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Abstract

Background: We evaluated a magnetic resonance (MR)-conditional high-power microwave ablation system.

Methods: An ex vivo 1.5-T evaluation was conducted by varying the sequence (T1-weighted volume interpolated
breath-hold examination, T1w-VIBE; T1-weighted fast low-angle shot, T1w-FLASH; T2-weighted turbo spin-echo,
T2w-TSE), applicator angulation to B0 (A-to-B0), slice orientation, and encoding direction. Tip location error (TLE) and
artefact diameters were measured, and influence of imaging parameters was assessed with analysis of variance and
post hoc testing. Twenty-four ex vivo ablations were conducted in three bovine livers at 80 W and 120 W. Ablation
durations were 5, 10, and 15 min. Ablation zones were compared for short-axis diameter (SAD), volume, and sphericity
index (SI) with unpaired t test.

Results: The artefact pattern was similar for all sequences. The shaft artefact (4.4 ± 2.9 mm, mean ± standard deviation)
was dependent on the sequence (p = 0.012) and the A-to-B0 (p < 0.001); the largest shaft diameter was measured with
T1w-FLASH (6.3 ± 3.4 mm) and with perpendicular A-to-B0 (6.7 ± 2.4 mm). The tip artefact (1.6 ± 0.7 mm) was
dependent on A-to-B0 (p = 0.001); TLE was -2.6 ± 1.0 mm. Ablation results at the maximum setting (15 min, 120 W)
were SAD = 42.0 ± 1.41 mm; volume = 56.78 ± 3.08 cm3, SI = 0.68 ± 0.05. In all ablations, SI ranged 0.68–0.75 with the
smallest SI at 15 min and 120 W (p = 0.048).

Conclusion: The system produced sufficiently large ablation zones and the artefact was appropriate for
MR-guided interventions.
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Key points

� An MR-conditional high-power microwave system
was assessed for artefact and ablation performance
in bovine ex vivo livers at 1.5 T.

� The applicator artefact is precise concerning tip
depiction.

� Largest artefact diameters were measured with a
T1-weighted gradient-echo fast low-angle shot
sequence.

� Applicator angulation perpendicular to B0 causes
largest artefact diameters.

� The MR-conditional microwave system provided
appropriate dimensioned ablation zones.

Background
Percutaneous thermoablation is an established minimally
invasive treatment option for patients with hepatic malig-
nancies who are not suitable for surgical resection due to
impaired hepatic function, comorbidities, or unfavourable
anatomic conditions [1, 2]. With radiofrequency (RF)
ablation being the most common representative in the
“toolbox” of local therapies, studies have shown that
tumour location close to large vessels and size greater
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than 3 cm are critical factors regarding local recurrence-
free survival [3–5].
Over the last decade, microwaves (MW) were intro-

duced as an energy source and MW ablation (MWA)
has developed into an alternative to RF ablation, with
theoretical physical advantages and an increasing variety
of commercially available MWA systems [6, 7]. Indeed,
in comparison to RF ablation, MWA is not limited by
desiccation around the applicator, allowing for higher
ablation temperatures in larger ablation zones in a
shorter time with a single applicator [8, 9]. Furthermore,
studies have shown that MWA is less susceptible to the
heat-sink effect of larger hepatic vessels [10]. A recent
meta-analysis has shown lower local recurrence rates
after MWA of larger tumours in comparison to RF abla-
tion [11].
Besides a satisfactory ablation technique, precise appli-

cator placement and therapy monitoring are relevant for
successful thermoablation. In this respect, magnetic res-
onance (MR) as a guidance modality offers several ad-
vantages including an assessment of the ablation zone
without application of contrast agent, free selection of
imaging planes, temperature measurement with MR
thermometry and radiation-free near real-time fluoro-
scopic sequences [12–14]. The high sensitivity of MR
imaging (MRI) for small liver lesions is advantageous
during tumour targeting and visibility of the smallest
target tumours can be increased for hours by adminis-
tering gadoxetic acid [15–18].
Despite these technical advantages, restricted availabil-

ity of suitable scanners and higher costs are critical
points in view of the relatively long durations of MR-
guided procedures, so that MRI as guidance modality for
thermal ablation is currently limited to specialised
centres [19]. In this context, the introduction of an MR-
conditional high-power MWA system might combine
the advantages of both techniques and increase the sig-
nificance of MR-guided thermoablation in the future by
decreasing the procedure duration. A prerequisite for
successful MR-guided MWA is a reliable and adequate
configuration of the applicator artefact with an accurate
depiction of the tip. Large antenna artefacts cause a
good visualisation of the applicator, however, may impair
the assessment of the ablation zone, so that a balanced
artefact configuration is mandatory.
Thus, the purpose of this study was the preclinical

evaluation of a new MR-conditional high-power MWA
system regarding ablation performance and applicator
artefact appearance.

Methods
Microwave tissue ablation technique and equipment
The experiments were conducted with a high-power MWA
system with a maximum generator power of 150 W. The

system was equipped with a pump for perfusion-cooling
of the applicator shaft. The MW generator (ECO-100E2,
Nanjing ECO Medical Instrument Co., China) worked at a
frequency of 2.45 GHz. All experiments were conducted
with a 14-G MW applicator (ECO-100AI13C, Nanjing
ECO Medical Instrument Co., China) with a shaft length
of 15 cm. The applicator is composed of a shaft consisting
of titanium alloy and a ceramic tip with a length of
18 mm. A 4-m long coaxial cable connects the antenna
with the generator enabling the generator to be positioned
safely outside the MR scanner room during ablation.

MRI protocol and artefact evaluation
Artefact evaluation was conducted in a 1.5-T short bore
scanner (Magnetom ESPREE, Siemens Healthineers,
Erlangen, Germany) with a horizontal main magnetic field
(B0) and a four-channel body-array surface coil. The MW
applicator was placed in an MRI phantom consisting of a
Plexiglas box filled with a 0.2% gadolinium solution
(Gadovist, Bayer Healthcare, Berlin, Germany). The phan-
tom was positioned at the magnet isocentre and enabled a
deflection of the applicator relative to B0 between 0° and
90°. The measurements were performed with three
different sequences:

1) A three-dimensional T1-weighted volume
interpolated breath-hold examination (T1W-VIBE)
with chemically selective fat-saturation pulse,
performed with flip angle of 10°, repetition time
(TR) of 6.2 ms, echo time (TE) of 1.61 ms,
bandwidth of 457 Hz/pixel, slice thickness of 1 mm,
field of view (FOV) 192 × 192 mm, acquisition
matrix 192 × 192, and reconstruction matrix
192 × 192;

2) A two-dimensional T1-weighted, fast low-angle
shot (T1W-FLASH) gradient-echo sequence with
periodic chemically selective fat-saturation pulses
and flip angle of 70°, TR of 122 ms, TE of 4.36 ms,
bandwidth of 139 Hz/pixel, slice thickness 4 mm,
FOV 192 × 192 mm, acquisition matrix 192 × 192,
and reconstruction matrix 192 × 192;

3) A two-dimensional T2-weighted turbo spin-echo
(T2W-TSE) sequence with TR of 3750 ms, TE of
129 ms, flip angle 145°, echo train length 29,
bandwidth 260 Hz/pixel, slice thickness 4 mm,
FOV 192 × 192 mm, acquisition matrix 192 × 192,
reconstruction matrix 384 × 384.

The following factors were systematically varied:
sequence type (T1W-VIBE, T1W-FLASH, T2W-TSE),
applicator orientation to B0 (0°, 45°, 90°), slice orienta-
tion with respect to the applicator (axial, coronal,
sagittal), and encoding direction (phase encoding direction
or frequency encoding direction being perpendicular to
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the long axis of the applicator) resulting in a total of 36
artefact measurements. Artefact analysis of the acquired
images was performed with the open-source software
ImageJ (http://rsb.info.nih.gov/ij). Artefacts were defined
according to the American Society for Testing Materials
as deviation of ± 30% from the median signal intensity
around the applicator [20]. Imaging analyses were con-
ducted in consent of two readers (AG and RH).
The artefact diameters were measured at the applica-

tor tip and the applicator shaft. The tip location error
(TLE) was assessed on images with coronal or sagittal
orientation in relation to the applicator. The TLE de-
scribes the deviation from the measured distance be-
tween the distal end of the tip and the Plexiglas model
and the actual set 10 mm distance. A positive TLE cor-
relates with an overestimation of the applicator position
in the long axis direction [21].

Ablation protocols and ablation zone evaluation
All ablations were performed ex vivo at room tem-
perature using three fresh bovine livers (Bos Taurus)
obtained from a local abattoir. Before positioning of
the MW applicator, large hepatic veins were explored
with a metal probe to avoid close positioning. The
ablation durations were 5, 10, and 15 min (maximum
recommended duration). Ablations were conducted
with a power of 80 W and 120 W (maximum recom-
mended power for liver ablation with a 14-G an-
tenna). Each combination was repeated four times
resulting in a total of 24 ablations. Results were only
made available to the manufacturer after completion
of the experiments.
After ablation, the antenna was replaced by a metal

bar serving as guidance to dissect the liver along the ab-
lation zone. For further measurements, the ablation zone
was photographed (Canon, EOS 350D, Tokyo, Japan).
The ablation zone diameter along the antenna insertion
axis was defined as long-axis diameter (LAD). The lar-
gest diameter of the ablation zone perpendicular to the
LA was defined as short-axis diameter (SAD) (Fig. 1).
Dimensions were determined using callipers by measuring
the perimeters of the white coagulation zone. The volume
of the ablation zone was calculated using the ellipsoid for-
mula for diameters (Volume = π/6*LA*(SAD)2). The
shape of the ablation zone was determined by calculating
the sphericity index (SI) = SAD/LAD.

Statistical analysis
Acquired data were analysed with the statistical software
JMP 13 (SAS Institute, Cary, NC, USA). To compare the
TLE, shaft artefact diameter and tip artefact diameter in
terms of sequence type, angulation to B0, slice orienta-
tion and encoding direction analysis of variance
(ANOVA) was performed. The assumptions of variance

homogeneity and normal distribution were checked. In
the case of heterogeneity of variances, the Welch
ANOVA test was used. If a significant overall effect was
found, post hoc between-group comparisons were per-
formed following the closed testing procedure and by
using the Student t test [22, 23]. In case of comparing
only two parameters, the Student t test was used instead
of ANOVA.
To compare the effect of a different ablation power on

the SAD, volume, and SI with respect to the ablation
duration (5, 10, and 15 min) unpaired t tests was used.
Results were displayed as mean ± standard deviation
(SD). A p value < 0.05 was considered statistically signifi-
cant for all tests.

Results
Applicator artefact
At all acquired sequences, the applicator presented a
similar artefact pattern with a prominent shaft and a
smaller tip artefact, distal 18 mm of the applicator. The
appearance of the applicator was homogenous along the
shaft and the tip without the appearance of blooming ar-
tefacts. Table 1 summarises the measurement results re-
garding the tip and shaft artefact and the TLE.
The mean diameter of the shaft measured 4.4 ± 2.9 mm

with significant dependence on the sequence type
(p = 0.012) and the applicator angulation to B0 (p < 0.001;
Fig. 2). The significantly largest shaft artefact was
measured with the T1W-FLASH sequence (6.3 ± 3.4 mm;
Fig. 3). An applicator deflection from B0 orientation sig-
nificantly increased the shaft artefact with a diameter of
1.4 ± 0.6 mm at 0° up to 6.7 ± 2.4 mm at 90° (Fig. 4).
The mean diameter of the applicator tip measured

1.6 ± 0.7 mm with statistically significant dependence on
the angulation to B0 (p = 0.001) and the largest diameter

Fig. 1 Cross-section of an ablation zone after 15 min ablation at
120 W. The long axis diameter (LAD) and short-axis diameter (SAD)
are shown
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for an applicator angulation perpendicular to B0 with a
diameter of 2.1 ± 0.5 mm (Fig. 4). Largest tip artefact
diameters were measured with the T1 FLASH se-
quence, however, without reaching statistical signifi-
cance (p = 0.089). The largest statistically significant

tip diameter was measured for axial slice orientation
in relation to the applicator (p = 0.009) with a diam-
eter of 2.1 ± 0.7 mm.
On average, the applicator length was slightly underes-

timated with a mean TLE of -2.6 ± 1.0 mm. The largest

Fig. 2 Statistical analysis regarding the influence of the sequence type, applicator angulation to B0 and slice orientation on the applicator artefact.
Graphs display: Ashaft (artefact diameter at the antenna shaft), Atip (artefact diameter at the antenna tip), and TLE (tip location error) of the microwave
applicator in relation to sequence type, applicator angulation to B0 and slice orientation. Depending on < 2 or > 2 parameters Student’s t test (STT) or
ANOVA was performed. In case of overall statistical significance, the Student t test was performed according to the closed testing procedure. Whiskers
indicate the minimum and maximum extreme values; the box indicates the upper and lower quartile. The line in the box indicates the median value
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absolute TLE was measured for an applicator angulation
of 0° (p < 0.001) with a TLE of -3.6 ± 0.6 mm.
The encoding direction did not affect the artefact

diameter of the shaft (p = 0.935) and the tip (p = 0.492),
and the TLE (p = 0.329).

Ablation results
Ablation zone SAD and volume continuously increased
with longer ablation durations and were significantly
higher with the higher ablation power of 120 W. The
highest mean ablation zone volume (56.78 ± 3.08 cm3)
and mean SAD (42.0 ± 1.41 mm) was reached using an
ablation power of 120 W and the longest recommended
ablation duration (15 min). The SI ranged between 0.72
and 0.75 at the 5 min and 10min test series, without be-
ing significantly affected by the ablation power. With
longer ablations (15 min), the sphericity of the ablation
zone significantly decreased with the higher ablation
power at 120 W (SI = 0.68 ± 0.05) in comparison to ab-
lations at 80 W (SI = 0.75 ± 0.02; p = 0.048).
Table 2 summarises the ablation results regarding

SAD, volume, and SI.

Discussion
Despite the energy transmission via a 4-m coaxial cable,
the tested MR-conditional high-power MWA system

reached ablations zones with a SAD above 4 cm within
15 min, which is comparable to high-power MWA sys-
tems designed for computed tomography (CT)-guided
procedures [6]. Creation of sufficiently large ablation
zones in a short time is relevant, especially to reduce inter-
vention durations for MR-guided procedures. Rempp et
al. [24] reported average procedure durations from

Fig. 3 Artefact of the microwave applicator. Images are acquired
under 90° applicator angulation relative to B0 with T1W-VIBE (a),
T1W-FLASH (b), and T2W-TSE (c) (see text for sequence details). For all
sequences, the applicator shows a similar artefact pattern with a
prominent artefact at the shaft (Ashaft) and a smaller artefact at the tip
(Atip). PED Phase encoding direction, FED Frequency
encoding direction

Fig. 4 Artefact of the MW applicator according to the angulation to
B0. Images are acquired with T1W-VIBE sequence (see text for sequence
details) with an applicator angulation to B0 of 0°(a), 45°(b), and 90°(c).
The diameter of shaft artefact was significantly dependent on the
angulation with the smallest diameter with an angulation parallel to B0.
PED Phase encoding direction, FED Frequency encoding direction

Table 2 Comparison of the 24 ablation results at 80 W and
120 W

80 W 120 W p value

5 min

SAD (mm) 27.25 ± 2.63 32.0 ± 0.82 0.0136*

Volume (cm3) 14.75 ± 3.44 23.93 ± 2.47 0.0049*

SI 0.73 ± 0.08 0.72 ± 0.02 0.8324

10 min

SAD (mm) 33.5 ± 1.29 38.0 ± 1.63 0.0050*

Volume (cm3) 26.45 ± 1.76 39.03 ± 3.69 0.0008*

SI 0.75 ± 0.05 0.74 ± 0.03 0.7835

15 min

SAD (mm) 38.50 ± 1.91 42.0 ± 1.41 0.0259*

Volume (cm3) 40.15 ± 5.09 56.78 ± 3.08 0.0014*

SI 0.75 ± 0.02 0.68 ± 0.05 0.0480*

SAD Short axis diameter, SI Sphericity index
*Significant differences
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planning imaging to control imaging of 3.7 h for MR-
guided RF ablation in hepatic malignancies with a
mean tumour diameter of 20 mm. These procedure
durations are a major drawback of MR-guided inter-
ventions given the limited availability of MR scanners
and higher costs of this modality in comparison to
CT and ultrasound [25, 26].
The reasons for the long procedure durations in

this study were the long net ablation durations of
mean 52 ± 10 min and the need for applicator reposi-
tioning to treat a single tumour (mean 2.4 ± 1.3 applicator
positions). Up to now, the expectation of shorter proced-
ure durations under MR-guided MWA could not be ful-
filled in clinical routine. Hoffmann et al. [27] recently
reported procedures durations of 187 ± 64 min with a
non-cooled, low-power MWA system with a maximum
power of 36 W. Similar to the RF ablation study by Rempp
et al. [24], multiple applicator repositioning (on average
2.5 ± 1.2) was necessary to treat the target tumours with a
mean diameter of 15 mm. Further studies are necessary to
evaluate if the promising ex vivo results of the tested high-
power system can be confirmed in vivo, and if the rela-
tively large ablation zones enable a reduction of the
number of antenna repositioning procedures in clinical rou-
tine so that shorter procedure durations can be achieved.
Besides the volume and the SAD, the sphericity of the

ablation zone is another relevant factor for fast and ef-
fective tumour ablation [28]. Several studies have shown
that most spherical ablation zones were achieved in liver
ablations using overlapping ablation zones with multiple
antennas or repositioning of a single antenna [29, 30].
However, placement of multiple antennas or antenna re-
positioning is time-consuming and may increase the risk
of complications due to the need for multiple liver cap-
sule punctures. In our study, the SI ranged from 0.68 to
0.75. This value is similar to those reported for high-
power MWA systems for conventional guidance tech-
niques and higher than the SI value for a non-perfusion
cooled MR-conditional system which has been reported
to range from 0.36 to 0.59 [31].
Accurate and reliable visualisation of the artefact of

the applicator is essential for a fast, safe, and effective
tumour ablation. The appearance of the applicator arte-
fact in MRI is predominantly dependent on the material
and diameter of the applicator and the difference in
magnetic susceptibility between the applicator and the
surrounding tissue [32, 33]. In our study, the diameter of
the applicator shaft artefact was significantly affected by
the angulation to the main magnetic field. The largest
diameter was measured with a perpendicular angulation
to the main magnetic field, which is frequently applied
during MR-guided percutaneous procedures in wide-
bore scanners. The prominent artefact diameter at this
angulation might be advantageous during applicator

positioning. Nevertheless, smaller structures such as
small target tumours could be obscured by the artefact,
particularly if sequences are acquired which generate lar-
ger artefacts such as T1W-FLASH sequence that caused
the largest artefacts in our series. However, the mea-
sured artefact diameter was smaller than the diameter of
MR-conditional RF ablation applicators reported in earl-
ier studies [21, 32]. The applicator tip artefact was
clearly smaller than the shaft artefact. In our experimen-
tal study with ideal scanning conditions and a high con-
trast to the surrounding gadolinium solution, this tip
area was well visible; however, the small tip artefact
might be problematic especially if MR fluoroscopic se-
quences are used in patients with impaired respiration
compliance. On the other hand, a small tip artefact may
be beneficial during therapy monitoring. As reported in
studies concerning MR-guided RF ablation using appli-
cators with a larger tip artefact, retraction of the applica-
tor can be necessary for evaluation of the target tumour
and the ablation zone [24]. Small tip artefacts do not ob-
scure the ablation zone and retraction of the applicator
is not necessary for therapy monitoring. Consequently,
in cases with an insufficient ablation zone, the ablation
can be continued without the need for applicator repo-
sitioning [27].
Another essential point for safe applicator positioning

is an accurate depiction of the applicator tip. According
to the definition of TLE, a negative value implies an
underestimation of the applicator length. This is relevant
if the target tumour is located in front of critical struc-
tures and false depiction of the antenna tip can lead to
an accidental puncture of the structure [34]. In our
study, the length of the MW applicator was slightly
underestimated with a TLE of -2.6 ± 1.0 mm. This TLE
lays below a TLE of 5 mm, which was considered as a
limit for MR-guided musculoskeletal interventions by
Wonneberger et al. [35].
The results of our ex vivo study are limited by several

factors. First, ex vivo ablations tend to overestimate the
size of the ablation zone in comparison to in vivo abla-
tions, due to the absent cooling effect of perfused tissue.
On the other hand, we measured the size of the ablation
zone after treatment. This zone is smaller than the
untreated tissue, as the tissue shrinks during the ablation
process, causing an underestimation of the ablated tissue
[36]. Our artefact evaluation was conducted in a
phantom under optimal conditions with a homogenous
and high background signal without moving artefacts
such as cardiorespiratory motion. In vivo studies are
necessary to confirm the visibility of the device under
clinical conditions.
In conclusion, the high-power MR-conditional MWA

system tested in this ex vivo study provided a sufficiently
dimensioned ablation zone suitable for tumour ablation.
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The artefact of the MW applicator seemed also suitable
for MR-guided interventions with an accurate depiction
of the applicator tip. These results are encouraging for
the application of MR-guided MWA for percutaneous
tumour ablation. However, clinical studies are necessary
to confirm the potential benefit of the combination of
both techniques.
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