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Introduction
High entropy alloys (HEAs), as proposed by (Yeh, et al. 2004) and (Cantor, et al. 2004), 
are attracting growing attention in the field of materials science. These alloys are usually 
composed of several components in near or equal atomic proportions. They have been 
found to possess various unique properties, e.g., the magnetocaloric effect (Yuan, et al. 
2017), high strength (Chen, et al. 2020; Du, et al. 2020; Qin, et al. 2020; Tsai, et al. 2013), 
and excellent ductility (Liu, et  al. 2019) that are challenging to obtain in traditional 
alloys. Also, many medium entropy alloys (MEAs), i.e., concentrated multicomponent 
alloys, but with a composition that slightly deviates from the strict definition of HEAs or 
with fewer components, seem to show these effects. Among all HEAs, Al-Co-Cr-Fe-Ni 
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is a widely studied system, showing promising features and properties, such as excel-
lent compressive properties, good yield strength, and good plastic deformation abil-
ity (Wang, et al. 2008; Zhou, et al. 2019). However, Co is an expensive component. To 
reduce the cost of production, researchers investigated the Co-free AlCrFeNi MEAs 
(Chen, et al. 2017; Dong, et al. 2016; Jiang, et al. 2019; Jin, et al. 2019), which also exhibits 
a good combination of strength and ductility with adjusting the alloy’s compositions. For 
such HEAs/MEAs, there is a wide window for property and composition optimization. 
However, with the vast amount of influencing parameters, the study of phase transfor-
mations and microstructure evolution can become highly complex. Therefore, besides 
experiments, efficient and accurate microstructure evolution simulations are prerequi-
sites to reduce the design time and cost for new multicomponent alloys.

The Phase field (PF) method is a powerful tool to investigate the microstructure evolu-
tion of alloys. However, the application of the PF method to multicomponent alloys, such 
as Al-Cr-Fe-Ni, is challenging and still rare because of the enormous thermodynamic 
and kinetic information required in the simulations. To date, several ways have been 
applied to introduce composition-dependent thermodynamic information into PF simu-
lations. For example, Taylor’s second-order expansion about the equilibrium mole frac-
tions (Jokisaari, et al. 2017; Choudhury, et al. 2015) was used to fit the Gibbs free energy 
densities of the different phases. However, while the mathematical treatment is efficient 
and straightforward for binary systems, a truncated Taylor series is only valid near the 
expansion point, and the second-order expansion often leads to unphysical molar frac-
tion values in the PF simulations when applied for ternary or even higher-order systems. 
As an alternative, composition and temperature-dependent functions constructed based 
on the CALculation of PHAse Diagrams (CALPHAD) approach (Kitashima 2008) were 
used to calculate the Gibbs free energy densities and diffusion potentials in the PF model 
for multiphase, multicomponent systems. The CALPHAD Gibbs energies are available 
for most binary and ternary systems and many multicomponent alloys (Kitashima 2008). 
However, for some CALPHAD models, such as those based on a sublattice or order-
disorder model, an explicit description as a function of the local molar fractions of the 
different elements (as generally required in PF simulations) is only developed recently 
(Schwen, et al. 2021). The proposed sublattice phase field model permits direct use of 
the CALPHAD sublattice model expressions for an arbitrary number of constituents 
and sublattices; however, such an approach requires that the coefficients of the CAL-
PHAD Gibbs energy expressions are publicly available, while for many MEAs/HEAs sys-
tems there is only a description available in the commercial databases which do not give 
immediate access to the Gibbs energy coefficients. Moreover, extra equations are needed 
compared with the traditional KKS model. Thus for quaternary or quinary alloys, the 
computational cost may become high. Another alternative is to precompute the thermo-
dynamic and kinetic data for discrete compositions and store them in tables (Heulens, 
et al. 2011; Chatterjee and Moelans 2021) for use in the PF model. However, a disadvan-
tage for such method is that for multicomponent alloys (four, five, or more elements), 
the number of data points generated will be massive, which consequently increases the 
computational cost. Moreover, getting an accurate discrete thermodynamic and kinetic 
description for HEAs/MEAs is becoming challenging when more than three elements 
are considered in the simulation, as the size of the dataset increases dramatically with 
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the number of elements. PF simulations for HEAs/MEAs are thus still non-trivial and 
even close to impossible. To our knowledge, only limited work(Li, et  al. 2020) has so 
far reported using PF numerical modeling for HEAs/MEAs is available. However, the 
PF model used in that paper was simplified to a pseudo - binary alloy PF model, and 
simplified Gibbs free energy expressions were used. Recently, (Coutinho, et  al. 2020) 
introduced the tensor completion method for efficient use of thermodynamic informa-
tion into the PF model. However, the proposed method of sampling data into thermody-
namic functions is still quite complicated and may not always be necessary.

This paper aims to illustrate the application of an intuitive and efficient coupling 
approach for quaternary systems. We show that if the composition domain is appropri-
ately chosen, simple polynomial fitting of the Gibbs energies allows capturing the com-
position dependence of the thermodynamic and diffusion data accurately for simulations 
of diffusional transformation in 2-phase AlCrFeNi systems. In "Phase field method and 
parameters determination"  section, the PF model and parameters are introduced. The 
procedure to include the thermodynamic and kinetic information from CALPHAD 
databases in the PF simulations is given in section "Fitting compotion-dependent Gibbs 
free energy densities data". Finally, to illustrate and validate the use of the approach, the 
diffusional controlled phase transformation between the FCC and BCC phases for AlCr-
FeNi alloys at 700 °C is simulated using the PF approach, and the results are compared 
with results obtained using the Diffusion Module (DICTRA) of Thermo-Calc Soft-
ware with the same thermodynamic and kinetic database. The DICTRA software (J-O 
Andersson, et  al. 2002) can be used to perform one-dimensonal simulations of multi-
component diffusion-controlled transformations. Moreover, 2D simulations of growth 
and Ostwald-ripening of spherical BCC precipitates from an FCC matrix were con-
ducted, and the effect of compositional changes upon the growth rate of the precipitates 
was investigated. Our approach can potentially be extended to arbitrary alloy systems if 
the corresponding thermodynamic database is available, paving the way for simulation-
based microstructure optimization for HEAs/MEAs.

Phase field method and parameters determination
Modeling microstructure evolution requires tracking the migration of the phase or grain 
boundaries between different regions. The PF method tackles this process by treating inter-
faces as diffuse and having a finite width (Chen 2002; Moelans et al., 2008a, b, c), which has 
been proven to be practical and powerful in simulating grain growth (Moelans et al., 2008a, 
Moelans et al., 2008b), phase transformations (Mohanty, et al. 2008; Wu, et al. 2004) and 
solidifications (Mi, et al. 2019; Kobayashi 1993). For this reason, the PF method has been 
selected to model microstructure evolution in the AlCrFeNi system in this work. (Kim, 
et al. 1999) introduced a general type of phase PF model for binary alloys, usually called the 
KKS model. Later (Kim 2007; Kim, et al. 2004) further extended the PF method into mul-
ticomponent multiphase systems. (Moelans et al., 2008a; Moelans 2011) introduced a new 
type of interpolation function allowing for quantitative PF model of multiphase systems, 
which is not only in grains and at interfaces thermodynamic consistent but also guarantees 
thermodynamic consistency in multi-junctions. Based on these models, a PF model was 
implemented for the AlCrFeNi system in the present work. The temperature and pressure 
in the system are kept constant in this study. In the AlCrFeNi PF model, the local mole 
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fractions of Al, Cr, and Fe are represented by the variables xAl, xCr and xFe. The mole fraction 
of Ni is obtained as xNi = 1-xAl-xCr-xFe. Furthermore, two non-conserved order parameters 
are introduced to represent the FCC and BCC phases, namely ηBCC and ηFCC. Within the 
BCC phase, ηBCC =1 and ηFCC =0, while in FCC phase, ηBCC =0 and ηFCC =1. At the inter-
face between the two phases, the order parameters show a diffuse transition between the 
values 0 and 1. For a two-phase system, one order parameter would have been sufficient to 
distinguish between the two phases. However, since in future research, we aim to extend 
the model towards multiphase systems, the given representation was chosen as it can easily 
be extended to include more phases.

The total free energy F of the system is formulated as a function of the order parameters 
representing the different phases ηBCC and ηFCC and the molar fractions as:

Where fFCC and fBCC are the Gibbs free energy densities for FCC and BCC phases. The 
first two terms in the integral represent the interfacial free energy, with f0 a fourth-order 
Landau polynomial of the order parameters:

hFCC and hBCC in Eq. (1) is the interpolation function for BCC and FCC phases. For mul-
tiphase systems, it is introduced in the following format, according to (Moelans 2011):

The evolution equations for the mole fractions are derived starting from the following 
equations, which ensure mass conservation:

With xi the mole fraction of component i. As done in many PF models, we make 
the assumption that the molar volume is independent of the composition and assume 
Vm = 10− 5 m3/mol. It should be noted that considering volume effects in a PF model for 
solid-solid phase transformations would also require including elastic effects.

According to the KKS model, phase concentration variables xpi  are introduced for each 
solute component in each phase, with p = BCC or FCC, and i = Al, Cr and Fe. The phase 
specific variables are determined at each position, such that for each of the components, the 
diffusion potential ∼µ is equal in the coexisting phases, giving the following set of equations:

Where GFCC and GBCC are the Gibbs free energy densities of the FCC and BCC 
phases, respectively, which have the unit: J/mol. Moreover, the overall mole fractions 
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xi (the variables for which the diffusion Eqs. (4) are solved) are related to these phase 
composition variables using the interpolation function hFCC and hBCC, as:

giving three more equations needed to determine the set of phase composition variables 
xFCCAl  , xFCCCr  , xFCCFe  , xBCCAl  , xBCCCr  and xBCCFe .

The diffusion mobilities Mij are formulated as a function of the local order param-
eter values as Mij = hFCCM

FCC
ij + hBCCM

BCC
ij  with hFCC and hBCC as defined in Eq. (3) 

and MFCC
ij  and MBCC

ij  the diffusion mobilities of the FCC and BCC phase, respectively. 
For each phase, the interdiffusion mobilities MN

ij  are taken composition dependent 
using the expression MN
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4 elements and where N represents the dependent component (in this case, Ni). In 
this work, the atomic mobilities Ml are assumed to be independent of composition. 
Their values were calculated using Thermo-Calc software with the MOBNI4 data-
base and assuming the equilibrium composition of each phase. It was verified that the 
atomic mobilities are indeed almost constant over the considered simulation concen-
tration region.

To improve the numerical stability of the simulations, the PF equations above were 
nondimensionalized by introducing the following dimensionless quantities:

Where xc, tc, mc, and Gc are characteristic scales of the variables, of which the values 
are given in Table  1. We assume the characteristic energy Gc = RT, and the dimen-
sionless diffusion mobility is obtained from Eq. (8),

Using Eq.(5), Eq. (4) becomes:
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With the substitution of the dimensionless variables in Eq. (7), Eq. (10) becomes:

The relation between simulation parameters and dimensional values are:

In this model, boundaries between phases are considered as diffuse interfaces with 
finite width. Therefore, the model parameters m and k are related to the interfacial 
free energy γ and width of the diffuse interface profile l as:

from which the model parameters m and k are then obtained as:

In the considered model, the width of the diffuse interface profile is considered as a 
numerical parameter and not related to the physical interface width. It is chosen such 
that there are 8–10 grid points (Moelans et  al., 2008, b) to resolve the diffuse transi-
tion in values of the order parameters at interfaces. In this paper, the interface thickness 
is chosen to be ten grids (10 nm), and this thickness will not influence the simulation 
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Table 1  Parameters used in the 1-D PF simulation

Parameters Function Value

Dimensional values △x – 1.0 e-9 m

γ – 0.5 J·m− 2

Lx / Nx – 1.0 e-6 m / 1000

l 10△x 10.0 e-9 m

Vm – 1.0 e-5 m3·mol− 1

k 3

4
lγ 3.75 e-9 J·m−1

m 6γ
l

3e8 J·m−3

g – 0.471405

Iη – 0.5
∼
Lη

√
2mg
kIηζ

1.6536 e-11 m3J−1 s−1

Characteristic values xc / tc – 1.0 e-9 m / 1 s

mc RT/Vm 8.089 e8 J·m−3

Gc RT 8.089 e3 J·mol−1

Dimensionless values ∼
Lη tcLηmc

∼
m 0.0134

∼
k

k

mc
∼
mxc2

4.636

∼
m – 1
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results. The kinetic coefficient Lη should be taken according to Eq. (15) to obtain a diffu-
sion-controlled interface migration in the PF model, as derived in (Moelans 2011)

where �
FCC∕BCC = �cM−1
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numerically evaluated values for Iη and g are chosen according to Ref. (Moelans 2008), 
the values used in our simulations are listed in Table 1.

The molar factions xi and order parameters ηp are obtained at every time step as the 
solutions of the diffusion and PF equations. The parameters used for 1-Dimensional 
(1-D) simulations and the characteristic values considered for the non-dimensional 
parameters are listed in Table 1. The value of Gc

Vmmc
∼
m

 and ∼m is set equal to 1 to simplify 

the dimensionless Eq. (9) and Eq. (11), and dimensionless properties in the equations are 

taken accordingly as 
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The parameters used for the 2D simulations were chosen in the same way as for the 
1D simulation and the corresponding parameters ∼Lη used for 2D simulations are shown 
in Table 2. The kinetic Eqs. (9) and (11) and the auxiliary Eqs. (5) and (6) were solved 
using the finite element method (FEM) in Multiphysics Object-Oriented Simulation 
Environment (MOOSE) framework (Tonks, et al. 2012). In our simulation, the time step 
is adjusted based on the number of iterations. The optimal iteration controls the number 
of nonlinear iterations per time step is chosen as 7. The growth_factor and cutback_fac-
tor for adjusting the time step are set as 1.5 and 0.8, respectively.

Fitting composition‑dependent Gibbs free energy densities data
As stated in the introduction, this paper aims to show that polynomial fitting of the 
Gibbs energies can be accurate and effective for MEAs, when only a limited composition 
region has to be considered, as is for example often the case for a diffusion-controlled 
phase-transformation and for coarsening. The Gibbs energies for BCC and FCC phases 
in this paper are fitted as a function of composition using polynomial functions, and 
they can be evaluated efficiently in the PF method. We found that it is impossible to 
accurately fit the composition-dependent Gibbs free energy densities over the full com-
position range using simple polynomials for the quaternary system; however, accurate 
simulation results are obtained for two-phase systems when the composition-dependent 
Gibbs free energy densities data are fitted considering a limited composition region in 
which the two-phase region is included. In this work, the data of Gibbs free energy is 
sampled with Thermo-Calc TC-Toolbox for MATLAB and using the TCHEA2 database. 

(15)Lη =
√
2mg

kIηζ
,

Table 2  Parameters for 2D simulations (100 nm × 100 nm)

Alloys Parameters Value

alloy 1 Lη/ 
∼
Lη

7.9738e-12 m3J− 1 s− 1/0.0064

alloy 2 Lη/ 
∼
Lη

1.6536 e-11 m3J− 1 s− 1/0.0134

alloy 3 Lη/ 
∼
Lη

3.7519e-12 m3J− 1 s− 1/0.0030
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First, the relevant two-phase region has to be selected as described in section "Determi-
nation of FCC/BCC two-phase regiono", and then the Gibbs free energy densities data 
are fitted over the selected composition domain, as discussed in section "Fitting of Gibbs 
free energy densities".

Determination of FCC/BCC two‑phase region

This paper aims to show that accurate and efficient PF simulation results can be per-
formed for the quaternary system using a polynomial fit of the composition-dependent 
Gibbs free energy densities data within the two-phase region of interest. The first step 
in this procedure is to determine the two-phase region based on the phase diagrams 
computed using the TCHEA2 database. Since it is difficult to visualize and analyze the 
phase diagram of a quaternary system, the pseudo-ternary isothermal sections are cal-
culated for different Al concentrations. Figure  1 shows the phase diagram sections of 
(Al)xCrFeNi system at 700 °C with xAl= 0.01, 0.03, 0.05, 0.07(mole fraction). From these 
diagrams, the relevant range can be determined for each element. The two-phase BCC/
FCC region is shown in green in Fig. 1(a)-(d). When the Al concentration is gradually 
increased from 0.01 to 0.07, the BCC/FCC two-phase region decreases. From these dia-
grams, it is decided to fit the Gibbs free energy densities polynomials over the composi-
tion range 0.01 < xCr < 0.97, 0.01 < xAl < 0.08 and 0.01 < xFe < 0.5, which is slightly larger 
than the region in the phase diagram to ensure the two-phase region is fully included.

The corresponding composition range over which the Gibbs free energy densities data 
will be fitted and is listed in Table 3. 2D simulation results for the quaternary system are 
also compared with simulation results for the ternary CrFeNi system to test the capa-
bility of the PF model and study the phase transformation behavior with different alloy 
systems. A similar fitting procedure was used for this ternary CrFeNi system, although it 
is much easier because it is straightforward to determine the relevant two-phase region. 
The fitting details for the ternary system are given in the Additional file 1.

Fitting of Gibbs free energy densities

First, the Gibbs free energy densities were sampled over the two-phase composition 
range (given in Table 3) using Thermo-Calc toolbox in combination with the TCHEA2 
database. A step size δxCr = δxNi = δxFe = 0.001 is used. For the fitting process, the poly-
nomial’s optimal order is determined, as the one for which the deviation between the 
sampled data and those obtained by evaluation of the polynomial fit is minimized. For 
example, it is checked that the R-square value, which represents the square of the cor-
relation between the response values and the predicted response values, is close to 
one. Fig. 2 shows the scatter plot of the absolute error △G as a function of G, for the 
case (b) and (d) with the ideal mixing term ( RT

∑

i xilnxi ) included in G and the case 
(a) and (c) for which the ideal mixing contribution is subtracted before the fitting for 
the fourth-order polynomial. △G is the difference between data extracted and fitted. 
Results for BCC phase show that the absolute error between the sampled and fitted data 
is within the range of [− 30,50] when the ideal mixing term is not considered and [− 150, 
200] when the ideal mixing term considered in the data. For FCC phase, the absolute 
error between the sampled and fitted data is within the range of [− 60,20] without the 
ideal mixing term and [− 150, 200] with the ideal mixing term. The ideal mixing term 
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increased the fitting error because of the difficulty in fitting the logarithmic behavior 
using polynomial functions. Therefore, since the form of the ideal mixing term is known, 
the ideal mixing contribution is subtracted in the preprocessing step and added back 
to the Gibbs free energy when conducting the simulation since this contribution is not 
system or phase-specific. As shown in Fig. 2 (a) and (c), △G is near zero; the relative 

Table 3  Composition range covering the BCC/FCC two-phase range over which the Gibbs free 
energy densities data were fitted

Component Component Range

Cr 0.01–0.97

Al 0.01–0.08

Fe 0.01–0.5

Ni 1-xCr-xAl-xFe(0.01–0.97)

Fig. 2  Scatter plot of △G as a function of G taking the ideal mixing term into account for (b) BCC (d) FCC 
and when the ideal mixing term is subtracted for (a) BCC (c) FCC, Line plot of probability density estimate for 
BCC (e) and FCC (f) without ideal mixing term



Page 11 of 24Zuo et al. Materials Theory            (2022) 6:12 	

error(△G/G*100%) is small (less than 0.12% for FCC and 0.0656% for BCC). The prob-
ability density estimate for Fig. 2 (a) and (c) is shown in Fig. 2 (e) and (f ), respectively. 
Results show that most data are near zero and located in the range [− 20, 20].

Figure 3 shows the comparison of △G as a function of G between different polyno-
mial orders for both BCC and FCC phases when the ideal mixing term is subtracted. It 
is shown that the △G for the third-order polynomial is within the range of [− 100, 100] 
for BCC and [− 200, 200] for FCC, which is significantly larger than that for the fourth-
order and fifth-order polynomials. The majority of data between the fourth-order and 
fifth-order polynomials for the FCC phase are located within the range of [− 20, 20]. 
Such difference is not significant. The △G for the fifth-order polynomial of the BCC 
phase is decreased compared with the fourth-order. The majority of data for the fifth-
order is located within the range [− 10, 10] for BCC phase. A fourth-order polynomial is 
chosen to fit the Gibbs free energy densities data for the considered system and compo-
sition range. The details on the fitting accuracy are validated by comparing the simula-
tion results between the PF model and DICTRA. But it is important to note that this is 
not the only option (e.g., the fifth-order for BCC and fourth-order for FCC is also a sug-
gested choice). For other systems or composition ranges, the optimal order of the poly-
nomial can differ, or a different step size in the data collection may be more appropriate.

Phase field simulation results
Validation by comparison with 1‑D sharp Interface calculations (DICTRA)

To validate the obtained thermodynamic and kinetic information and corresponding 
parameters for PF simulation. Sharp interface simulations using DICTRA and the same 
Gibbs free energy densities and diffusion mobility databases were carried out for the 
same conditions as the PF simulations. Also in DICTRA, a constant molar volume of 
10− 5 [m3/mol] is assumed for both phases. The results are compared and discussed in 
this section for the quaternary AlCrFeNi alloy. A similar validation was performed for 
the ternary CrFeNi alloy and is discussed in the Additional file 1. The 1-D simulations 
are performed at 700 °C. The overall composition of the system was arbitrarily taken 
within the BCC/FCC two-phase region. The corresponding equilibrium phase fractions 
and compositions of the BCC and FCC phases for the given overall composition were 
calculated using Thermo-Calc software and are listed in Table 4.

The initial phase compositions and volume fractions set for the calculations for each 
phase are listed in Table 5. In the simulation, the composition of the FCC phase is always 
taken differently from the equilibrium composition, while the composition of the BCC 
phase is kept at the equilibrium value (from Table 4). The initial phase fraction for BCC 
is set as 0.2 and FCC as 0.8, such that the overall composition is still the same as the 
one given in Table 4. In the simulations, the composition and phase fractions will evolve 
towards the equilibrium values listed in Table 4. The simulation results could be com-
pared with values in Table 4 to see whether the simulation can finally reach the same 
equilibrium state.

Figure  4 (a), (b), (c) show the concentration profiles at t = 1, 20, 30, and 100 days as 
obtained from the DICTRA simulations. The concentration profiles are in a nonequi-
librium state at the start of the diffusion process and reach a near-equilibrium state 
after 100 days of diffusion. The evolution of the BCC/FCC interface position is shown in 
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Fig. 4 (d). The interdiffusion calculations with the same initial conditions is also carried 
out using the PF method. The concentration profiles at t = 1, 20, 30 and 100 days for PF 
method are shown in Fig. 4(a1),(b1),(c1). The evolution of the BCC/FCC interface posi-
tion is shown in Fig. 4 (d1). Results show that, in general, the PF method calculations 
reproduce the results from DICTRA simulations.

For a more quantitative determination of the error, the relative errors (absolute error/
measurement being taken:[|a-b|/a]) for the local mole fractions of the elements between 
the PF method and DICTRA simulation during the diffusion process at different times 
are shown in Fig. 5 (a1,b1,c1) for 1 day, (a2,b2,c2) for 20 days, (a3,b3,c3) for 30 days and 
(a4,b4,c4) for 100 days. In the PF model, the interface is diffuse, while in DICTRA a sharp 
interface is assumed. The relative errors over several grid points in the interfacial area 
are therefore large; however, this deviation at the interface has no considerable effect on 
the bulk composition and position of the interface. In the bulk, the relative errors on the 
mole fractions are around zero. These findings show that the proposed method to incor-
porate the fitted Gibbs free energy densities in PF simulations for quaternary systems 
gives accurate results that are consistent with results obtained using DICTRA simula-
tion software using the full Gibbs free energy densities description.

In order to quantify the error between PF and DICTRA simulations along the diffu-
sion time, the average relative error for each composition in the bulk phase is calculated 
and shown in Fig. 6(a). The relative errors on the results for the mole fraction of Al, Cr, 
and Fe at 1 day are less than 0.2, 0.15, and 0.05, respectively. Moreover, the relative error 
decreases with simulation time. For the simulations of 100 days of diffusion, the relative 
error for all elements drops below 0.05 at 100 days. The comparison of results for the 
interface position is shown in Fig. 6(b). We find that the interface position shows good 
agreement between PF and DICTRA simulations. The insert in Fig. 6(b) shows the maxi-
mum difference for the interface position is less than one grid point (The size of a grid 
point Δx was taken equal to 1 nm, as listed in Table 1).

Table 4  Equilibrium phases, compositions (mole fraction), and volume fraction calculated with 
Thermo-Calc using TCHEA2 database

T (°C) Phases Cr Al Fe Ni Volume Fraction

700 Overall 0.28216 0.04 0.32569 0.35215

BCC(EQ) 0.84553 0.00036 0.14601 0.00811 0.15454

FCC(EQ) 0.18200 0.04705 0.35763 0.41332 0.84546

Table 5  Initial mole fractions in the FCC and BCC phase for the 1-D simulations

T (°C) Phases Cr Al Fe Ni Volume 
Fraction

700 Overall 0.28216 0.04 0.32569 0.35215

BCC(EQ) 0.84553 0.00036 0.14601 0.00811 0.2

FCC(NEQ) 0.1413 0.04991 0.37061 0.43818 0.8
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Growth and coarsening of BCC precipitates

In order to compare the results between different alloy systems, validation for ternary 
CrFeNi alloy is also conducted. The details for the validation process of CrFeNi alloy 
are shown in the Additional file 1. After the PF model was validated by comparison 
with 1-D DICTRA simulations, it was applied to study the growth and coarsening 
phenomena of BCC precipitates inside the FCC matrix. Three alloy systems were ana-
lyzed to study the effect of different concentrations on the BCC/FCC transformations, 
and the initial concentration settings for different alloys are listed in Table 6. For alloy 
1, there is no Al in the system. For alloy 2, an Al mole fraction of 0.04 is added to 
the system of alloy 1. Compared with alloy 2, alloy 3 has a larger amount of Fe. For 
each alloy, two cases are considered. In Case 1, the initial compositions of the FCC 

Fig. 4  Comparison of simulation results between DICTRA (a-b-c-d) and Phase field (a1-b1-c1-d1). (a-a1) 
xCr (b-b1) xAl and (c-c1) xFe as a function of position and (d-d1) interface position as a function of time are 
presented
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and BCC phases are taken equal to the equilibrium compositions of the phases (thus, 
only Ostwald ripening is expected to occur). For Case 2, the initial composition in 
the FCC phase deviates from the equilibrium composition (therefore, both precipitate 
growth and Ostwald ripening can be expected). All simulations have the same initial 
geometrical configuration (Dimension: 100 nm × 100 nm with 100 × 100 grid points), 
as shown in Fig. 7(a).

For all cases, the small-sized precipitates gradually dissolve into the matrix, and the 
large-sized precipitate grows with time. The Ostwald ripening is well represented in 
the simulations. Since all alloys have a similar growth behavior, only the quaternary 
alloy 2 – case 2 is further discussed in detail. Figure  7 shows how the precipitates 
evolve with time for alloy 2 – case 2 with an initially supersaturated FCC matrix. The 

Fig. 5  Relative errors for (a) Al, (b) Cr, and (c) Fe concentrations between DICTRA and PF simulations during 
the diffusion process
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composition along the arrow direction is plotted and displayed on the right side of 
the figures.

These results show that the mole fraction of Cr in both BCC and FCC decreases dur-
ing the diffusion process while the mole fraction of Fe and Al increases in both phases. 
At the early stage, the concentration profile is not symmetrical during the diffusion pro-
cess due to the influence of neighboring precipitates, and it will become symmetrical 
again when all smaller precipitates are dissolved.

Figure 8 shows the evolution of the BCC precipitates area as a function of time for 
the three alloy systems and Cases 1 (alloy 1- case 1, alloy 2 – case 1, and alloy 3 – case 
1) and 2 (alloy 1 – case 2, alloy 2 – case 2, and alloy 3 – case 2), for which the FCC 
phase is respectively initially in equilibrium and initially supersaturated. It is evident 
that the precipitates grow faster and the final size of precipitate area is larger when 
the FCC phase is initially supersaturated (case 2) than for the equilibrium condi-
tion (case 1). For all cases, due to the curvature effect, the precipitates shrink at the 
beginning and then grow at different speeds due to different initial conditions. The PF 
model is thus able to study coarsening processes for this quaternary alloy system.

Results also show that without Al in the system (alloy 1), the precipitates in the 
ternary system grow faster. Compared with alloy 2, alloy 3 has a higher amount of 
Fe, but a lower amount of Ni in the system and the growth of precipitates in alloy 3 is 
the slowest. The effect of changes in the amounts of different components in the sys-
tem on the growth rate of BCC precipitates is evident, indicating the importance of 
having full thermodynamic and kinetic information for simulating real HEAs/MEAs 
material.

The growth rate in the multicomponent diffusion process depends on the super-
saturation conditions and thermodynamic quantities in the system. The gradient of 
diffusion potential as the driving force for the movement of atoms in the alloy system 

Table 6  Initial composition for BCC and FCC phases for the three different alloys considered in the 
simulations and assuming equilibrium(EQ) and nonequilibrium(NEQ) composition of the matrix as 
initial setting of the simulation

Alloys Cases Phases Cr Al Fe Ni

alloy1 Overall 0.32216 0 0.32569 0.35215

Case 1 BCC(EQ) 0.86404 0 0.12686 0.00910

FCC(EQ) 0.25245 0 0.35127 0.39628

Case 2 BCC(EQ) 0.86404 0 0.12686 0.00910

FCC(NEQ) 0.3 0 0.4 0.3

alloy2 Overall 0.28216 0.04 0.32569 0.35215

Case 1 BCC(EQ) 0.84553 0.00036 0.14601 0.00811

FCC(EQ) 0.18200 0.04705 0.35763 0.41332

Case 2 BCC(EQ) 0.84553 0.00036 0.14601 0.00811

FCC(NEQ) 0.2 0.1 0.4 0.3

alloy3 Overall 0.28216 0.04 0.4 0.27784

Case 1 BCC(EQ) 0.78477 0.00104 0.205 0.00919

FCC(EQ) 0.17169 0.04856 0.44286 0.33689

Case 2 BCC(EQ) 0.78477 0.00104 0.205 0.00919

FCC(NEQ) 0.1667 0.0767 0.5 0.2566
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combined with the diffusion mobilities in the matrix phase are essential in analyzing 
the growth behavior of the precipitates.

The diffusion potentials of case 2 among alloy 1, alloy 2, and alloy 3 are shown in the 
Additional file 1. The corresponding gradient of diffusion potentials and mobilities are 
shown in Fig.  9 and Fig.  10, respectively. For the different alloys, results at time steps 
close to each other were taken to make a comparison between these cases possible. At 
the chosen time, coarsening, i.e., the growth of the larger particles at the expense of the 
smaller ones, is occurring. The color bar is set as the same range to compare the gradient 
of diffusion potentials for alloy 1, alloy 2, and alloy 3. The gradient of diffusion potentials 
is more significant at the phase boundaries. The difference becomes smaller with time, 
indicating that the microstructure evolves towards equilibrium. The red color shown in 
Fig. 9 represents the maximum gradient of diffusion potential, which shows that such a 
value (around 0.3) for Cr, Al, and Fe appears in alloy 2 and alloy 3.

The number of independent interdiffusion mobilities necessary to describe mul-
ticomponent diffusion for the n component system is n(n-1)/2. The color bar is set 
the same for each alloy. Since the diffusion in the matrix phase determines the kinet-
ics of the growth of the precipitates, the average values for each mobility in the FCC 
phase are compared. For alloy 1, there are three independent interdiffusion mobilities, 
namely MCrCr, MFeFe, and MCrFe, of which the average values at 4808 s are 0.037, 0.053, 
and − 0.014, respectively. For alloy 2 and 3, there are six independent interdiffusion 
mobilities, namely MCrCr, MAlAl, MFeFe, MCrAl, MCrFe, and MAlFe, the average values for 
each mobility of alloy 2 at 5595 s are 0.8, 0.0413, 0.0968, − 0.016, − 0.0071, and − 0.05. 
For alloy 3, the corresponding average values at 5563 s for each mobility are 0.049, 0.086, 
0.1, − 0.015, − 0.015, and − 0.043.

Fig. 8  Comparison of the evolution of BCC precipitates area with the time for different alloy systems and 
different initial conditions of the matrix phase
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Compared to alloy 1, alloy 2 and alloy 3 have a larger driving force and a higher 
value of MCrCr, MFeFe, and a smaller absolute value of MCrFe. for alloy 2 and almost 
the same absolute value for alloy 3. Still, the growth rate of the BCC phase is slower, 

Fig. 9  Gradient of the diffusion potentials for (Al)CrFeNi alloys
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which indicates that the addition of Al into the system affects the transformation 
from FCC to BCC in the alloy. The negative value of MCrAl and MAlFe reduces the evo-
lution rate.

The different growth behavior between alloy 2 and alloy 3 (same alloy system) 
shows that increasing the amount of Fe (with reducing the dependent amount of Ni) 
reduces the growth rate of BCC. The value of MCrFe is negative and the absolute value 
is twice as large as in alloy 3, slowing down the diffusion process. The MCrCr and MFeFe 
are larger in alloy2 while MAlAl is slightly larger in alloy3, which indicates that the 
precipitate growth rate of each alloy is the combined result of both gradient diffusion 
potential and all the dependent mobilities.

Fig. 10  Interdiffusion mobilities of (Al)CrFeNi alloys
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Discussions
Multicomponent PF models were developed for many years; however, there have been 
few reports on PF models for actual multicomponent material diffusion. One of the 
reasons for the paucity of the phase-field modeling in a multicomponent alloy is the 
complexity of coupling the chemical free energy into the multicomponent PF model. 
For the alloys studied in the paper, the thermodynamic database is not yet publicly 
available. This paper introduces a relatively straightforward way to couple the ther-
modynamic and kinetic data into the PF model to study the phase transformation in 
MEAs/HEAs.

–	 As this work aims to deal with the coupling of thermodynamic and kinetic informa-
tion into the PF model, for the sake of simplicity, the elastic effect on the kinetics and 
morphology of the precipitates is neglected, the partial molar volumes of the compo-
nents are set as 10− 5 [m3/mol]. The stresses arising from compositional strains due 
to the differences in the partial molar volumes of the components could change the 
stress and strain tensors, thus changing the microstructure of the alloys. Such elastic 
effects will be discussed in our future work.

–	 There is no generally applicable optimal polynomial order for Gibbs energy fitting. 
The optimal polynomial orders can vary among systems and depending on the 
desired accuracy. The fitting accuracy is affected by the data collection steps, fit-
ting regions, and the polynomial orders. The accuracy can be evaluated in two ways:  
(1) the deviation between the sampled data and those obtained from the polynomial 
fitting△G is small, as shown in Fig.  2 (the R-square value is reaching or equal to 
one). Thus, the relative error is small (less than 0.12% for FCC and 0.0656% for BCC). 
(2) the PF simulations could reproduce the equilibrium phase fractions and compo-
sitions as calculated through Thermo-calc software. (If the initial condition for the 
system is set as equilibrium, then the phase transformation would not happen in PF 
simulation. If the initial condition is set as nonequilibrium, the system will finally 
reach the equilibrium condition, as shown in Fig. 4). In our simulation, the fourth-
order polynomials are chosen for the simulation and found it gives accurate results. 
Thus it is considered the fourth-order polynomials are appropriate for our system.

–	 The kinetic data is considered to be accurately coupled if the PF model can repro-
duce the diffusion path in DICTRA simulations with the same initial conditions. The 
partial molar volume of each constituent in our PF model is assumed to be 10− 5 [m3/
mol], equal to that in DICTRA simulations.

Conclusions
A PF approach is presented to simulate the diffusion-controlled phase transformation 
between FCC and BCC in (Al)CrFeNi alloys. Comparison of 1-D PF simulations with 
results from DICTRA calculations shows that the composition dependence of the Gibbs 
free energy densities and diffusion mobilities for this multicomponent system is consid-
ered accurate and effective with the proposed methodology. The current approach has 
thus the potential to be applied for multicomponent alloy design, such as in the optimi-
zation of HEAs and MEAs.
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The simulation results of growth and Ostwald ripening of BCC precipitates in an FCC 
matrix show that even relatively small changes in alloy composition have an evident influ-
ence on the diffusion and precipitate growth behavior. The growth rate of each alloy is the 
combined result of both the gradients in solute diffusion potentials and the composition-
dependent interdiffusion mobilities. These findings confirm that it is essential to consider 
the effect of each element and have an accurate representation of the thermodynamic and 
kinetic properties for studying the interdiffusion behavior in multicomponent alloy sys-
tems. The method presented in this paper provides a computationally amenable procedure 
to do this. This knowledge will enable the accurate investigation of microstructure evolu-
tions in HEAs/MEAs.
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