.
Additionally, the following constraints must be met for a load curtailment solution:

1. An energy demand of Etot for each transaction and for the full period must be
provided.

2. For each time slot, the energy must not be less than Emin or more than Emax.
3. All ti must occur in the defined order.
4. Time slots of fixed length must occur in exactly this length.
5. Time slots of variable length must occur within the defined interval.

Shiftable Loads

In typical modern and future households, there is a number of loads which can be
expected to be shiftable to some extent. Examples include EV or household battery charg-
ing, dish and laundry washing as well as HVAC, heat pump and storage water heater duty
cycles. The extent to which a given load is shiftable may depend on a variety of factors
such as user preferences and the sizing (and thus the performance reserves) of the system.
Furthermore, some loads such as EV charging may be variable both in time and power
usage, while others such as dish washers may only be variable in starting time.
The following shows sample transactions for an EV battery and a PV plant. A formal

representation of their demand and supply, respectively, as a transaction, can be found
in the “Appendix” section. Figure 1 shows a transaction for a household or EV battery,
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Fig. 1 EV charging energy demand and flexibility

requesting energy over time, given the typical load curve of such a battery. While there is
a large capacity for consuming more energy during t1, the amount needed between t2 and
t5 is decreasingly flexible. Figure 2 is a visualization of a forecast for the production of a
given PV plant from a residential household.

Directed Acyclic Graphs

For achieving consensus and for globally agreeing on an optimal load curtailment plan, a
distributed, immutable and transparent storage for transactions is required. Such a dis-
tributed storage allows to achieve consensus without the need for a central trusted party,
which makes the overall approach trust-less.
It has been shown in Karlsson et al. (2018), that a DAG provides the necessary prop-

erties for achieving a decentralized common state and thus represents an ordered set of
dependent transactions. DAGs have similar features as blockchains (see, e.g., Nakamoto
(2008); Tschorsch and Scheuermann (2016)). While blockchains order transactions and
bundle them in blocks where the global consistent state is represented by the longest
branch, DAGs represent this state by having a majority of votes on certain transactions
from the participants (Benčić and Žarko 2018). Votes are represented by digital signatures
of participants that incorporate a number of existing and valid transactions into a new
one. DAGs are also more partition-tolerant and come at increased scalability (Karaarslan
and Adiguzel 2018).

Fig. 2 PV production energy supply
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It has to be noted that, for the setup needed in the proposed protocol, the DAG is
operated in a permissioned environment, i.e., all participants are known to each other and
register themselves to some authority. In practice, this authority can be the local DSO.
However, this authority is not involved in achieving consensus on optimal consumption.
It merely serves as the hub for managing participants and access rights.
For achieving a distributed consensus, majority voting is used. All participants share

the same information and accept a certain transaction or not, depending on whether it
meets the previously agreed-upon requirements. In practice, this voting is reflected by
digitally signing a transaction with a participant’s private key, which uniquely identifies a
participant.
In summary, the following properties of DAGs are relevant for the proposed application:

• Authenticity. All transactions are authenticated and the participant who committed
the data to the DAG is uniquely identified, e.g., by a public key or an ID.

• Immutability. Once transactions are written to the DAG and other users have
agreed on the validity of that data, it is linked to all following transactions by a
cryptographic hash function and thus is not mutable without rebuilding significant
portions of the entire data structure.

• Contribution. All participants must actively work on checking the validity of data
when wanting to submit own transactions. In particular, new transactions must
confirm previous valid transactions by linking them via their cryptographic hash
value.

• Consensus. All participants vote on the validity of transactions and thus agree on a
global state. Valid transactions are confirmed, whereas invalid transactions are not
further processed.

The following section explains how these features of the DAG are used to set up the
optimization protocol.

Optimization Protocol
All participants are connected in a peer-to-peer network and use a DAG as a decen-
tralized common data structure for maintaining a globally consistent state. Figure 3
provides an overview of the setup and how the participants are connected. All partic-
ipants, e.g., households, appliances or EVs, register at the local DSO and then commit
their electricity consumption and production or a solution as a transaction to the
DAG.
Figure 4 shows an exemplified run of the optimization protocol given a number of such

transactions. Two participants submit a number of transactionsT0 to T3 and propose cor-
responding solutions S0 to S3. New transactions may only be added alongside according
solutions, which ensures that at any point in time, there exists an agreed upon solution for
all submitted valid transactions. Each solution incorporates all previous valid transactions
and equals or improves upon the previous valid solution with regard to the requirement
defined in Eq. 1. Note that this requirement does not constitute a dilemma for the sender
of a new transaction, because themost trivial solutionmay simply add the new transaction
on top of the previous solution and thereby does not incur any computationally inten-
sive operations. Subsequently, superior solutions (depicted by S3 in Fig. 4) may be found
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Fig. 3 Overview of the proposed protocol and the communication links. Participants (e.g., households,
appliances and EVs) register at the DSO and then commit their load forecasts to the DAG

and added within the optimization period. In the following, each step of the protocol is
described in detail.

Registration and Setup

New participants (e.g., households or temporary users such as visiting EV owners) can
join at any time by registering at the local DSO or LEC administrator to receive per-
mission to send transactions. This registration is necessary for maintaining a list of
participants for the following round of optimization and subsequently for accounting pur-
poses. Note that the DSO and the LEC administrator are only required for administrative
purposes and do not need to be trusted parties with regard to finding solutions.

Demand And Supply Transaction

Any participant can submit a transaction T (as described in “Preliminaries” section) for
demand or supply of energy at any time. These transactions are sent to all participants via
a peer-to-peer network. Note that this a forecast and a best effort estimation, rather than
a binding commitment to produce or consume a certain amount of energy.

Solution Commitment

Any participant can submit a solution S for matching demand to supply and thus optimiz-
ing the electricity consumption. If a new transaction is sent, it must include an appropriate
solution. These solutions are sent to all participants via a peer-to-peer network. The qual-
ity of the solution is assessed given the criteria established in “Preliminaries” section.

Fig. 4 Exemplified run of the optimization protocol. Two participants send transactions T0 to T3 and propose
corresponding solutions S0 to S3. Both participants finally agree on solution S3
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Solutions include the hash values of all transactions they incorporate and also a link to
any previous solutions. If a solution is accepted by a participant, they sign this solution
with their private key and include it in subsequent solutions.

Load Curtailment Agreement

After one period (e.g., 24 h) all participants must agree on an optimal solution given
the constraints posed by the transactions for production and consumption. Due to the
requirements for valid transactions, the optimal solution is the last transaction in the
DAG that has been signed by the majority of the participants.

Compliance Monitoring

Depending on the accounting model (particularly if it does not amount to an
even/proportional distribution of the directly consumed energy but rather on actual con-
sumption for each household), it may be necessary to perform compliance monitoring
in order to discourage exploitative or malicious behavior of participants. In such a case,
once an optimal solution has been found and agreed upon, the adherence of each partici-
pant to the subsequent schedule needs to be monitored and associated with contractually
agreed consequences.

Evaluation
In the following, the proposed protocol is evaluated with respect to scalability, malicious
behavior, effectiveness in finding a good solution and the range of functionality.
While blockchain applications often come with limited scalability in terms of storage

and throughput (Croman et al. 2016), DAG-based applications are assumed to have better
scalability (Benčić and Žarko 2018). In a typical setup for the proposed protocol, 100
houses constitute the current upper limit according to a survey from the UK (Walker and
Simcock 2012) and one from the Brooklyn Microgrid (Mengelkamp et al. 2018b).
Unlike blockchain-based solutions, which are predominantly based on proof of work,

computational resources are primarily used to find solutions to the practical issue of opti-
mizing consumption rather than arbitrary challenges such as finding hash values fulfilling
certain requirements.
Once a consumption period is over, all participants’ scores have been calculated and

billing is completed, the previous transactions are no longer needed. Thus, the DAG can
be reset, which limits the data storage needs.
Regarding possible malicious behavior of participants, the submission of bogus trans-

actions needs to be addressed. This can be counteracted in two ways: First, new users
may only be allowed to reserve a certain percentage of the predicted production, with
their share gradually increasing as they prove their trustworthiness bymatching their con-
sumption to their transactions. Second, the previously discussed scoring system, which
would make it possible to ban participants that repeatedly fail to match their actual
(minimal) consumption to the previously agreed amount.
In general, applications that rely on decentralized trust are subject to attacks where

a majority can change the rules. In a classical Bitcoin application, this is known as the
51%-attack (Eyal and Sirer 2014). In the proposed DAG data structure, where no mining
or Proof of Work consensus is used, rather simple Byzantine fault tolerance applies, see,
e.g., Eyal et al. (2016); Mazières (2016). Similarly, in the proposed protocol, the rules for
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finding a good solution only exist as an abstract consensus among all participants. If a
majority of the participants decides to change the rules, their adaptation becomes the new
standard.
An important criterion for assessing the effectiveness of the proposed protocol

is whether a good solution is found or not. According to the criteria stated in
“Preliminaries” section, it is simple to find a good solution that meets the requirements.
However, this does not necessarily need to be the best solution. All participants can com-
mit alternate solutions to the DAG and they can use their own strategies and algorithms
to find such solutions. Due to the majority voting, it is guaranteed that at least a good
solution is found at the end of the period, that meets the requirements of a significant
portion of the participants in the LEC.

Conclusion
In this paper, we presented a novel approach towards energy consumption optimiza-
tion in local energy communities. The key contribution of this work is a trust-less
decentralized protocol that allows for dynamic joins and leaves of participants and
for finding an optimal solution for load curtailment. The protocol does not limit the
optimization algorithm, but rather each participant can apply its own approach for
load curtailment. While related work in this field focuses either on market-driven load
curtailment, on the impact of social networks, demand response or the use of house-
hold batteries, in this paper we presented a formalization of shiftable loads and an
approach to find the optimal solution using a directed acyclic graph. The proposed
protocol is evaluated with respect to scalability, malicious behavior and effectiveness.
Future work focuses on an implementation and and a practical setup in a testbed
environment as well as on a scoring system to value good behavior and adherence
to agreed upon load curtailment plans. Furthermore, the revocation of transactions
and the impact on proposed load curtailment solutions will be explored in greater
detail.

Appendix
Formalization of shiftable loads as described in “Preliminaries” section.

EV Charging

T = {
Etot; t0, . . . , t6

}
,

t0 = {0, 0; 18:00, ∗; ∗},
t1 = {

Emin
1 ,Emax

1 ; ∗, ∗; 3} ,
t2 = {

Emin
2 ,Emax

2 ; ∗, ∗; 1} ,
t3 = {

Emin
3 ,Emax

3 ; ∗, ∗; 1} ,
t4 = {

Emin
4 ,Emax

4 ; ∗, ∗; 1} ,
t5 = {e5, e5; ∗, ∗; 1},
t6 = {e6, e6; ∗, 06:00 + 1; ∗}
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PV Production

T = {−Etot; t0, . . . , t8
}
,

t0 = {0, 0; 00:00, 08:00; 32},
t1 = {−e1,−e1; 09:00, 10:00; 4},
t2 = {−e2,−e2; 10:00, 11:00; 4},
t3 = {−e3,−e3; 11:00, 12:00; 4},
t4 = {−e4,−e4; 12:00, 13:00; 4},
t5 = {−e5,−e5; 13:00, 14:00; 4},
t6 = {−e6,−e6; 14:00, 15:00; 4},
t7 = {−e7,−e7; 15:00, 16:00; 4},
t8 = {−e8,−e8; 16:00, 00:00 + 1; 32}
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