
Theoretical basis for phase field modeling 
of polycrystalline grain growth using 
a spherical‑Gaussian‑based 5‑D computational 
approach
Lenissongui C. Yeo1, Michael N. Costa1 and Jacob L. Bair1,2,3*   

Introduction
A detailed understanding of ongoing microstructure changes during a polycrystalline 
grain growth is of great importance considering that the state of the microstructure 
highly influences material properties (Watanabe 1988). Grain Boundary Engineering has 
helped improve materials for many applications (Palumbo et  al. 1998); including elec-
trical conductivity (Lu et al. 2004), corrosion resistance (Lin et al. 1995; Shimada et al. 
2002), and creep (Lehockey and Palumbo 1997). A crystallographic representation of the 
grain boundary anisotropy is generally represented with five degrees of freedom, where 
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three degrees represent the misorientation between the lattices of the two grains, and 
the other two degrees are associated with the interface plane between the grains. A com-
plex 5-D anisotropy is therefore involved in the relationship between material process-
ing, structure, and properties.

An effective method of simulating evolutions at the mesoscale involves using phase 
field modeling (PFM). The application space of PFM is wide including solidification 
(Warren et al. 2003; Gránásy et al. 2004a), solid state phase transformations (Bair et al. 
2017; Heo et al. 2019), and grain growth (Moelans et al. 2008a, b; Admal et al. 2019). In 
the case of grain growth, one PFM method uses non-conserved order parameters indi-
vidually assigned to each grain represent continuous functions of that evolve with space 
and time (Chen and Yang 1994). Although highly efficient, PFM has limitations in mod-
eling materials with complex anisotropy, directly represented by direction-dependent 
interface energies, instead of energies variation between different grain combinations 
(Hirschhorn et al. 2019; Greenquist et al. 2020; Bair et al. 2020).

In this work, we expand on the use of spherical gaussians in adding complex direc-
tional anisotropy to phase field models. This is based on work by Bair et al. (2020), which 
proved efficient in the case of comparative dendritic growth (Kobayashi 1993). This work 
outlines the implementation of spherical gaussians to simulate anisotropies in poly-
crystalline grain growth using PFM. The high flexibility of spherical gaussians allow the 
application of anisotropy in any desired directions, shaping the anisotropy into any pos-
sible complex form (Bair et al. 2020). 2-D gaussian switches, are used to turn on and off 
specific 3-D anisotropic parameters creating a GB energy that morphs in real time and 
space as the GB plane or grain orientations change.

The data used to generate the expanded PFM are GB energy minima. The 5-D con-
tinuous function derived by Bulatov et  al. (2014) is too computationally expensive to 
implement directly into a PFM, so a MATLAB code is used to scan the full 5-D space of 
GB’s by simulating all the theoretical GBs in a sample. The GB energy is then calculated 
using the 5-D continuous function developed by Bulatov et al. (2014). Once all the ener-
gies are stored, the energy array is scanned for all the local minima. These GB energy 
values, along with their associated GB geometry (GB plane orientation and misorienta-
tion between grains), are the basis for the spherical gaussian and expanded PFM. This 
approach assumes that the key driving force for anisotropic polycrystalline grain growth 
will be the minima in energies, and that while some aspects of the continuous function 
will be lost, the overall effects will be similar.

Orientations and misorientations
A clear understanding of the representation of individual grains and grain boundaries is 
necessary before proceeding to the development of the phase field model for polycrys-
talline grain growth. Specific definitions of the ideas of orientations and misorientations 
are henceforth needed. Whereas orientations are defined as passive rotations which 
transfer any point in a crystal (grain) reference system to that of a specimen (sample) 
reference system, misorientations represent the passive rotations from one crystal (grain 
A) reference frame to another crystal (grain B) reference frame (Krakow et al. 2017). The 
passive rotations in both cases can be represented by various methods including Euler 
angle representation, rotation matrices, quaternions, and axis-angle pairs. Quaternions 
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will be used for the representation of both orientations and misorientations in the grain 
growth PFM considering their computational efficiency and their simpler expressions. 
Modified versions of such expressions are presented as follows (Horn 1987):

where q0 is the scalar component; and qa the vector component of the unit quaternionq; 
⇀
a = (a1, a2, a3) is the unit vector of the axis of rotation; and θ is the angle of rotation.

Considering the case of a specific grain boundary between two grains A and B, the 
quaternion representation of the system is made up by representing the orientation of 
each grain with respect to the sample reference frame R as qA − R (orientation of grain A 
in reference frame of R), qB − R (orientation of grain B in reference frame of R), and the 
misorientation between grain A and grain B as qB − A (misorientation from grain B to 
grain A in reference frame of A). The misorientation qB − A can be determined via quater-
nion multiplication using either of the following expressions:

or

with:

where q−1
A−R is the inverse (reciprocal); qA−R the conjugate; and ‖qA − R‖ the norm of 

qA − R. Since qA − R is defined as a unit quaternion, ‖qA − R‖ = 1, and q−1
A−R = qA−R.

Two different expressions are defined for qB − A due to quaternion multiplication being 
non-commutative. The two expressions are not equivalent, but conjugate of each other; 
corresponding to rotations by same angles around axes vectors of opposite directions 
(Dorr et al. 2010). An arbitrary convention will need to be specified based on the com-
parative quaternions from the library of misorientations, to be used during the phase 
field simulation for polycrystalline grain growth. Further explanations of this aspect are 
presented in the phase field model development. A representation of the orientation and 
misorientation is given in Fig. 1.
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Another representation of GB geometry is the axis-angle pair (Krakow et  al. 2017). 
This form is useful because it allows for direct and intuitive interpretation from grain 
orientation and GB misorientation to their mathematical description. The axis-angle is 
represented by a vector in the direction of the axis of rotation with a magnitude equal to 
the rotation (misorientation) angle.

Building the library of GBs
The proposed driving force for the expanded PFM are the GB energy minima in the 5-D 
anisotropic space. Energies are calculated using the MATLAB function developed by 
Bulatov et al. (2014) and available in their supplemental data. The function requires two 
inputs in the form of rotation matrices that represent two separate grains in the space. 
A MATLAB simulation has been developed to generate the rotation matrices and feed 
them into the 5-D continuous function developed by Bulatov et al. (2014), calculate the 
GB energies, and output the energy minima along with their corresponding quaternions.

The simulation creates two separate grains (grains A and B) in the 5-D space. Grains A 
are generated by inputting their axis-angle pairs iteratively. Using axis elements ranging 
from zero to three and angles from zero to 180 degrees, 51,120 unique grain As are pro-
duced after normalizing the rotation axes and removing duplicates. To generate the set 
of grain Bs, each grain A is rotated about 284 axes by angles five through 180. In total, 
this generates a space of approximately 2.54 × 109 unique GBs.

Fig. 1  Orientations and Misorientations representation of a grain boundary using quaternions
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The energy for each boundary is calculated using Bulatov et al.’s continuous function 
(Bulatov et al. 2014), then all local minima are determined using MATLAB’s local min-
ima function with a minimum prominence value specified. When finding local minima, 
the prominence is the smaller of the two vertical distances measured between the local 
extreme and its two neighboring, opposing extrema. Specifying a minimum prominence 
introduces a requirement in the algorithm that local minima must be at least a certain 
amplitude from their neighboring maxima to be included in the list. Figure 2 demon-
strates the usage of the minimum prominence parameter. Without a minimum promi-
nence specified, the minimizing function found 38 local minima along the rotation axis. 
In this case, a minimum prominence set at 0.18 eliminated the noise and only included 
two (the lowest 5%) of the total local minima.

To verify that the code generates and correctly feeds real grain boundaries to the GB 
energy code, sample geometries were analyzed and verified with molecular dynam-
ics data from the work by Olmsted et al. (2009). Eight of the minima found in the gen-
erated 5D space come close to coherent twin boundaries, and four of them are nearly 
exactly coherent twins. The discrepancy can be attributed to the fact that the space was 
not covered densely enough; increasing the misorientation angles in smaller increments 
should allow the generation of exact coherent twin boundaries. Despite the absence of 
perfect coherent twin boundaries, the existing space encompassed boundaries that gave 
an energy within 10 % of that reported by Olmstead et al. for coherent twins. It could 
also be seen that, as the boundaries generated moved closer towards a coherent twin, the 
energies moved closer to the expected value. The GB energy minima for a Σ3 misorien-
tation were plotted and are shown in Fig. 3. There are 2 minima for each of 2 coherent 
twin boundaries, one boundary plane normal at [111] and one at 

[

111
]

.
By using the minimum prominence parameter when calculating the energy min-

ima, we only account for deep minima. We consider that the effect when comput-
ing the gaussian will be highly more significant compared to if shallower minima are 
included. The cutoff for our minima ends up being 55% of the maximum energy along 

Fig. 2  GB energy as a function of misorientation angle about 
[

30 1]
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each rotation axis when using a minimum prominence of 0.18. In the future, a smaller 
minimum prominence requirement can be employed to include a larger set of minima if 
desired.

5‑D anisotropy parameter
Spherical gaussian anisotropy

The development of the 5-D anisotropy parameter is based on a previous work using 
spherical gaussians to create complex anisotropies in interface energies (Bair et al. 2020). 
The study involved using spherical Gaussians with multiple differing minima in any 
combination of directions to properly represent the anisotropy for simple phase field 
modeling in 3-D interfaces. It provides a high flexibility in modeling the anisotropy as 
shown in Fig. 4. The gaussian equation is as follows:

with

where Gu is the gaussian in direction u; n is the total number of gaussians to be added; 
au is the amplitude of the gaussian; λu is a parameter controlling the width (sharpness) of 
the gaussian; μu is the unit vector to the center of the gaussian; and υ is the normalized 
gradient vector of the order parameter η.

A comparative investigation of dendritic growth to the work by Kobayashi (1993) showed 
the high adaptivity of the methodology. Further analysis revealed that adding anisotropy to 
the bulk or the interface yielded major differences in the growth process; hence the need 
to limit it to the interface. This interpretation will therefore be considered in the broadly 

(9)Gu(v,µu, �u, au) =
∑n

u=1
aue

�u(µu•v−1)

(10)υ =
∇η

�∇η�

Fig. 3  Σ3 GB energy from proposed method showing minimum for coherent twin
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developed grain growth model. Additional considerations will also be given to the sharp-
ness parameter λu considering the results indicating its significant effect on dendrite mor-
phology in materials with low anisotropy, which may require further investigations for the 
cases of polycrystalline grain growth.

Gaussian switch

As stated, the previously developed method is used as base to create a 5-D anisotropy 
parameter to be applied at the interface for the phase field modeling of polycrystalline grain 
growth. The 5-D energy is a combination of a 3-D bulk GB misorientation parameters and 
2-D GB plane. The methodology involves using 2-D gaussian switches to turn on and off 
specific 3-D anisotropic parameters, creating a GB energy that morphs in real time and 
space as the GB plane or grain orientations change.

Fig. 4  Spherical Gaussian (SG) examples: (a) α = -0.5; λ = 5; μ = <100>; (b) α = 0.5; λ = 10; μ = <100>.
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The switch provides a comparison of any misorientation, from a laboratory sample, 
between two grains qB − A to misorientations form the library qB − Alib of misorientations 
generated using the work by Bulatov et al. (2014). The library misorientations are misori-
entations taken by assuming that only some threshold value for low GB energy is needed 
to produce accurate overall grain growth (e.g., lowest 50% of GB minima). The threshold is 
to be adjusted as phase field simulations of experimental data are ongoing. The directions, 
μuB − Alib, in which the gaussian must be added or subtracted, are provided for each library 
misorientation qB − Alib. Whenever there is significant relation between qB − Alib and qB − A, 
the switch will act as a scaling factor for the gaussian anisotropy; whereas in the case of no 
relation, a base value is assumed.

Considering any misorientation qB−A =
(

qB−A0
, qB−A1

, qB−A2
, qB−A3

)

 and any library 
misorientation qB−Alib

=
(

qB−A0 lib, qB−A1lib
, qB−A2 lib, qB−A3lib

)

 , the switch function is as 
follows:

where Ƨ is the switch function; θB − A is the angle of rotation for misorientation qB − A; 
θB−Alib

 is the angle of rotation for library misorientation qB−Alib
 ; θ∆θ – Angle variance, 
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 ; 
−→
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 ; θ∆V – Axis 
variance, is the angle between both unit vectors; α is the acceptable range of angle from 
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.
Each grain is assigned a bulk orientation, or the orientations can be directly taken from 

experimental data. As previously discussed, quaternions, defined in the sample reference 
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frame R, are used for orientation representation. The misorientation between grain A and 
grain B, qB − A, is used to represent the on-off switch. The on-off switch equals 1 for a spe-
cific library misorientation qB − Alib (qB − A = qB − Alib ). Transitioning values (0 < x < 1) will be 
generated for nearby, somewhat equivalent misorientations (qB − A ≈ qB − Alib), and 0 else-
where for completely different misorientations (qB − A ≠ qB − Alib). The effect of the switch 
with varying parameters is presented in Fig. 5.

The transitioning values are generated considering that no strict rotational effects exist 
in real life. A library misorientation qB − Alib representing a 30o rotation around the (1,0,0) 
axis will not be very far off energetically from a laboratory misorientation qB − A represent-
ing 29.5o rotation around the same axis. A laboratory misorientation rotational unit vec-
tor, separated by a 0.5o to a library misorientation rotational unit vector, will also not be 
that far off in effect. The effect might be dampened, but not necessarily null as can be seen 
by looking at any continuous GB energy representation. Figure 6 shows the variances in 
possible comparison outcomes between qB − A and qB−Alib

 ; inducing transitioning values 
(0 < x < 1).

5‑D parameter

Using the spherical gaussian anisotropy equation Eq. (9) and the developed gaussian switch 
Eq. (11), the 5-D anisotropy parameter between two grains A and B in a laboratory sample 
of reference frame R can be generated as follows:

with:

where EAB is the 5-D anisotropy parameter; Ebase is the base value of the gradient energy 
coefficient to which the gaussian is added; Glib is the gaussian for a library misorien-
tation;; aulib is the amplitude of the gaussian; λulib is a parameter controlling the width 
(sharpness) of the gaussian; μuB − Alib is the unit vector to the center of the gaussian; 
µuB−AlibR

 is μuB − Alib in the reference frame of R; qA − R is the orientation of grain A in 
reference frame of R; qB − R is orientation of grain B in reference frame of R; m is the total 
number of library misorientations; n is the total number of gaussians to be added for a 
specific library misorientation; vAB is the normalized gradient vector of the order param-
eters that specifies the orientation of the normal to the grain boundary between grains 
A and B, and is perpendicular to the contour at which the phase field profiles intersect.
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Phase field model
The 5-D anisotropy parameter presented in Eq. (18) is the gradient energy coefficient 
used to control the interface. Considering the broader spectrum of a polycrystalline 
grain growth, with numerous order parameters to represent the many grains present 
in the simulation, Eq. (18) needs to be further developed to have a continuous func-
tion accounting for all the possible combinations of order parameters. This is done by 
setting up a modified version of the work by Moelans et al. (2008a):

(22)E(θ , v) =

∑p
i=1

∑p
j>1

Eij η
2
i η

2
j

∑p
i=1

∑p
j>1

η2i η
2
j

Fig. 5  Variation of the switch function’s effect with varying parameters
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where p is the total number of non-conserved order parameters; Eij is the 5-D anisotropy 
parameter presented in Eq. (18) for two grains of orientation i and j; E(θ , v) is the overall 
gradient energy coefficient dependent on misorientation between adjacent grains θ and 
the inclination of the grain boundaries v; ηi and ηj are non-conserved order parameters. 
At a diffuse grain boundary with changes for ηi and ηj, E(θ , v) = Eij . This formulation 
accounts for each grain contributing to the grain boundary; hence it accounts for both 
double junctions and triple junctions where there is a smooth transition.

The proposed free energy functional, based works by Chen et al. (1994) and Moe-
lans et al. (2008a), is as followed:

with

where F is the total free energy of the system; ηi and ηj are the non-conserved order 
parameters; m is a driving force parameter; fbulk is the bulk free energy; φ, ω, and γ are 
phenomenological parameters. φ and ω are usually equal to 1, but variations may occur.

Moelans et al. (2008a) provide means of calculating the GB energy and GB width. 
Modified versions are as follows:
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Fig. 6  Variances in possible comparison outcomes between qB − A and qB−Alib
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where σij is the misorientation and inclination dependent specific GB energy between 
grains with orientations i and j; lij is a measure for the width of the diffuse grain bound-
ary region; fbulk, interf is the interface bulk free energy dependent on γij; gij is a numerically 
calculated function values dependent on γij, which a graph is provided for determina-
tion. γij is to be selected as to minimize the variations of the grain boundary widths in 
an acceptable range to be determined after further simulations. If necessary, it can be 
given anisotropy similar to Eij to produce more uniform interface widths. Moelans et al. 
(2008a) propose 1.5 as an acceptable value; however, variations may still occur.

The time evolution of the non-conserved order parameter is controlled using the 
Allen-Cahn equation:

where L is the constant grain boundary mobility.
The functional derivative in Eq. (27) can be expanded as follows:

The derivative of E(θ , v) with respect to ∇ηi can further be determined using Eqs. (18) 
and (22). As previously noted, E(θ , v) = Eij at diffuse grain boundary. The formulation 
of Eq. (22) just provides a continuous function for the phase field modeling considering 
all types of junctions. The summation term “ 
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 , E(θ , v) = 0 to avoid any undefined division by zero.
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direction, d, can be approximated as followed:
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In a future study, phase field simulations will be performed using Eq. (31) in the 
Multiphysics Object Oriented Simulation Environment (MOOSE) to prove the the-
ory proposed in this work. The necessary physics are already available in MOOSE. 
Spherical gaussians kernels and material class developed in previous works (Bair et al. 
2020) will be modified to develop a new material class and kernel in MOOSE to simu-
late Eq. (31) for polycrystalline grain growth.

The model was specifically developed for a finite element differential solver appli-
cation through MOOSE. Investigation of different forms of differential solver (e.g., 
semi-implicit Fourier spectral method) would be reserved for later works when suc-
cessful application of the finite-element scheme yields accurate enough results or 
when determined that simpler modifications may be more advantageous than opting 
for a new method.

It is noteworthy that this method of adding anisotropy could be modified to fit into 
the orientation phase field models (Pusztai et al. 2005, 2008; Gránásy et al. 2004b; Kor-
buly et al. 2017a, b; Henry et al. 2012). Pusztai et al. already proposed the possibility of 
including the full 5D GB energy using the 4 values of quaternions for each grain to make 
4 orientation field variables in a simulation (Pusztai et al. 2005). This method could be an 
attractive alternative as it would reduce the total number of variables necessary to model 
the system. However, it would require significant modification of the form of anisotropic 
equations used in this work. Both should be developed further and tested to compare 
the benefits of each.

Conclusions
A theoretical phase field model for polycrystalline gain growth was developed using 
a spherical gaussian method to add 5-D anisotropy to the grain boundary energy. The 
validity, performance, and possible improvements of the model will need to be deter-
mined by performing simulations using MOOSE, with comparison to experimental 
studies.

With a determined minima set acquired by verified methodology, one could apply 
the gaussian method to specify anisotropy. Bulatov et  al. (2014) continuous func-
tion for grain boundary energy for nickel and different materials is used in this sense 
by creating numerous boundaries that incorporate the whole of the 5D space using 
quaternions, calculating the energies, and finally finding the minima set while con-
sidering the cut-off energy percentage by using MATLAB’s minimum prominence 
parameter. From there, the gaussian model with the on/off switch would be able to 
look at any misorientation and determine whether to subtract the energy in case of a 
minima (% subtraction with the continuous switch) or keep the maximum energy as 
default value.

Similar methods as those described in this work could be applied to add anisotropy 
to GB mobility in PFM. Several studies have shown significant changes in mobility with 
temperature and crystallography, which will likely have a strong effect on the morphol-
ogy of the microstructure. However, due to the current lack of a continuous function for 
GB mobility, this addition was beyond the scope of the current study.
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Upon successful validation, the model may be used to choose ideal treatments to pro-
duce a specific microstructure for improving material properties without costly trial and 
error experimental methods; considering that it can also be further modified to consider 
stress driven polycrystalline grain growth.
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