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Abstract 

With a brief half-second presentation, a medical expert can determine at above chance levels whether a medical 
scan she sees is abnormal based on a first impression arising from an initial global image process, termed “gist.” The 
nature of gist processing is debated but this debate stems from results in medical experts who have years of percep-
tual experience. The aim of the present study was to determine if gist processing for medical images occurs in naïve 
(non-medically trained) participants who received a brief perceptual training and to tease apart the nature of that 
gist signal. We trained 20 naïve participants on a brief perceptual-adaptive training of histology images. After training, 
naïve observers were able to obtain abnormality detection and abnormality categorization above chance, from a brief 
500 ms masked presentation of a histology image, hence showing “gist.” The global signal demonstrated in perceptu-
ally trained naïve participants demonstrated multiple dissociable components, with some of these components relat-
ing to how rapidly naïve participants learned a normal template during perceptual learning. We suggest that multiple 
gist signals are present when experts view medical images derived from the tens of thousands of images that they are 
exposed to throughout their training and careers. We also suggest that a directed learning of a normal template may 
produce better abnormality detection and identification in radiologists and pathologists.
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Introduction
Improving perceptual expertise in medical image inter-
pretation is critical for patient care. The first step in diag-
nosis often is the visual categorization of a potentially 
significant clinical finding in a medical image (i.e., normal 

or abnormal). All future medical steps are dependent on 
the efficacy and accuracy of this original visual categori-
zation. The human visual system has been shown to be 
very good at categorization with the ability to extract 
some category information about an object or a scene 
even with very limited exposures, as short as 100  ms 
(Potter, 1976). Moreover, participants can differenti-
ate between two categories at shorter durations (Thorpe 
et al., 1996), with evidence for some abilities of categori-
zation at even shorter intervals, as low as 20 ms (Greene 
& Oliva, 2009a, 2009b). Greene and Oliva (2009b) argued 
that rapid categorization is dependent in part on global 
properties. Within this global framework, the initial vis-
ual representation constructed by the visual system is at 
the level of the whole and not parts (Oliva & Torralba, 
2006). Instead of local geometric and part-based process-
ing (Biederman, 1987), this framework posits that global 
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properties reflecting structure, layout and function could 
act as primitives for categorization.

This rapid visual categorization at low exposure dura-
tions has also been seen in medical experts for medical 
images (Brunye et al., 2021; Evans et al., 2013, 2016, 2019; 
Kundel & Nodine, 1975; Kundel et al., 2007). In a seminal 
study (Kundel & Nodine, 1975), a 200  ms presentation 
of a chest radiograph led to an abnormality categoriza-
tion accuracy of 70%. Furthermore, with brief 250 ms or 
500 ms presentations of a mammogram, radiologists can 
discriminate between normal and abnormal at signifi-
cantly greater than chance levels (Evans et al., 2013, 2016, 
2019). The visual categorization of normal or abnormal 
in medical images after a brief visual display may itself 
rely on two distinct visual processes including a critical 
primary global signal (Evans et al., 2013, 2016, 2019; Kun-
del et al., 2007).

First proposed by Kundel and Nodine (1975; see also, 
Kundel et  al., 2007), experts obtain a global impression 
of the image which constrains their subsequent search 
locations for finding the abnormality. In this model, the 
first global process is a holistic comparison process which 
determines if the current medical scan deviates from 
an internal representation of a normal scan (Kundel & 
Nodine, 1975). This information is then used in a second 
process to guide attention and the eyes to the locations in 
the scan which deviated from that normal template (Kun-
del et  al., 2008). Hence, the global signal contains loca-
tion information of the abnormality (Kundel & Nodine, 
1975; see also, Kundel et al., 2007, 2008).

Recently, this view of the nature of the global signal has 
been challenged (Evans et  al., 2013, 2016, 2019). Rather 
than containing location information, Evans et al. (2013, 
2016, 2019) and Gandomkar et  al. (2021) have argued 
that the first process is a global abnormality signal devoid 
of location information. This first global signal (“gist”) 
simply provides information that something is abnormal 
based on a global implicit extraction of statistics across 
the whole image allowing for abnormality detection with-
out containing any location information about where the 
abnormality lies or even why the image is being called 
abnormal. Some evidence for this global gist signal 
being solely a global implicit abnormality signal without 
localization information of the abnormality (c.f., Carri-
gan et al., 2018) is that with a brief (500 ms) glance at a 
mammogram, radiologists can detect gist abnormality in 
mammograms that do not contain a distinct lesion. And, 
even report abnormalities at significantly above chance 
levels for the mammogram of the healthy breast con-
tralateral to the breast with a malignancy (Evans et  al., 
2016). Evans et  al. (2013, 2016, 2019) and Gandomkar 
et  al. (2021) suggest that an initial non-selective visual 
pathway which extracts global summary statistics about 

the image could implicitly alert the radiologist of a gen-
eral “abnormality” signal, but a second stage of process-
ing requiring focused attention is needed to localize any 
specific abnormality that may be present (see also, Wolfe 
et al., 2011).

While the exact perceptual features that support this 
“gist signal” remain unclear, it is hypothesized that the 
extensive visual expertise of the radiologist produces 
both this initial global “gist signal” and the subsequent 
localization of the abnormality (Carrigan et  al., 2018; 
Drew et  al., 2013a, 2013b). Specialized medical training 
and continuous high-volume reading of images give rise 
to a fine-tuning of the perceptual system of the radiolo-
gist. With increases in the number of slices for a CT or 
MRI scan, this fine-tuning of the visual system seems 
highly plausible given that the average radiologist must 
see and interpret one image every 3–4 s for 8 h straight 
(McDonald et  al., 2015) to complete a typical workload 
day. Hence, radiologists have extensive visual experiences 
that leads to enhanced and finely tuned visual systems 
which gives rise to the ability to detect abnormalities 
(Drew et al., 2013b; Krupinski, 2010; Manning et al., 2006; 
Nodine et al., 1999; Rubin et al., 2015) including this pri-
mary gist signal. There is ample evidence of significantly 
better performance by radiologists than non-experts in 
medical visual search (Nodine et al., 1999; Quekel et al., 
2001; Rubin & Krupinski, 2017; Rubin et al., 2015; Waite, 
2019). For example, Kundel et  al. (2008) demonstrated 
that radiologists go to the location of a breast abnormal-
ity within 1 s of viewing the mammogram in over 65% of 
trials.

The radiologist’s visual system is specialized for locali-
zation of abnormalities but not generalized visual search, 
as abnormality localization is better in experts than 
novices but general search tasks (i.e., find “Waldo”) are 
no different in medical experts than novices (Nodine & 
Krupinski, 1998). Hence, the highly trained, specialized, 
and practiced visual systems of radiologists can provide 
a global gist signal and rapidly localize the location of 
the abnormality. However, recent advances in perceptual 
training have demonstrated that extensive medical train-
ing and years of perceptual experiences with medical 
images is not necessary to localize an abnormality (Chen 
et  al., 2017; Johnston et  al., 2020; Kellman & Krasne, 
2018; Krasne et al., 2013; Sowden et al., 2000; Xu et al., 
2016).

Perceptual training refers to any training whose goal is 
to improve perceptual skills, such as the ability to recog-
nize and categorize an image. The learning that results 
from this training is perceptual learning (Gibson, 1969; 
Kellman, 2002; Posner & Keele, 1968; Sowden et  al., 
2000), where instead of learning to interpret an image by 
following a set of explicit didactic rules, observers can 
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instead be rapidly trained to visually determine a cate-
gory (even in the absence of conscious knowledge). More 
than 50 years ago, Posner and Keele (1968) demonstrated 
that recognition of exemplars of a visual category could 
be categorized even in the absence of explicit knowledge 
of the category or its prototype.

Studies (Chen et al., 2017; Krasne et al., 2013; Sowden 
et al., 2000; Xu et al., 2016) have investigated perceptual 
training in the context of medical abnormalities and have 
demonstrated that abnormality localization can rapidly 
be improved with minimal perceptual training in novices. 
Sowden et al. (2000) trained novices to detect differences 
in X-rays and following 4 days of training on exemplars 
with classification feedback, accuracy improved by 
10%. Chen et  al. (2017) used 5 training blocks in a sin-
gle day on categorizing hip fractures in X-rays and found 
that novices improved by ~ 20%. In a study by Xu et  al. 
(2016), undergraduates were trained on 100 images of a 
melanoma and normal histology and were given feed-
back on their accuracy of categorization after each 
image. This training significantly improved their detec-
tion (d′) of skin abnormalities. When tested on a novel 
set of images, their false alarm rate also significantly 
decreased. Another study (Johnston et al., 2020) trained 
naïve participants on appendicitis and demonstrated that 
perceptual learning rapidly improved performance and 
generalized to a novel set of images with 80% accuracy. 
Moreover, the CT scans that novices found difficult to 
localize were the same images that expert radiologists 
also found difficult. Most relevant to our current study, 
Krasne et  al. (2013) used a perceptual-adaptive train-
ing procedure for 1st and 2nd year medical students on 
skin histopathology images. Medical students received 
multiple trials based on adaptive perceptual learning 
(Mettler et  al., 2016) with immediate feedback of their 
accuracy. Despite only ~ 17 min of visual training, mean 
categorization accuracy of skin histopathology increased 
by ~ 13%. Perceptual training can give rise to accurate 
localization on CT scans, X-rays, and histology images 
in naïve participants without medical training or years 
of experience with those specific visual medical images. 
Brief perceptual training improves diagnostic accuracy in 
novices, this improvement generalized to novel images, 
and the same scans that novices find challenging are the 
scans that experts find challenging. In short, after a brief 
perceptual training period, novices’ visual systems seem 
to be fine-tuning for abnormality localization in a similar 
way as experts.

Perceptual training applies across multiple domains 
of medical expertise (including skin histopathology) 
and seems to enhance the visual system of novices 
to perform accurate abnormality localization. What 
remains unknown is if novices after perceptual training 

demonstrate the initial global gist signal that experts 
show. In short, while perceptual training has been dem-
onstrated to improve the 2nd stage of processing of local-
izing the abnormality that is seen in experts, what is 
unknown is if perceptual training also creates the ability 
to rapidly process a medical image and extract a global 
signal about abnormality (or a global signal about the 
location of an abnormality). In the following experiment, 
we directly tested this question.

The aims of the present study were to extend the pre-
vious research on perceptual learning in medical images 
to see if novices who have been perceptually trained on 
histology images would also show a global abnormality 
signal and to explore whether the global signal was about 
general abnormality or lesion information at a specific 
location. To determine this first aim we showed naïve 
participants who were perceptually trained on a brief skin 
histopathology module (Krasne et  al., 2013), a 500  ms 
image of a histology image which was then masked to 
stop further perceptual processing (Breitmeyer, 1984) 
and asked them to determine if the histology image was 
normal or abnormal. This paradigm replicates that used 
in trained medical professionals to demonstrate “gist” 
(Evans et  al., 2013, 2016, 2019; Gandomkar et  al., 2021) 
and provides direct evidence for or against this signal 
arising in perceptually trained novices. Our second aim 
was to explore if the signal extracted by naïve partici-
pants provided only a general abnormality signal or gave 
rise to specific local information about the abnormality. 
Thus, after making an abnormality judgment, partici-
pants were asked to categorize the abnormality into one 
of four distinct skin histopathologies learned during per-
ceptual training. In addition, we asked participants about 
how they made their decision (guess or know) to help 
determine if the signal was related to information con-
sciously learned during perceptual training or implicit 
information (as suggested by Evans et al., 2013) gathered 
by the perceptual system during the perceptual training 
in which case participants would report “guessing” rather 
than “knowing.” Finally, we asked what information dur-
ing perceptual training was important for the abnormal-
ity signal that perceptually trained naïve participants 
used. To be explicit, was abnormality detection related 
to how well participants perceptually learned the abnor-
mal or, as Kundel and Nodine (1975) and Kundel et  al. 
(2008) have suggested, related to the creation of a normal 
template?

Methods
Participants
Twenty undergraduates (6 males, 14 females; all aged 
between 18 and 21 years) took part in the experiment 
and received course credit or reimbursement for their 
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participation. All reported normal or corrected-to-
normal vision and normal color vision. All participants 
gave informed consent and were treated in accordance 
with the ethical standards of the Declaration of Hel-
sinki and the American Psychological Association. All 
participants were naïve to skin histopathology and had 
not received any previous training prior to the start of 
the experiment.

Materials and procedure
Stimuli were presented on a 21.5″ iMac placed at a 
viewing distance of ~ 65 cm from the participant. The 
resolution of the screen was 1920 × 1080 pixels. Exem-
plars from a pool of 298 color histology images of skin 
were presented at 462 × 361 pixels. Histology images 
(see Fig.  1) were divided into 5 categories (4 histo-
pathology: acute inflammation, chronic inflamma-
tion, cell and tissue injury/repair, and neoplasia; and 
normal histology cell tissue). Naïve participants first 
completed a perceptual and adaptive learning mod-
ule (Krasne et al., 2013) to teach them to identify nor-
mal skin cells and the 4 types of skin histopathology. 
Following perceptual training, participants immedi-
ately completed a 2nd phase of testing of abnormality 

detection and categorization following a brief presen-
tation of a histology image.

Histopathology perceptual and adaptive learning module 
(PALM)
The PALM module (Krasne et  al., 2013) combines 
perceptual learning with an adaptive learning system 
to accelerate pattern recognition skills and transfer 
(Kellman & Krasne, 2018; Mettler et al., 2016) to teach 
the different histology categories. For full details, see 
Krasne et al. (2013), but below we summarize the per-
ceptual and adaptive learning. The adaptive sequenc-
ing adjusts priorities after each trial based on learner 
speed and accuracy, as well as the number of trials 
since the category was last presented. To achieve mas-
tery of a category (and hence retire exemplars of that 
category), participants had to achieve three consecu-
tive identifications correctly with each answer given 
within a specified response time (see, Krasne et  al., 
2013). Hence, the number of exemplar images from 
each histology category that participants saw during 
training differed based on the speed of acquisition of 
perceptual learning. Initial presentations of image 
categories were randomized, and then, presentations 
were subsequently sequenced according to individual 
priority scores for each learner, with the constraint 

Fig. 1  A Two examples of acute inflammation having very different global and local perceptual features. B Two examples of normal histology 
having very different global and local perceptual features. C The histopathology of an example of Neoplasia (left) and of chronic inflammation 
(right) having very similar local features (here highlighted by green borders which are only presented here for the reader and were not presented to 
participants) which are needed to identify the category. D The histopathology of an example of cell and tissue injury/repair (left) and of neoplasia 
(right) having very similar local regions (again highlighted by green borders which are only presented here for the reader and were not presented to 
participants) which are needed to identify the category
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that there were at least 3 intervening images between 
consecutive presentations of the same category. For 
any given training trial, a histology image was pre-
sented with each of the 5 categories (4 histopathol-
ogy categories and normal) presented below the image 
(see Fig. 2). Once a category option was selected by a 
mouse click, participants were given feedback on the 
correct answer. If the image was a pathology, the area 
in the histology image showing the pathology was 
highlighted. After participants had retired every cat-
egory, they then moved on to a brief assessment where 
they were randomly presented with 20 novel histol-
ogy images and had to categorize each of the histology 

images. No feedback was given during the assessment. 
Following the assessment, participants then completed 
the gist evaluation.

Abnormality detection and categorization task
Participants completed one block of 298 trials with 
10 practice trials to start and then 144 normal and 144 
abnormal histology images intermixed and randomized. 
Histopathology images were divided into the 4 catego-
ries (acute inflammation, chronic inflammation, cell tis-
sue injury/repair, and neoplasia) with 36 exemplars from 
each category. The histology images used for testing were 
composed of both “familiar” histology images (those 

Fig. 2  Schematic of perceptual learning. Participants saw a histology image and made a judgment of its category. They then received feedback on 
their answer. If the image was one of the four histopathology categories, the area of pathology was then highlighted
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images seen during learning or assessment) and “novel” 
histology images (images not previously seen). The num-
ber of images that were novel during testing varied for 
each participant based on how many histology images 
it took for them to reach criterion during the perceptual 
learning.

Each trial (see Fig. 3) began with a gray screen show-
ing a central black fixation cross (Times New Roman, 
Bold 36 Font). The fixation was presented until partici-
pants clicked the mouse. Immediately after the mouse 
click, a histology image was presented for 500  ms fol-
lowed by a mask for 500 ms. The mask was composed of 
parts of multiple histology images randomly intermixed 
and pixelated and was 462 × 361 pixels in size. After the 
offset of the mask, two boxes (each 248 × 86 pixels) were 
presented at the bottom of the screen with abnormal 
on the left and normal on the right (each box 420 pixels 
from their respective edge of screen). Participants had 
to make their response by moving the mouse to the box 
that contained their judgment and clicking on it. After 
responding, a new screen with two boxes containing 
guess or know were presented (same sizes and distance 

as previous boxes), and participants clicked on the appro-
priate box to indicate how they made their judgment. 
After indicating how they made their decision, if par-
ticipants selected abnormal, participants were presented 
with each of the 4 histopathology categories in boxes 
(each 248 × 86 pixels) at the bottom of the screen and 
selected which histopathology category the abnormal 
image belonged to by mouse clicking on that box. After 
this category judgment, participants again indicated how 
they made their category decision by selecting the guess 
or know boxes on the next subsequent screen (see Fig. 3). 
There was a 500  ms inter-trial interval before the next 
fixation would appear.

Analyses
For statistical analyses, we measured the accuracy for the 
abnormal and normal detection and used these meas-
ures to compute a d′ score for abnormality (Macmil-
lan & Creelman, 1991). Using SPSS v.28, we compared 
the d′ prime scores against chance (0) using one-sample 
t tests, and paired t tests to compare differences in d′ 

Fig. 3  Schematic of gist experiment. Participants saw a brief (500 ms) flash of a histology image which was then masked. They made a normal/
abnormal judgment and then reported how they made this judgment. If they had selected an abnormal judgment, after reporting how they made 
that judgment, they were then presented with the 4 histopathology categories and selected one of them. They then reported how they made this 
category decision
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abnormality detection when participants reported know-
ing and when they reported guessing; and when compar-
ing familiar versus novel histopathology images.

This design explored not only abnormality detection 
during rapid presentation but also the subsequent cate-
gorization of these same histopathology images. Because 
multi-item categorization judgments can be influenced 
by bias similar to two-alternative procedures, we sought 
a bias-independent measure of performance akin to the 
signal detection analysis above. To this end, we employed 
category-specific d′ computations and averaged them 
together to obtain an overall categorization d′. In this 
analysis, for any given target category, the non-target cat-
egory histology images were labeled as false alarms if the 
target category label was applied, and correct rejections if 
not applied. Correct responses on category target images 
were labeled as “hits,” and incorrect responses on cat-
egory target images were labeled as “misses.” To ensure 
the stability of these analyses, only those categories with 
at least 10 observations within and across the category 
were considered (i.e., permitting gradations of 10% for hit 
rate and false alarm rate; this eliminated one participant’s 
data). Again, we compared the d′ scores for correct cat-
egory identification against chance (0) using one-sample 
t tests, and paired t tests to compare differences in cat-
egory identification when participants reported knowing 
and when they reported guessing.

In addition, starting with naïve participants and using 
a rigorous, computerized adaptive learning module 
allowed us to examine how participants’ abnormality 
detection and abnormality categorization reflected differ-
ences in perceptual learning. To this end, we conducted 
stepwise regression analyses starting from null models 
and adding predictors to improve the fit of the model. 
Each regression analysis used the observed learning data: 
(1) the average accuracy for abnormal histology images 
during training, (2) the average accuracy for normal his-
tology images during training, (3) the total number of 
abnormal histology exemplars seen (including repeti-
tions of the same histopathology image) before reaching 
criterion, (4) the total number of normal histology exem-
plars seen (including repetitions of the same histology 
image) before reaching criterion, (5) the total amount of 
time to complete the PALM, and (6) performance accu-
racy during assessment—to explain the participants’ 
performance on abnormality detection and abnormality 
categorization.

Results
PALM
On average, participants completed the PALM training 
in 45.4 min (SE = 4.57 min). Participants saw, on average, 
258 (SE = 28) abnormal histology exemplars (including 

repetitions of the same images) until they reached crite-
rion on all 4 histopathology categories. They also saw 57 
(SE = 9) normal histology exemplars on average (includ-
ing repetitions of the same images) until they reached 
criterion on normal histology. Participants achieved 40% 
accuracy (SE = 2%) for abnormal histopathology images 
and 42% accuracy (SE = 3%) for the normal histology 
images during their perceptual learning. After training, 
participants were significantly better (M = 42%, SE = 3%) 
than chance (20%) on their ability to classify novel his-
tology images on the assessment, t(19) = 7.23, p < 0.001, 
d = 1.62.

Abnormality detection
Participants demonstrated abnormality detection (mean 
d′ = 1.06, SE = 0.12), above the chance level of 0 (see 
Fig.  4a), with t(19) = 8.5, p < 0.001, d = 1.9, even with a 
brief 500-ms exposure of a histology image followed by 
a mask to stop further perceptual processing. Whether 
these responses and judgments resulted from percep-
tual category learning or from a memory-based process 
was determined by considering histology images previ-
ously seen (Familiar) versus novel histology images. For 
Familiar histology images that were seen during either 
learning or assessment (mean number of exemplars 
NE = 222.8, SE = 3.9), participants showed significant 
abnormality detection, with d′ = 1.10, SE = 0.13. Novel 
histology images (NE = 65.3, SE = 3.9) also showed signifi-
cant abnormality detection rates (d′ = 1.03, SE = 0.19); in 
both cases, participants were above chance (ts(19) > 5.5, 
p < 0.001, ds > 1.2). Importantly, participants performed 
statistically equivalent BFat abnormality detection inde-
pendent of familiarity, t(19) = 0.5, p = 0.604. Because this 
null result may suggest important similarities in the pro-
cessing between familiar and novel histology images, we 
examined this in a Bayesian framework to identify the 
degree of support for the null hypothesis. This analysis 
showed substantial evidence (BF = 0.20, using diffuse 
prior) in support of the null hypothesis. Thus, during 
abnormality detection, participants were using an effec-
tive, generalizable process in determining abnormalities 
that applied to novel histology images as well as familiar 
histology images.

Self‑reported process
As shown in Fig.  4b, even when participants reported 
using a guessing process (M = 45.2% of responses, 
SE = 5.6%), they remained above chance for abnormal-
ity detection (d′ = 0.68, SE = 0.13; t(19) = 5.3, p < 0.001, 
d = 1.2). When participants reported a knowing pro-
cess, their abnormality detection was also significantly 
above chance (d′ = 1.44, SE = 0.19, t(19) = 7.6, p < 0.001, 
d = 1.7), and this performance was significantly better 
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than when they reported guessing (t(19) = 3.8, p < 0.001, 
d = 0.9). Most telling, abnormality detection extended to 
novel items (see Fig.  4b), even when reporting guessing 
(d’ = 0.78, SE = 0.21, t(19) = 3.6, p = 0.002, d = 0.80). A 
repeated measures ANOVA (familiarity × self-reported-
process, dependent variable of d’) reported no main effect 
or interaction with familiarity (Fs(1,18) < 1.7, ps > 0.204) 
and affirmed better performance when participants 
reported knowing than guessing (F(1,18) = 8.9, p = 0.008, 
η2

p = 0.33). These data reveal participants were able to 
differentiate between abnormality decisions where they 
had accurate knowledge about their abnormality detec-
tion processes and abnormality detection where they had 
no awareness of the underlying processes. Importantly, 
abnormality detection processes remained effective even 
when participants reported they were guessing, and these 
processes generalized to novel histopathology images.

To determine which learning factors underlie this 
abnormality detection ability in novices, we conducted a 
regression on their abnormality detection performance 
with the factors from their perceptual training. When 
participants claimed “knowing,” the variation in abnor-
mality detection abilities was partially explained by the 
number of normal images seen during training (Fig. 5a; 
dark lines; b = − 0.01, β = − 0.66; t(18) = 3.7, p = 0.001, 
R2 = 0.44), demonstrating that faster learning of the 
normal images produced better abnormality detection. 
Post hoc analyses demonstrated that familiarity did not 
seem to alter this relationship, based on separate step-
wise regression for familiar and novel images. In both 
cases, the number of normal images seen during train-
ing was the only predictor included in the regression 

model and both indicated a negative relationship (famil-
iar, b = − 0.026, t(14) = 8.3, p < 0.001; novel, b = − 0.012, 
t(17) = 3.8, p = 0.001; for these analyses, only data with 
at least 5 observations contributing to hit rate and false 
alarm rate were considered). Note, as Fig.  5b shows, 
there was no relationship between the number of abnor-
mal images seen during training or how fast participants 
learned to detect the abnormality during training and 
their abnormality detection performance. These analy-
ses suggest that when participants claimed to use a deci-
sion process that resulted in “knowing,” participants who 
learned to identify normal images more quickly (i.e., 
required fewer trials to learn which images were “nor-
mal”) performed better than those who required more 
training to reach criterion on learning the normal.

The analysis of “guessing” responses (see Fig. 5a, light 
lines) suggests an additional and alternative process con-
tributing to participants’ performance when “knowing” is 
absent. The stepwise regression analysis of abnormality 
detection indicated no relationship with training when 
the participants reported guessing (correlation rs < 0.31, 
ps > 0.193). Because this null result may suggest an 
important difference in the processes generating “know-
ing” versus “guessing” judgments, we examined this in 
a Bayesian framework to identify the degree of support 
for the null hypothesis. This analysis showed substan-
tial evidence (BF = 0.26, uninformative reference prior) 
in support of the null hypothesis when regressing these 
detection measures against the number of normal slides 
seen during training. Thus, while the normal template 
seems important for conscious awareness of abnormality 
detection, the speed of perceptual training of the normal 

Fig. 4  a Naïve participants’ ability following perceptual learning i abnormality detection (left) and in  category identification (right). b Naïve 
participants’ abnormality detection ability with novel and familiar histology images, computed separately for self-reported guessing versus knowing
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histology image was unrelated to non-conscious abnor-
mality detection, suggesting two distinct and separable 
abnormality detection processes with one explicit and 
one implicit.

Abnormality categorization
This analysis, shown in the right columns of Fig.  4a, 
revealed clear evidence of abnormality categorization 
(d′ = 0.41, SE = 0.07; t(18) = 5.7, p < 0.001, d = 1.3), with 
abnormality categorization above chance levels of 0 
(acute inflammation d′ = 0.69, SE = 0.15; chronic inflam-
mation d′ = 0.29, SE = 0.08; cell and tissue injury/repair 
d’ = 0.36, SE = 0.11; neoplasia d’ =  0.30, SE = 0.08; 
with ts(18) > 3.2, ps < 0.005, ds > 0.7). A one-way repeated 
measures ANOVA suggested that the different categories 
supported different levels of abnormality categorization, 
F(3,54) = 3.8, p = 0.016, η2

p = 0.173, with uncorrected 
post hoc tests identifying acute inflammation as support-
ing superior recognition (ps < 0.028) and no differences 
among the remaining categories (ps > 0.608).

Self‑reported process
Further analyzing the separate abnormality categori-
zations with the participants’ responses of “knowing” 
and “guessing” was difficult because of the low counts. 
Using a threshold of at least 10 items to assess hit rate 

and false alarm rate, four participants’ “guess” responses 
would be fully excluded and eight participants’ “know” 
responses would be fully excluded, totaling eight partici-
pants excluded on a pairwise analysis. (Requiring all four 
categories be present would increase this to 18 of the 20 
participants being excluded.) Considering only accuracy 
provided more data to consider. Abnormality categori-
zation performance could only be considered where the 
initial abnormal stimulus was correctly identified as con-
taining an abnormality. Again, to ensure stability, accu-
racy estimates with fewer than 10 observations were 
excluded from the analyses.

Examining the accuracy of abnormality categoriza-
tion on correctly identified abnormal stimuli revealed 
significantly above chance performance (M = 35.2%, 
SE = 1.9%; one-sample test comparing to chance = 25%, 
t(19) = 5.4, p < 0.001, d = 1.2). This accuracy remained 
significantly above chance even when participants 
reported guessing at the categorization (M = 34.1%, 
SE = 2.0%; t(17) = 4.6, p < 0.001, d = 1.1) and did not 
differ from when participants reported knowing the 
answer (M = 38.0%, SE = 2.8%; paired t(15) = 1.2, 
p = 0.256; BF = 0.36, using diffuse prior). Again, famili-
arity with the stimuli did not appear to affect perfor-
mance (t(17) = 0.1, p = 0.945, BF = 0.18, using diffuse 
prior)—participants were significantly above chance 

Fig. 5  a and b Relationship between participants’ gist abnormality detection with the number of normal (left) and abnormal (right) images 
seen during learning, computed separately for self-reported guessing versus knowing. Black squares identify participants’ responses when they 
reported knowing, and the solid black line identifies the best-fitting line to these data. Gray circles and the gray line correspond to trials where 
the participants reported guessing. The more rapid the perceptual learning of the normal images (as indexed by less normal images seen before 
reaching learning criterion), the better the gist abnormality performance when participants reported knowing. No such relationship existed when 
participants reported guessing suggesting two separate gist processes
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when identifying the abnormality category in famil-
iar histology images seen during training (M = 35.9%, 
SE = 2.1%, t(18) = 5.2, p < 0.001, d = 1.2) and, more 
critically, novel histology images were also categorized 
significantly greater than chance (M = 35.5%, SE = 2.8%, 
t(17) = 3.7, p < 0.003, d = 0.87).

Next, we considered how the participants’ accuracy 
in their abnormal categorization related to their per-
formance during learning (note, dividing the data by 
familiar versus novel would include only six partici-
pants with complete data to consider, so that analysis 
is omitted). Here, when participants reported guess-
ing, our learning metrics showed no predictive value 
(rs < 0.344, ps > 0.162, BFs < 0.47, using uniform prior), 
but when they reported knowing, the story was more 
complex. The final model in this latter case included 
a negative relationship with the number of normal 
images seen during training (b = − 0.001, β = − 0.50; 
t(14) = 2.8, p = 0.015) and a positive relationship with 
the time spent learning (in seconds, b = 7.2× 10−5, 
β = 0.69, t(14) = 3.9, p = 0.002; overall model R2 = 0.58). 
Here again, better performance was found with faster 
learning of the normal images, and the categorization 
seemed to be improved when participants spent more 
time during the learning. Crucially, categorization per-
formance was seemingly uncorrelated with the number 
of abnormal stimuli seen (r = 0.19, p = 0.466, BF = 0.24, 
using uniform prior), suggesting that perhaps the par-
ticipants’ time spent processing the stimuli during the 
PALM feedback improved their categorization perfor-
mance. As before, these analyses suggest distinct and 
separable abnormality categorization processes.

Finally, we separated the number of times partici-
pants correctly or incorrectly categorized the abnor-
mality based on their self-reported “guessing” and 
“knowing” for both the abnormality detection and cate-
gory judgment (Table 1 presents these numbers as rela-
tive frequencies).  Table1  suggests that the “knowing” 
and “guessing” for the two decisions were not always in 
agreement (χ2(1) = 409, p < 0.001). Though the major-
ity (69.4%) of self-reported “guessing” and “knowing” 

responses were the same in the two decisions, a con-
siderable number diverged. The majority of trials (29%) 
were “guessing” with correct abnormality detection and 
“guessing” with incorrect categorization. There were a 
fair proportion of trials (10%) in which the participants 
got both decisions correct and reported “knowing” dur-
ing both decisions. As we shall cover in the discussion, 
we believe these different types of responses are sug-
gestive of multiple processes occurring some of which 
have been defined in the literature as a global implicit 
signal (“guess”) without localized information about 
the abnormality (Evans et  al., 2013, 2016, 2019), some 
of which are a global signal that leads to a conscious 
detection (“know”) of local information of the abnor-
mality (Kundel & Nodine, 1975; Kundel et  al., 2008) 
and some of which are neither.

Discussion
The aim of this study was to determine if global implicit 
abnormality processing occurs in naïve (non-medically 
trained) participants who received a brief perceptual 
training and to tease apart the nature of that signal. 
Perceptual learning of histology images in medical stu-
dents has previously produced marked improvement in 
histopathology performance (Krasne et  al., 2013). We 
found that naïve participants who are briefly perceptu-
ally trained also show good learning of histopathology. 
The data were telling in that perceptually trained naïve 
participants also showed significant abnormality detec-
tion for histology images. Even with perceptual training 
lasting less than 1 h, these naïve participants were able 
to detect a skin histopathology well above chance with 
a brief 500 ms presentation and visual masking. These 
results in naïve participants mirror a study by Brunye 
et  al. (2021) who showed that experts (resident and 
attending pathologists) showed abnormality detection 
with a 500 ms presentation of a histopathology, suggest-
ing our perceptually-trained naïve participants were 
performing comparably. Of course, our participants did 
not have years of medical training, nor did they have 
many thousands of exposures to histopathology images, 

Table 1  Frequencies of category decisions following correct abnormality detection



Page 11 of 14DiGirolamo et al. Cognitive Research: Principles and Implications            (2023) 8:10 	

suggesting that the development of abnormality detec-
tion is rather rapid when perceptually trained and does 
not require extensive exposure.

Further, the abnormality detection in our naïve par-
ticipants generalized to novel histopathology images. 
These data indicate that our participants had developed 
a general abnormality detection process and were not 
using solely memory processes or matching of spe-
cific images. The generalization of processes learned 
through perceptual training has previously been dem-
onstrated for abnormality detection with long exposure 
durations (Johnston et  al., 2020; Xu et  al., 2016), but 
this is the first example of a generalizable rapidly devel-
oped abnormality detection process.

Another aim of this study was to parse this signal 
and understand what drives its development. Here 
the data were telling. When making their abnormal-
ity responses, participants also reported whether 
they knew, or if they were guessing. In both cases, 
naïve participants demonstrated significant abnor-
mality detection above chance levels. To be explicit, 
even when naïve participants reported they were just 
guessing, they still showed significant abnormality 
detection. These data are in line with the notion of an 
implicit global signal (“gist”) as defined by Evans and 
colleagues (Evans et  al., 2013, 2016, 2019) which sug-
gest an implicit global signal without awareness of the 
exact location or type of abnormality. Further, regres-
sion analyses demonstrated that there were two distinct 
processes underlying abnormality detection. When 
participants reported guessing, no factors related to 
their perceptual learning were significant predictors 
of the amount of abnormality detection participants 
showed. However, when naïve participants reported 
knowing, their abnormality detection was directly neg-
atively related to the number of normal images they 
had seen during training (see Fig.  5a, dark line), with 
fewer normal images seen during training producing 
larger d’ scores for abnormality detection. Recall that 
in the adaptive perceptual learning, participants retired 
a category when they recorded three consecutive cor-
rect answers for that category. Hence, those naïve par-
ticipants who had seen fewer normal images during 
perceptual learning were also the participants who had 
learned the normal histology images fastest. Our data 
are clear that faster learning of normal histology images 
produced larger d′ scores and hence demonstrate more 
abnormality detection. These data agree with the pre-
diction of Kundel and Nodine (1975) and Kundel et al. 
(2007, 2008): Better abnormality detection arises from 
a better normal template. Kundel and colleagues have 
argued that the violation of the normal template creates 

a global signal that directs selective attention to the 
location of the abnormality.

However, these data also show that there is more than 
one process that produces abnormality detection, as tri-
als where participants were guessing showed no such 
relationship with the normal template. In our view, more 
than one signal is created in the visual system, with one 
global signal supporting a general abnormality process 
(trials where participants guessed and had no local infor-
mation about the type of abnormality). These trials are 
shown in pink in Table  1 where participants reported 
“guessing” on the abnormality detection but get it cor-
rect, and then get the category wrong while reporting 
guessing for the category. These data are evidence of an 
implicit global signal without local information (Evans 
et  al., 2013, 2016, 2019). But an additional signal giving 
rise to identification of the locations of abnormalities is 
also seen. As shown in Table 1 (in blue and green), par-
ticipants correctly identify the category of the abnormal-
ity and report “knowing.” The local information needed 
to identify the category could arise from two potential 
mechanisms. First, as suggested by Kundel and Nodine 
(1975) and Kundel et  al. (2007, 2008), the global “gist” 
signal gives the location information of where the abnor-
mality lies. As the global signal arises as a comparison 
of the normal template against the current image and 
that comparison violation has a specific location. Alter-
natively, after a global signal, participants might be ran-
domly foveating different regions of the histology image 
and hence find the location where the abnormality lies. 
Because the image is up for only 500 ms, only one or two 
eye movements are likely (Brunye et al., 2021). However, 
participants report “knowing” that it was an abnormality 
and “knowing” during categorization is clear evidence for 
additional processes besides the global implicit signal as 
proposed by Evans et al. (2013, 2016, 2019). Further evi-
dence for multiple processes comes also from the results 
of the categorization.

If the global signal only produced a general abnormal-
ity signal, then participants would be at chance for dis-
criminating the type of histopathology that was present. 
However, our naïve but perceptually trained participants 
showed clear evidence of category identification, with 
values that were above chance even with a single brief 
500  ms presentation of a histology image that was then 
visually masked. Given that the category identification 
came after the abnormality judgment and the reporting 
of how they made this abnormality judgment, we suspect 
that their performance would have been even higher if 
the category identification were made immediately after 
the 500  ms presentation. It is also likely that given the 
categorization occurs after the stimulus has been masked 
and after participants have made the detection judgment 
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and reported whether they were “guessing” or “know-
ing,” the information may be decaying and impeding 
their ability both to make the categorization and to use 
self-report accurately. Nevertheless, perceptually trained 
naïve participants can still discriminate among four his-
topathology categories suggests that at least one of the 
signals must contain some local information about the 
abnormality that allows discrimination between the four 
pathologies. As shown in Fig. 1, the abnormality catego-
rization requires local information about the region of 
the histology image where the abnormality occurs. Note, 
however that these data also suggests two separate pro-
cesses. When we decomposed the abnormality detection 
into trials where participants reported “knowing” versus 
“guessing” the answer, we also get two distinct processes. 
For abnormality categorization where participants 
reported they were merely “guessing,” naïve participants 
were significantly better than chance at discriminating 
the specific histopathology category. However, these tri-
als were unrelated to the factors associated with their 
perceptual learning. In contrast, when naïve participants 
reported “knowing” during abnormality categorization, 
they were again significantly better than chance and 
their performance was again related to how rapidly they 
learned the normal template (Kundel & Nodine, 1975; 
Kundel et  al., 2007, 2008). Carrigan et  al. (2018) have 
also demonstrated that the global signal contain loca-
tion information. The current data are clear that multiple 
processes are developed rapidly after perceptual training, 
and these different signals are dissociable and support 
different processes. It is likely that a global signal is pre-
sent and a more specific signal that also contains location 
information is derived from every medical image. Note 
we also have evidence of an implicit global and local sig-
nal. As Table 1 also shows (in yellow), there are a number 
of trials in which participants report “guessing” for both 
the abnormality and the category and get both of them 
right. These data are supportive of an implicit signal 
at both the global and local scale that can support both 
abnormality detection and abnormality categorization in 
the absence of explicit information. We must be vigilant 
of over-interpreting some of our results as some of these 
difference relies, in part, on the participants self-report 
of whether they knew or guessed. However, participants 
were significantly better when they reported “knew” than 
“guessed,” suggesting some accuracy in these judgments. 
The current data are clear evidence of multiple processes 
arising from perceptual training in novices which support 
abnormality detection and abnormality categorization.

It is our contention that experts may also derive multi-
ple signals during the many learning trials associated with 
the tens of thousands of images that they are exposed to 
throughout their training and careers. It is important to 

note that in the real world, medical experts may rely far 
less on these global signals than our participants. How-
ever, there is speculative and anecdotal evidence that 
these processes play a role. While not technically limited 
to 500 ms for each image, experts are under a lot of time 
pressure to read quickly. For example, a typical day of 
radiology reading might be 30 CTs acquired at 1 mm per 
day, translating to ~ 10,320 images read over a 5-h period, 
leaving little time for each slice. Additionally, one of the 
authors (MR) is a practicing radiologists and reports that 
when viewing cases, he sometimes gets a nagging feel-
ing that something is wrong and goes back and finds an 
abnormality.

The debate over the nature of the gist signal of a global 
implicit abnormality signal (Evans et  al., 2013, 2016, 
2019) versus a global signal that is compared to a normal 
template and provides specific location information for 
attention (Kundel & Nodine, 1975; Kundel et  al., 2007, 
2008) may be so contentious because more than one 
signal is evident. In the current data, dissociable signals 
are seen for abnormality detection and for abnormal-
ity categorization. The ability of our naïve participants 
to correctly identify the category of the abnormality and 
the dissociation in abnormality detection between guess 
and know trials supports the idea of multiple processes 
(both global and local and both implicit and explicit, see 
Table  1). The finding that our participants are able to 
correctly classify an image as abnormal even when they 
report that they are just guessing also supports a general 
global process. In short, our data support both argu-
ments but only because multiple signals are evidenced. 
That multiple signals are produced after a brief percep-
tual training speaks to the power and utility of perceptual 
learning and the remarkable adaptability of the human 
visual system.

Conclusion
We explored the ability of naïve participants to rapidly 
acquire visual expertise in medical images after a brief 
perceptual and adaptive learning procedure. We find 
that perceptual learning produces significant changes in 
the human visual system for medical images and gives 
rise to multiple, distinct global signals that can be used 
to identify whether an abnormality is present and what 
type of abnormality is present. This rapid acquisition of 
multiple global and local perceptual processes in naïve 
participants has critical implications for how radiologists 
and pathologists are trained. To date, the trainings of 
radiologists and pathologists are partially dependent on 
exposure to whatever abnormalities are present during 
their residency or whatever current elective they are pur-
suing. The present data suggest that a brief concentrated 
perceptual training can produce multiple dissociable 
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visual processes that support abnormality detection and 
abnormality categorization. And at least some of these 
processes are directly related to how well the participants 
learn a normal template. In line with Kundel and Nodine 
(1975) and Kundel et al. (2007, 2008), we suggest that a 
directed learning of a normal template prior to the learn-
ing of abnormalities may produce better abnormality 
detection and identification in radiologists and patholo-
gists. We also suggest that multiple visual processes are 
developed during perceptual learning, some of which 
support conscious recognition (knowing) and some of 
which form non-conscious detection (guessing), and 
these processes are a crucial part of abnormality detec-
tion. Creating methodologies to tap into all of these 
processes in medical visual search might change clini-
cal practice, reduce misses, improve early detection, and 
increase survival rates.

Significance
Medical diagnosis requires rapid and efficacious recognition of an abnormal-
ity in diagnostic visual search of a medical image. How doctors know where 
to look on the image to find the abnormality is highly debated with some 
researchers suggesting a global “abnormality signal” and others suggesting 
a global perceptual process that guides attention to critical locations based 
on deviations from a normal template. In support of this rapid global process, 
doctors show “gist” where they can detect abnormalities at above chance 
levels given a half-second presentation of a medical scan. These global signals 
are thought to arise from many years of medical training and from thousands 
of exposures to abnormality exemplars. In contrast, we show that less than 
1 hr of perceptual-adaptive training in naïve observers produces comparable 
gist processing and this gist processing is related to how well naïve observers 
learned the normal template. One means of increasing abnormality detection 
might therefore rely on a different form of medical training that emphasizes 
the learning of normal anatomy in the early stages of study.
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