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Abstract

Computational methods are increasingly being incorporated into the exploitation of
microstructure–property relationships for microstructure-sensitive design of materials.
In the present work, we propose non-intrusive materials informatics methods for the
high-throughput exploration and analysis of a synthetic microstructure space using a
machine learning-reinforced multi-phase-field modeling scheme. We specifically study
the interface energy space as one of the most uncertain inputs in phase-field modeling
and its impact on the shape and contact angle of a growing phase during
heterogeneous solidification of secondary phase between solid and liquid phases. We
evaluate and discuss methods for the study of sensitivity and propagation of
uncertainty in these input parameters as reflected on the shape of the Cu6Sn5
intermetallic during growth over the Cu substrate inside the liquid Sn solder due to
uncertain interface energies. The sensitivity results rank σSI , σIL, and σIL, respectively, as
the most influential parameters on the shape of the intermetallic. Furthermore, we use
variational autoencoder, a deep generative neural network method, and label
spreading, a semi-supervised machine learning method for establishing correlations
between inputs of outputs of the computational model. We clustered the
microstructures into three categories (“wetting”, “dewetting”, and “invariant”) using the
label spreading method and compared it with the trend observed in the
Young-Laplace equation. On the other hand, a structure map in the interface energy
space is developed that shows σSI and σSL alter the shape of the intermetallic
synchronously where an increase in the latter and decrease in the former changes the
shape from dewetting structures to wetting structures. The study shows that the
machine learning-reinforced phase-field method is a convenient approach to analyze
microstructure design space in the framework of the ICME.

Keywords: Microstructure-sensitive materials design, Interface energy, Phase-field
modeling, Uncertainty propagation, Global sensitivity analysis, Semi-supervised
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Introduction
Computational materials science and engineering utilizes a diverse set of techniques
across different length-scales to study the response of materials in different scales. These
techniques often rely on solving partial differential equations (PDEs) where multiples
of these PDEs are integrated to create multi-ensemble complex nonlinear spaces. Many
of the emerging techniques do not have analytical solutions, and the reliability of the
results may become a challenge due to the insufficiency of the numerical solvers. In
materials science and engineering, the broad field of microstructure-sensitive mate-
rials design (Fullwood et al. 2010; McDowell 2018) and chemistry-sensitive materials
design are examples of PDE-constrained optimal control problems with uncertainty
in which interactions are complex and nonlocal. The curse of dimensionality in the
microstructure-sensitive materials design problems calls for a more objective function
measuring tool to predict the design space reasonably and accurately, avoiding full-
factorial designs (Forrester et al. 2008) in order to establish accurate and quantitative
Process-Structure-Property (PSP) links (Khatamsaz et al. 2021).
To successfully design the microstructure of materials for a desired property under the

framework of Integrated Computational Materials Engineering (ICME), high through-
put screening using the multi-scale, multi-ensemble phase-field simulations constitutes
a plausible pathway (Chen 2002). In recent work (Attari et al. 2020), we have developed
and demonstrated a microstructure design framework involving uncertainty quantifica-
tion (UQ) and propagation (UP). The model and parameter uncertainty in phase-field
models originate from the choice of the empirical potential/free energy functional. For
instance, Cahn and Hilliard (1958) initially used a logarithmic potential for the free
energy of unstable material. Very close to the critical point, one can approximate the
logarithm-containing potential using an easier to handle polynomial expression. Far from
the critical point below or when the resulting gradients in the temperature field are con-
siderable, a non-smooth double-obstacle potential is introduced (Bosch 2016). Another
source of parameter uncertainty is due to the selection of temperature-independent inter-
face mobility, interface energies, and location-independent diffusion coefficient (Wang
and McDowell 2020). UQ/UP in the microstructure modeling paves the road for high-
throughput exploitation of the design space to reveal PSP relationships that are too
complicated/complex. However, high-throughput screening requires high-throughput
post-processing and analysis.
The primary objective of the current work is to show the myriad impact of phase-

field based high-throughput screening of the material parameter space in combination
with machine learning (ML) for high-throughput analysis of the results space to estab-
lish relations between inputs and the outputs. This is the key for establishing accurate
and quantitative links between the PSP chain in materials. Specifically, we are interested
in the interface energy space in heterogeneous phase growth as it is often uncertain or
unknown.
In this work, we explore the effect of interface energy on heterogeneous phase growth

over a substrate using a multi-phase-field model with CALPHAD potential that is rein-
forced with sensitivity analysis, semi-supervised machine learning method (Kunselman
et al. 2020), and Variational Auto-Encoder (VAE) (Kingma and Welling 2013; Pu et al.
2016; Banko et al. 2020). Traditional supervised classifiers (Gola et al. 2018; Prakash et al.
2011) often suffer from nonphysical representation of the images and their performance
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is limited by the assumptions it ‘is told’ to make. On the other hand, popular pre-trained
convolutional neural network (CNN) layers (Choudhury et al. 2016; Niezgoda et al. 2008;
DeCost et al. 2017) require large sets of labeled data to efficiently classify the images.
Instead, we map structure diversity (phase-field model outputs) in the 3-D interface
energy space (inputs) using a semi-supervised machine learning model that uses small
amount of initially labeled data and VAE as a relatively new deep generative recognition
model that does not require large datasets. Deep generative models have been success-
fully used in generating realistic-looking images, voices, or movies and gained attention
in public domain (Kingma and Welling 2019; Ruthotto and Haber 2021).
This paper is structured as follows: The strategy for the propagation of uncertainty

across the PDE-constrained PFM-model is explained in “Pragmatic modeling with PDEs”
section. The details of the multi-phase-field method, and its uncertain inputs, and
a desirable quantity of interest are described in “Computational model” section. In
“Machine learning models” section, the high-throughput materials informatics proce-
dure, including sensitivity analysis, sampling schemes, sem-supervised machine learning
algorithm, and VAE, are described. In “Results” section, we discuss the results by moti-
vating the present work through a summary of the treatment of heterogeneous phase
growth using phase-field theory. Next, we discuss the uncertainty propagation strategy
and the resulting sensitivity due to variation in inputs of the phase-field model. We also
discuss the establishment of PSP linkage in inputs and outputs of the phase-field model by
reinforcing semi-supervised machine learning and VAE as a generative deep recognition
model. Furthermore, we present a summary of our findings and draw our conclusions in
“Conclusion” section.

Pragmatic modeling with PDEs
The uncertainties in the model components such as material properties, coefficients,
domain geometry, boundary, and initial data demand to take into account the noises
in the inputs of the realistic simulations of complex systems governed by nonlinear
PDEs. In practice, only statistical properties of the uncertain inputs are known, resulting
in models involving PDEs having random inputs that are usually exactly or approxi-
mately represented in terms of a finite number of random parameters or variables. The
strategy for high-throughput microstructure-sensitive exploration of process-structure-
property chain in materials engineering is schematically represented in Fig. 1. At the
most general level, we consider a material model governed by PDEs having random
inputs, and use UP to determine information about the uncertainties in the out-
puts of the PDE, given information about the uncertainties in its inputs. Ultimately,
a data-driven framework for establishing the links between the inputs and outputs
is created to accelerate the process of microstructure-sensitive materials design and
study.

Governing equations

For notational convenience, the exposition is restricted to boundary value problems.
The framework is nevertheless applicable to general time dependent problems. Let D ∈
R
d , d = 1, 2, 3, be a fixed physical domain with boundary ∂D, and x = {x1, ..., xd} be the

coordinates. Let us consider a PDE,
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Fig. 1 Schematic representation of machine learning-assisted high-throughput phase-field modeling for
exploration of process-structure-property chain in materials design

L(x,u; y) = 0 in D;
B(x,u; y) = 0 on ∂D;

(1)

where L is a differential operator and B is a boundary operator. x ∈ D is a spatial variable,
and y ∈ � is a vector of random variables in parameter domain �. � is often considered
to be an N-dimensional hyper-cube. The solution of the stochastic computation to this
problem set is:

u = u(t, x; y) (2)

where t ∈[ 0,T] is a temporal variable in a temporal interval. The solution is a function
of time, spatial variable, and random parameters y. When the PDE is a random differ-
ential equation it can contain random inhomogeneous coefficients, initial or boundary
conditions or random force terms. The random PDE reads as

L(x, ξ ,u; y) = 0 in D; (3)

where ξ denotes a (Gaussian) space-time white noise in D. The random or stochastic
Cahn-Hilliard PDE is given as:

∂tu = �2u + P(u) + ξ , (4)

where � is the Laplacian and P(u) is a potential function that can take logarithmic,
polynomial or other similar forms. In practice we are interested in a set of quantities,

g = (g1, · · ·, gK ) ∈ R (5)

calledQuantities of Interests (QoIs), that are functions of the solution u, in addition to the
solution itself. The QoIs are model outputs that may be the solution of the PDE itself but
more often are functionals of that solution and contain the statistical information about
the output of interest. QoIs often have to be represented using high-dimensional set of
parameters. These outputs of interest in the phase-field model may be interpreted as a
function of the PDE solution or statistical information of such solution. UQ/UP enables
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determining statistical information about outputs of the phase-field model given statisti-
cal information about the inputs. In the next section, we describe themodel, the uncertain
inputs and the QoI that we are interested in.

Computational model
The applied multi-phase-field method

In this study, a multi-phase-field formalism is used to study the evolution of microstruc-
ture at isobaric and isothermal state. A set of non-conserved (0 ≤ φi ≤ 1) and conserved
variables (0 ≤ ci ≤ 1) describe the components of the microstructure, where the non-
conserved variables define the spatial fraction of available phases over the domain (�) and
the conserved variables define the phase compositions. The total free energy of chemically
heterogeneous material involves interfacial and bulk interactions:

F tot =
∫

�

[
f int + f bulk

]
d� (6)

where the two contributing factors are respectively formulated as:

⎧⎪⎪⎨
⎪⎪⎩
f int = ∑

i
∑

j>i
4σij
ηij

[
− η2ij

π2 ∇φi.∇φj + |φiφj|
]

f bulk = ∑
i φifi0(ci)

(7)

with σij as interface energy coefficient, ηij as the interface width, and |φiφj| as the double
obstacle potential. f 0i is the free energy of the homogeneous phase i and ci is it’s molar
concentration. In this study, all concentrations are based on molar concentration of Sn in
each phase. Using the model of the total free energy as a function of the field variables
(φi) and (c), the following forms of the kinetic equations (phase-field and diffusion) are
postulated as the governing equations:

∂φi
∂t

= −
∑
i�=j

Mij

Np

[
δF tot

δφi
− δF tot

δφj

]
(8)

∂c
∂t

= ∇ .
[
D( �φ)

N∑
i=1

φi∇ci

]
(9)

whereMij is the interfacemobility, andNp is the number of coexisting phases at the neigh-
boring grid points. The phase-field equation works only in the interface where φi changes
between 0 and 1. Interdiffusivity (D) is defined as a function of the phase-field order
parameter to easily take into account the diffusivity in various features of the microstruc-
ture (i.e., interfaces, GBs, and bulk phases). The grid points in the solution domain may
comprise a mixture of different phases. The coexistence of the phases in the interface is
stated by the condition of equality of chemical potentials and the mass conservation as:

f 1c1 [ c1(x, t)]= f 2c2 [ c2(x, t)]= ... = f NcN [ cN (x, t)] (10)

c(x, t) =
N∑
i=1

φici (11)
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where f NcN stands as the derivative of the free energy with respect to the composition of
the phase N.

Model parameters and uncertain inputs

In this study, the free energy is modeled using logarithmic potentials in CALPHAD for-
malism (Shim et al. 1996). In the CALPHAD method, the constant terms in the free
energy model are optimized against experimental equilibrium data, though, uncertainty
data does not exist. Both diffusion and interfacial mobility are temperature- and location-
variant in this study and the parameters are reported in (Attari et al. 2018). On the
other hand, surface energy perhaps is the most uncertain and less revealed parameter.
It is defined as the surface excess free energy per unit area of a particular crystal facet
(Vitos et al. 1998). Experimentally, it can be obtained by measuring surface tension, and
computationally, it can be obtained from first-principles (DeWaele et al. 2016) or by semi-
empirical methods (Vitos et al. 1998). It varies by temperature and pressure and exact
determination is hard. In equilibrium, the relevant heterogeneous interface free energies
are related to each other by the Young-Laplace (YL) equation (Liu and Cao 2016):

σSL = σSI + σILCos(θ) (12)

where σSL, σSI , and σIL stand for the solid-liquid, solid-IMC (Intermetallic), and IMC-
liquid interfacial free energies, respectively, whereas θ is the contact angle. On the other
hand, the YL equation fails when there is a contact angle hysteresis since it dictates only
one equilibrium for a homogeneous phase on a perfectly flat surface (Good 1979). A con-
tact angle hysteresis can be defined for real materials based on the advancing contact
angle and the receding contact angle. High-throughput screening of the interface energy
space using the multi-phase-field modeling reinforced with high-throughput machine
learning analysis to exploit the existing patterns can help gain further insight into the
physics of different IMC shapes and wetting characteristics.
To prevent unattended dynamics of particle pushing, we initiate the particle in a 2D

simulation cell in the form of a half-circular particle with a fixed shape and size. The
simulation cell size is 120 × 100, and the initial state of the microstructural domain is
shown in Fig. 2. The color map denotes the composition of the phases, and the black lines
differentiate the phase-field order parameters. The initial composition of each phase is
set to it’s equilibrium value. As the close-up in the lower right corner of the figure shows,
five grid points exist in the interface at the simulation start. The phase diagram of the
Cu/Sn reacting system denoting the important IMCs is also represented in this figure. In
the simulations, Lx and Ly are 79.3 and 66 nm, as�x = 0.66 nmwhereas the time step has
been�t = 0.4×10−8s. The domain is assumed to be at the constant temperature of 250°C,
and we don’t consider any heat release during crystallization. We solve the governing
Eqs. (8) and (9) using an explicit finite difference solver discretized in space and time. The
boundary conditions are periodic at the right and left side of this domain and Neumann
with zero flux at the top and bottom.

Quantity of interest (Fourier descriptor)

Since we are interested in the shape of the IMC andwetting characteristics, we use Fourier
descriptor (FD) analysis (Persoon and Fu 1977; Bowman et al. 2001) to obtain a compact
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Fig. 2 The initial domain schematic used in the phase-field model. The color-map denotes composition of
the phases and the black lines differentiate the phase-field order parameters. A Cu6Sn5 IMC is placed over
the Cu substrate by conserving the field parameter on all grid points. Initially, there are five grid points in the
interface, and the interface width (ηij) is fixed to 4 nm for all interfaces, and the grid spacing is �x=η/6

representation of IMC shape, universal enough to store sufficient information about the
shape. This approach uses border of 2D particles plotted in polar coordinates r and θ

where the origin is the particle centroid. The boundary of the particle is circumnavigated
in the complex plane at constant speed. The step size is chosen such that one circumnav-
igation takes time 2θ and the number of steps is 2k. The concise Cartesian coordinates
(xk , yk) of the IMC edge is extracted using the phase-field order parameter (φIMC) and by
looking for local maxima of the gradients in the coordinates. The coordinates (xk , yk) of
the edge is represented as a complex vector, and the discrete inverse Fourier transform of
this complex vector taken as:

xm + iym =
N/2∑

k=−N/2+1
(xk + iyk)exp

(
−2π i

N
kμ

)
(13)

where N is the total number of descriptors; k is the descriptor number; N is the total
number of points describing the particle;m is the index number of a point on the particle
and i denotes an imaginary number.
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We normalize all the FDs obtained by the largest descriptor to obtain k invariant results
with respect to position, size, and orientation. Hence, the shape will be represented
by a series of independent coefficients in FD analysis in an effective and efficient way.
The output from the FFT is a vector of n complex numbers, f (k), and their magnitude
c(k) = |f (k)| allows to achieve rotation invariance, as the phase information is ignored.
Figure 3(a–f) show reconstruction of a cross shape using different number of FDs. As the
number of FDs increases, the level of captured detail during reconstruction process also
increases. Figure 3 shows themean standard error (MAE) of the position of reconstructed
points with the original shape. It is also shown that to accurately represent corners, we
need to include a greater number of descriptors.

Machine learningmodels
The sobol’ sensitivity analysis

Assuming a non-linear and non-monotonic model function of form of Y = f (xn), where
the input x = (x1, ..., xn) is an n-dimensional vector of input variables and Y is a scalar
quantity of interest, sensitivity analysis studies relationships between model inputs and
outputs. Sensitivity analysis are often categorized based on if i) the approach is deter-
ministic versus stochastic or if the method is ii) global or local. Local sensitivity analysis
evaluates changes in the model outputs for variations in a single parameter input. In con-
trast, in global sensitivity analysis, the simultaneous variation of all model parameters
allows to evaluate the relative contributions of each individual parameter, and the inter-
actions in between to the model output variance. Given that the model inputs can span
a wide range, global sensitivity analysis can determine which reactions and processes
contribute most to the overall response system.
Among many global sensitivity analysis methods, variance decomposition-based Sobol’

sensitivity analysis is so far one of the most powerful techniques (Zhang et al. 2015) and

Fig. 3 Representation of a cross shape using different number of FDs. The level of detail captured by
increasing the number of descriptors. Blue points show the reconstructed geometry



Attari and ArroyaveMaterials Theory             (2022) 6:5 Page 9 of 20

we use this technique to evaluate the global sensitivity in the interface energies of the
multi-phase-field model. An important distinction between Sobol’ and classical sensitiv-
ity is that the Sobol’ sensitivity analysis detects interactions of input variables through
the second and higher order terms, whilst classical sensitivity methods give only deriva-
tives with respect to single variables. The influences of higher order interactions (e.g., the
influence of doubles) on the monitored output are significant in systems comprising more
members.
The sensitivity analysis of the IMC shape to three interface energy parameters was eval-

uated using Sobol’ sensitivity analysis in this study. The Sobol’ first-order sensitivity index
is written in the form:

Si = V (E(Y |Xi))

V (Y )
(14)

where Si measures the main effect of Xi on the model output Y. V is variance and E is
expectation symbol. Interactions between the model input parameters (interface energy
parameters (γαβ ) determine important features of the multi-phase-field model, and are
more difficult to detect than first-order effects. The Sobol’ second-order sensitivity index
given as:

Sij = V
(
E(Y |Xi,Xj)

)
V (Y )

− Si − Sj (for i �= j) (15)

measures the interaction effect between pairs (Xi,Xj). V (E(Y |Xi,Xj)) measures the joint
effect of the pair (Xi,Xj) on output Y. In other words, Sij is the variation in Y due to Xi and
Xj that cannot be explained by the sum of individual effects of Xi and Xj. An analogous
formula for higher-order Sobol’ sensitivity terms is:

∑
i
Si +

∑
i

∑
j>i

Sij +
∑
i

∑
j>i

∑
k>j

Sijk + ... + S123...M = 1 (16)

The sum of all sensitivity indices must be equal to 1. The number of terms in Eq. (16)
increases exponentially with the number of input variablesM. The total sensitivity index
STi is defined as the sum of all sensitivity indices:

STi = E (V (Y |X∼i))

V (Y )
= 1 − E

(
V (Y |X∼j)

)
V (Y )

(17)

Where X∼i are all input variables that do not include the index i.

Sampling

In this study, we use Saltelli sampler as implemented in SALib python package (Usher et
al.) instead of conventional Monte Carlo sampling. While the latter is in general robust,
it demands extensive computational resources. Saltelli (Saltelli 2002; Saltelli et al. 2010)
proposed two methods for overcoming the curse of dimensionality in the full-factorial
design of experiments. In the first case, one may analyze at a reduced computational cost
all effects of the first and total order, plus all those of order k−2, at the cost of n(k+2) sim-
ulations. The second case demands an excessively higher number of function evaluations
(n(2k + 2)) than the first case. However, it estimates the index of the first and total orders
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plus all indices of order 2 and k − 2. Although the second case is computationally more
expensive, it provides more insight into pair interactions. We used the second method to
generate four different sample sets of the three interface energy parameters with 8, 120,
520, and 1024 samples, respectively. Table 1 summarizes the Saltelli sampling parameters.

Learning the microstructures with local and global consistency

The forward propagation of Sobol samples resulted in 1672 simulations (all 4 cases) with
transient data for each that will be used for further analysis of the effect of model input
parameters on the particle shape. A semi-supervised learning method called label spread-
ing (Zhou et al. 2003) is used first to train the data by only labeling a small portion. The
semi-supervised estimators can use this additional unlabeled data to better capture the
shape of the underlying data distribution and generalize better to new samples (Kunsel-
man et al. 2020). Since labeling often requires human labor, whereas unlabeled data is far
easier to obtain, semi-supervised learning is beneficial in many real-world problems, and
it has recently attracted a considerable amount of research.
Given a microstructure-set defined by scalar quantity of interest QoI = X =

{x1, ..., xl, xl+1, ..., xn} ⊂ R
m and a label-set L = {1, ..., c}, the first l microstructures have

labels {y1, ..., yl} ∈ L and the remaining microstructures are unlabeled. The goal is to pre-
dict the labels of these unlabeled microstructures with the assumption of the consistency
of the scalar QoI extracted from the microstructure data, which means: (1) nearby points
are likely to have the same label, and (2) points on the same cluster are likely to have the
same label.
The LS technique considers a finite weighted graph G = (V ,E,ω), consisting of a set

of nodes, V = {1, 2, ..., n} based on a data set QoI = X = {xi, i = 1, ..., n}, a set of
edges E ⊆ V × V , and edge-weight function ω(i, j) > 0. The weight function ω(i, j) is
interpreted as a similarity measure between the vertices xi and xj, and it is defined on G
using a distance metric ρ:

ω(i, j) = h
(

ρ(xi, xj)2

μσ 2

)
, (18)

for some function h with exponential decay at infinity (A common choice is h(x) = e−x).
μ and σ are hyper-parameters and σ is learned by the mean distance to K-Nearest Neigh-
borhoods. The initial labels are represented by membership vectors in an n × c matrix Y
, where Yi,l = 1 if node i has initial label l and Yi,l = 0 otherwise. Given an initial guess
F(0) ∈ R

n×c, the label spreading algorithm iteratively computes:

F(r+1) = βSF(r) + γY r = 0, 1, 2, ... (19)

Table 1 Saltelli sampler parameters

n k n(2k + 2)

(Evaluation arg.) (# of inputs) (Sample-set size)

case 1 1 3 8

case 2 15 120

case 3 65 520

case 4 128 1024
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Table 2 The algorithm for the label spreading semi-supervised method (Zhou et al. 2003)

1. Form the affinity matrix ω defined by ωij = exp(−|xi − xj|2/2σ 2) if i �= j and ωii = 0.

2. Construct the matrix S = D−1/2ωD−1/2 in which D is a diagonal matrix with its (i, i)-element equal to the
sum of the ith row of ω.

3. Iterate F(r + 1) = βSF(r) + (1 − β)Y until convergence where β is a parameter in (0, 1).

4. Let F∗ denote the limit of the sequence {F(r)}. Label each point xi as a label yi = argmaxj≤cF̃∗
ij .

with β , γ � 0 and β + γ = 1. β is clamping factor and it’s value is in (0, 1) that specifies
the relative amount that an instance should adopt the information from its neighbors as
opposed to its initial label. β = 0 means keeping the initial label information; β = 1
means replacing all initial information. The iterates converge to the solution of the linear
system (1− βS)F∗ = γY , but in practice, a few iterations of Eq. (19) with the initial point
F(0) = Y suffices. This yields an approximate solution F̃∗. The prediction on an unlabeled
node j is then argmaxl F̃∗

j,l. The algorithm is given in Table 2.

Variational auto-Encoder

The conventional Convolutional Neural Network (CNN) methods for image recognition
perform extensive image labeling in a supervised way and require a large amount of data
to determine desired classes, e.g., cat and non-cat classes. In this study, to determine
the correlations between inputs and outputs of the phase-field model, we use the VAE
approach, a class of deep generative methods that overcome this limitation by using a
dimensionally much smaller latent space than the input data space. The VAE consists of
a neural network image encoder and image decoder, and a latent space. In this approach,
we convert the input data into an encoded vector where each dimension represents some
learned attribute about the data. The encoder network often results in a single value for
each encoding dimension, and the decoder network subsequently uses these values to
reconstruct the original input.
Figure 4 represents a general schematic of the structure of the VAE where a five-layer

2D convolutional neural network is used as an encoder, and the output of the last layer
is flattened. The phase-field synthetic images were used as an input for the encoder, and
we trained the generator for the microstructure images on hand. Still, we didn’t use the
decoder to reconstruct new images. The input images only illustrate IMC phase-field
order parameter that reflects the IMC shape, and the composition data abandoned. The
images were cropped and binarized before the training step. We are interested in learn-
ing the IMC structure space to establish correlations between the inputs and outputs of

Fig. 4 The Structure of the Variational Autoencoder consisting of an encoder, latent space, and a decoder
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the model in kernel Principal Component Analysis (kPCA) space (Schölkopf et al. 1997).
The decoder section of the VAE is omitted in this study and will be addressed in a future
article.

Results
In this section, we first motivate the work by discussing the computational treatment of
heterogeneous phase growth in the Cu/Sn reacting system in “Treatment of heteroge-
neous phase growth using phase-field method” section. Next, in “Response variability”
section, we explain the response variability in interface energy space using the multi-
phase-field model and YL equation and then the sensitivity results of FD analysis for
characterization of the IMC shape. We then explain the results of semi-supervised learn-
ing of the microstructures with respect to contact angle classes in interfacial energy space
in “Effect of interface energies on contact angle” section. The learning of microstruc-
tural data using VAE and correlations between inputs and outputs of multi-phase-field
is explained in “Visualization of interface energy–microstructure relations using VAE”
section.

Treatment of heterogeneous phase growth using phase-field method

Heterogeneous phase nucleation and growth is the case which a secondary solid phase
nucleates between a solid and liquid medium. It has been studied using single-, two-, and
multi-phase-field methods in a number of articles (Granasy et al. 2019). Traditionally,
Cahn has treated this by considering a foreign wall in the single phase-field formulation
(Cahn 1977). Granasy et al. (2007) has proposed two distinct models where the model
(I) assumes presence of a flat wall does not perturb the structure of the equilibrium
between solid and liquid phase. In model (II), the barrier height of nucleation is overcome
employing surface spinodal in which the undercooling is a function of the phase-field
value. Similarly, heterogeneous nucleation is realized in binary materials, too. A thorough
review of this literature is beyond the scope of the paper, and we limit ourselves to just
these references to provide some illustrative examples (Granasy et al. 2019). In the frame-
work of multi-phase-field modeling, a second solid phase is realized instead of the wall. In
this method, a supercritical seed of the heterogeneous phase is either place by hand in the
domain or activated through induced fluctuations (Azizi et al. 2021; Attari and Arroyave
2016). In multi-phase-field formalism, the user often doesn’t have to calibrate the combi-
nation of interface energies to approximate shape growth for the material. This task can
be pretty complicated as heterogeneous liquid-state reactions are not only influenced by
chemical driving forces but also by the interfacial and elastic energy contributions. Fol-
lowing the guidelines in “Pragmatic modeling with PDEs” section, we use an isotropic
multi-phase-field model with adjustable interfacial energies as uncertain inputs to rea-
sonably and accurately map the inputs to the structure of IMCs for proper understanding
of the formation of Cu6Sn5 IMCs in Cu/Sn reacting systems. The initial morphology and
size of the Cu6Sn5 intermetallic in experiments (although Cu3Sn is likely present but not
resolvable in SEM) is often hard to determine and is dependent onmany factors including
the cooling rate in solder materials (Deng et al. 2003). The initial size of the IMC in the
simulation domain is taken to be sufficiently larger than the critical size that can be cal-
culated using the classical nucleation theory. Herein, we investigate a fundamental role of
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the surface energy on heterogeneous growth of an intermetallic during the solidification
process using the phase-field method.

Response variability

Figure (5) shows the process of propagation of uncertainties in input space (interface
energy parameters) using the phase-field model and the analysis of response variability
in the microstructure due to change in interface energy parameters. We sampled four
sequences of sample sets from a sufficiently large interfacial energy space range and mod-
eled the transition of the initial seed of IMC into various morphologies. The cumulative
probability of quasi-random samples from the interface energy space is shown in Fig. (5a).
By feeding these samples to the phase-field model, we obtain extensive microstructure
data that changes in time. A number of these microstructures extracted from a fixed time
are shown in Fig. (5b). The microstructure pallet shows only 200 microstructure cases
out of the total of 1672 simulations, and we specifically focus on the five different variants
shown next to this pallet. These are the most common cases that we observed by briefly
checking the images.
In the first and second cases, the IMC tends the wet the substrate. Though, the wetting

behavior is different in each case. The IMC tends to wet the substrate slightly in the for-
mer, but it does not spread over it. In the latter, the IMC behaves like a liquid and spreads
over the substrate very fast. In the third case, the shape of the IMC remains invariant to
the initial condition. In this case, the IMC either grows or shrinks with the initial con-
tact angle (θ = 90°) and looks very similar to the initial condition. In the fourth case,
evolution starts by dewetting the substrate and proceeds further until the IMC turns to
a droplet over the substrate. In some cases, upon good waiting, IMC gets separated from
the substrate surface over time. Finally, the IMC dewets the substrate in the fifth category
and grows with a contact angle higher than 90°.
To rank and understand the role of the three interface energies on these observed

IMC shapes, we performed the sensitivity analysis using the method described in
“The sobol’ sensitivity analysis” section and the results are shown in Fig. 5c. The Sobol’s
first-order and total sensitivity indices for the three of the largest sample sets (i.e., 120,
520, and 1024) are shown in three distinct plots. As indicated in the plots by gray-colored

Fig. 5 The process of Sobol’ sampling, model forward run, and Sobol sensitivity results
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bars, all or some of the first-order sensitivity indices are negative for 120 and 520 sam-
plings, and it displays all positive for 1024 sampling. These trials show that at least 1024
PFM simulations are required to realize the parametric effect of these input free energies
on the output of the phase-field model (i.e., Fourier Descriptor). The sensitivity analysis
infers that the solid-IMC interface energy σSI is the most effective interface energy on
the obtained FDs, and the second foremost important parameter is IMC-liquid interface
energy σIL. Overall, the differences in sensitivity of σSI and σIL are not noteworthy, and it
is hard to conclude if one of these parameters alters the shape more than the other. The
results suggest that the three interface energies affect the shape considerably altogether,
maybe not equally.

Effect of interface energies on contact angle

In equilibrium, the relevant heterogeneous interface free energies are related to each other
by the YL equation, i.e., σSL = σSI + σILCos(θ) with a hysteresis involved for all mate-
rials. We have identified the three contact angle regions in the interface energy by using
YL equations. We first inserted the sampled points in YL to obtain the contact angle val-
ues. Not all of these points are feasible in the YL equation, and some of these points got
rejected. Figure 6(a) illustrates 766 points out of 1024 inserted samples into YL equation
in 3d interface energy space where the colors indicate the calculated contact angles using
the YL equation. This plot differentiates three regions that the IMC forms a contact angle
below 85 (green region), between 85 and 95 (blue region), and above 95 degrees (yellow
region). Besides the color, the size of the spheres indicates that the contact angle increases
as we move in the direction of σSI .
Similarly, we used multi-phase-field calculations with semi-supervised machine learn-

ing analysis to carry out contact angle and shape analysis. The key to the semi-supervised
learning method is the consistency assumption, which essentially requires a classifying
function to be sufficiently smooth. The results allow us to identify the same three contact
angle regions using the FD feature extracted from the phase-field images. Similar to the
results shown in Fig. 6(a) for the YL equation, we have identified the three contact angle

Fig. 6 (a) Distribution of the contact angle (θ ) of IMC over the substrate obtained by the Young-Laplace
equation. (b) Classification of the phase-field microstructures based on label spreading method. defines
the region where contact angle (θ ) is above 95°, defines the region where 85 < θ < 95, and defines the
region where θ < 85. For interpretation of the colors in this figure refer to the online version of this document
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regions in the interface energy by the combination of phase-field and semi-supervised
machine learning methods. Figure 6(b) shows these three regions that correspond to
region i) green: θ < 85◦, region ii) dark blue: 85◦ < θ < 95◦, and region iii) yellow:
θ > 95◦. In calculating these regions, we have used LS clustering with KNN kernel and
clamping factor (β) of 0.2, meaning that we preserve more data similar to initial labeling.
We only initially labeled 35 samples that are shown with square colored markers in the

small scatter plot on the top-left corner of Fig. 6(b). The unlabeled points are shown with
white markers with gray edge lines. The decision boundaries are obtained by training the
Support Vector Classifier (SVC) with a linear kernel on 70% of the data as training-set
and 30% as test-set. In classification problems, good classification accuracy is the primary
concern. Therefore, the confusionmatrix for the SVC classifier is reported in Fig. 7(a) and
true class labels are listed along the x-axis, and the SVC class predictions are listed along
the y-axis. Along the first diagonal are the correct classifications, whereas all the other
entries show misclassifications. Figure 7(b) shows the confusion matrix for phase-field
and Y-L predictors. The prediction accuracy is 85% and 81% for wetting and dewet-
ting class labels, respectively. However, it reduces to only 25% for invariant class labels,
and the difference in labeling invariant cases by the semi-supervised and Y-L models is
considerable.
The YL equation dictates a narrow region for invariant shape in the middle area shown

by the blue color in Fig. 6(a), where the equilibrium angle remains close to 90°. Moreover,
the points form an inverted pyramid region in the 3d interface energy space. These empty
regions in the YL equation input space are due to the fact that the arccosine value is out
of range, and it does not predict any conceivable contact angle. On the contrary, not all
the shapes that are obtained by the phase-field model reached equilibrium. Therefore,
the obtained contact angles are non-equilibrium values and are different from the YL
equation. Besides, as seen in Fig. 6, there are markers outside the region that is accessible
by the YL equation where the phase-field model produces results. This observation is
attributed to the fact that many of the contact angles we see in these regions are not
equilibrium ones.

Fig. 7 Confusion matrix for (a) all classes using SVC classifier with 30% of phase-field data as test, (b)
Confusion matrix built on phase-field classifier predictor and Y-L classifier.
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Visualization of interface energy–microstructure relations using VAE.

To further inspect the dataset for understanding the effect of interface energies on IMC
shape, we train a VAE reinforced with a regression model to extract the correlations
between inputs (i.e., interface energies) and outputs (i.e., microstructure images) of the
phase-field model. The model optimizes simultaneously on microstructure images and
phase-field model input parameters and achieves a well-structured and dense repre-
sentation (latent space embedding). The latent space (reduced image data) is further
dimensionally reduced by the kPCAwith a linear basis function kernel. This helps to visu-
alize the image data in 2D spaces to further detect correlations between parameters. If the
microstructure image data and phase-field input parameters correlate, the images should
cluster in the VAE latent space.
Figure 8 shows a collection of the microstructures and representative clusters in the

image dataset along with the calculated VAE latent space embedding (right figure). The
clusters are the same ones that we explained in “Response variability” section, except that
we merge the category one and two into one cluster (i.e., wetting and fast wetting). The
figure shows the first two components of the kPCA space representation of the validation
set. It provides a qualitative overview space that can further be used to find correlations
with input parameters, i.e., interface energies. The kPCA axes have no actual physical
meaning. They are obtained using a basis transformation to recognize and join the VAE
images and the input parameter space in a dense layer. Each microstructure image is plot-
ted at its position in the dimensionally reduced latent space embedding of the VAE. The
images cluster in regions of similar sizes and shapes. The border of these clusters is esti-
mated visually by the colored dashed lines in Fig. 8. The figure shows that the wetting
structures (both wetting and fast wetting cases) are located at the bottom of the plot cov-
ering negative kPCA1 and entire kPCA2 space. The invariant structure (category II) is
located in the central section of this plot around kPCA1 and kPCA2. As we move away
from the central section, we can see the other shape categories. The droplet category is
located in the top right of the kPCA plot, and the dewetting cluster is located in the top

Fig. 8 Left) Example clusters identified by visual inspection of the data, (i) invariant, ii) wetting, iii) dewetting,
and v) droplet. Right) VAE latent space representation of microstructure. The classification boxes indicated by
dashed lines are visually set to roughly identify the regions in kPCA space where each microstructure class
belongs
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left of the kPCA plot. These clusters infer a good correlation between the inputs and
reduced latent space due to the clustering of different categories in kPCA space.
Additionally, we color-coded the latent space with each parameter to find the cor-

relations between the interface energies and microstructures. In contrast, Fig. 9(a-d)
shows the position of each sample in the latent space with their respective color-coded
input parameters. It visualizes the interplay between parameters and their significance
on microstructural features. The results in Fig. 9(b) and Fig. 9(d) indicate that gradual
decrease in σSI together with increase in σSL leads to wetting morphology where the
degree of wetting increases when the difference between σSL and σSI is maximum. More-
over, as wemove in the wetting class region in the lower section of the kPCA space toward
the negative kPCA spaces, the degree of wetting becomes more pronounced. Figure 9(c)
shows that σIL decreases during this movement while the other two parameters are almost
constant. Another conclusion can be drawn when σSI is maximum, σSL is minimum, and
σIL changes from 0.1 to 1.1. In such conditions, the dewetting structure turns into a
droplet structure. The droplet structure becomes vivid when kPCA1 and kPCA2 are max-
imum or parameter-wise, σSI and σIL are maximum, and σSL is minimum. On the other
hand, transition in σIL space covers all morphologies with a uniform change from the
left-side in Fig. 9(c) to the right.

Conclusion
In this work, we proposed a systematic strategy for machine learning-assisted high-
throughput study of the microstructure of materials. The ultimate goal is the
microstructure-sensitive design of the response of materials using multi-phase-field
under the framework of ICME to overcome the curse of dimensionality. We prevailed

Fig. 9 Correlation of the microstructures in the dataset with the three interface energy parameters. (a) VAE
latent space representation of all microstructures, (b) Solid-IMC interface energy (σSI), (c) IMC-Liquid interface
energy (σIL), and (d) Solid-Liquid interface energy (σSL) from the validation set. For interpretation of the colors
in this figure refer to the online version of this document
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over the large spreads in inputs, the large spreads in outputs, uncertainty in a com-
plex nonlinear model, and complex image featurization tasks through automation of
the computation of a large number of simulations and post-processing tasks, employ-
ing a semi-supervised machine learning method, and variational autoencoder (VAE),
i.e., a deep generative learning method. We layout the challenges and opportunities
in optimal design or understating of the microstructure of materials. Microstructure
characterization and classification have been identified as essential steps in building
processing-structure-property linkages for the ultimate goal of materials by design.
In summary, we sampled four instances of Sobol samples with different sizes from the

three interface energies and carried out in total 1672 phase-field simulations. Accord-
ingly, we reduced the dimensionality in the images by using Fourier descriptor analysis.
As a result, we were able to perform sensitivity analysis due to variations in inputs and
identify and rank the effect of interface energy on the shape of the IMC. Next, we used
two distinct machine learning methods to determine the correlations between inputs and
outputs of the multi-phase-field method. We first employed the label spreading method
(i.e., semi-supervised machine learning method) by labeling only 35 microstructures out
of 1672 images into three classes to spread these labels across the other unlabeled data.
We compared these results with the Young-Laplace (YL) equation results and denoted the
similarities and differences. Overall, the phase-field and YL observations follow a simi-
lar trend. However, the main difference is the applicability of the phase-field simulations
in the regions that YL equation cannot work. We showed that semi-supervised methods
are indeed great tools to train and learn high-performing microstructure classification
models.
Furthermore, we used VAE, a deep generative neural network method, to determine

the correlations between inputs and outputs of the phase-field method. The VAE method
allows establishing direct correlations between reduced microstructure image data and
inputs of the physical model. The results show that there is an inverse correlation between
σSI and σSL and they act simultaneously on the shape of IMC where an increase in the
former and decrease in the latter changes the shape from dewetting structures to wetting
structures.
We applied automated combinatorial data-driven methods in conjunction with a

computationally expensive microstructure model to uncover subtle relationships in
microstructural data.
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