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Abstract 

We investigated the relationship between category learning and domain-general object recognition ability (o). 
We assessed this relationship in a radiological context, using a category learning test in which participants judged 
whether white blood cells were cancerous. In study 1, Bayesian evidence negated a relationship between o and 
category learning. This lack of correlation occurred despite high reliability in all measurements. However, participants 
only received feedback on the first 10 of 60 trials. In study 2, we assigned participants to one of two conditions: feed-
back on only the first 10 trials, or on all 60 trials of the category learning test. We found strong Bayesian evidence for a 
correlation between o and categorisation accuracy in the full-feedback condition, but not when feedback was limited 
to early trials. Moderate Bayesian evidence supported a difference between these correlations. Without feedback, 
participants may stick to simple rules they formulate at the start of category learning, when trials are easier. Feedback 
may encourage participants to abandon less effective rules and switch to exemplar learning. This work provides the 
first evidence relating o to a specific learning mechanism, suggesting this ability is more dependent upon exemplar 
learning mechanisms than rule abstraction. Object-recognition ability could complement other sources of individual 
differences when predicting accuracy of medical image interpretation.
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Introduction
Accurate interpretation of medical images plays a cru-
cial role in the diagnosis of many medical conditions. 
This process often requires the visual detection of abnor-
malities, such as lung nodules in radiographs or masses 
in mammograms. Although experts undergo substantial 
training, they cannot always make the correct decision 
(Brady, 2017; Graber et  al., 2002). For many diagnos-
tic tests, there are substantial discrepancies in accu-
racy between practitioners, in part due to differences 
in experience (Itani et  al., 2019; Rudolph et  al., 2021). 

Practitioners may even disagree with their own initial 
judgement when asked to review images a second time 
(Abujudeh et  al., 2010). Although precise estimates of 
the prevalence of medical imaging errors are difficult to 
obtain, as errors vary widely based on test, practice set-
ting, and population, estimates of real-world error rates 
range from < 1% to around 10% (Gergenti & Olympia, 
2019; Lamoureux et  al., 2021; Lockwood, 2017). Error 
rates can be higher still when the relevant disease is rare 
in the studied population (Kolb et al., 2002). These errors 
have multiple causes at the individual and the system 
level, including fatigue, communication failure, biased 
reasoning, failures of visual search, interpretive errors, 
technological errors, and poor technique (Lee et  al., 
2013; Waite et al., 2017). A majority of radiological errors 
are perceptual in nature, with practitioners failing to spot 
abnormalities, whereas a smaller but still substantial pro-
portion of errors are due to failure to correctly categorise 
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abnormalities (Donald & Barnard, 2012; Ferguson et al., 
2021; Kim & Mansfield, 2014).

As the accurate interpretation of medical images relies 
on the detection and categorisation of objects, differ-
ences in diagnostic accuracy among practitioners may 
partially result from individual differences in visual abili-
ties. The existence of such differences is supported by 
evidence for a domain-general object recognition abil-
ity (o). Confirmatory factor models demonstrate that 
diverse measures of object recognition, with differing 
task demands and differing object categories, load onto a 
single higher-order factor (Richler et al., 2019). The o fac-
tor explains variance in scores on object recognition tests 
beyond that explained by intelligence and visual working 
memory, and it can do so for both familiar and unfamil-
iar object categories (Richler et  al., 2017; Sunday et  al., 
2022). In studies that are not concerned with investigat-
ing the structure of this visual ability, or that for practi-
cal reasons cannot achieve the sample size or the number 
of tasks required for structural equation modelling, an 
aggregate approach (Rushton et  al., 1983) to measuring 
object recognition ability has been used (Chang & Gauth-
ier, 2021; Chow et  al., 2022). In this approach, z-scores 
on two object recognition tests that differ in format and 
stimuli are averaged to estimate the level of the underly-
ing o ability. This approach provides a valid compromise 
in estimating o in smaller samples and when time is lim-
ited (Smithson et al., 2022). Using this approach, Sunday 
et al. (2018) found that o predicts the accurate detection 
of lung nodules in chest radiographs for both novices and 
experts, demonstrating a link between o and success-
ful abnormality detection. The detection of lung nodules 
depends on successful visual search, but other radiologi-
cal tasks rely less on visual search, and more on accurate 
categorisation.

As o captures the ability to learn individual identities, it 
is unclear whether it will also predict accurate categori-
sation. There are demonstrated individual differences in 
both speed and accuracy of category learning, in addition 
to differences in strategy use. Some people rely more on 
the abstraction of simple rules, leading to categorisation 
decisions based on one dimension. Others preferentially 
rely on judgements of perceptual similarity to category 
exemplars, which can be measured in a space defined by 
several relevant dimensions (Little & McDaniel, 2015; 
Wahlheim et  al., 2016). For example, one may learn to 
categorise a skin mole as cancerous if it is asymmetri-
cal, but one may also rely on comparisons of the mole to 
remembered examples of cancerous and non-cancerous 
moles. o predicts performance on many visual tasks that 
require judgements other than individuation, such as 
visual search, and judgements of summary statistics for 
ensembles (Chang & Gauthier, 2021; Sunday et al., 2018). 

Given that o can predict such a wide array of visual tasks, 
it is reasonable to question whether o could also predict 
accurate categorisation in a visual domain. There is some 
support for a relationship between individual differences 
in object recognition (measured by one of the tasks that 
tap into o) and accurate categorisation of medical images, 
at least under some conditions. In one study, participants 
categorised white blood cells as cancerous or not under 
conditions emphasising speed or accuracy, or when pro-
vided with a biased cue (Trueblood et al., 2018). Perfor-
mance on an object recognition test predicted accurate 
categorisation, particularly for categorisation following 
biased cues. While this suggests that categorisation may 
rely on visual abilities under some conditions more than 
others, this work did not have sufficient power to com-
pare correlations across conditions.

The study of domain-general high-level visual abilities 
is an emerging research area (Gauthier, 2018; Gauthier 
et  al., 2022), and the extent to which these abilities can 
explain variability in performance on real-world tasks 
is still unclear. As diagnostic imaging has a heavy visual 
component, it is plausible that visual abilities may influ-
ence performance on these tasks. A good first step in 
showing this is to demonstrate that o can predict accu-
rate categorisation of medical images. To investigate this, 
we created a three-alternative forced choice test in which 
participants learn to categorise white blood cell images as 
cancerous (blast) or non-cancerous (non-blast). We used 
a novice sample to test the relationship between o and 
categorisation in the absence of extensive pre-existing 
experience, which could contaminate the relationship.

Study 1
Participants
Thirty-nine Vanderbilt University students participated 
for course credit. A further sixty-seven adults were 
recruited on Amazon Mechanical Turk. Recruitment 
criteria required the use of a US IP address, greater than 
50 approved hits, and a greater than 90% approval rat-
ing. We used a Bayesian stopping rule, collecting data 
in batches, until the Bayes Factor for the correlation 
between o and performance on the Blast Test reached a 
suggested threshold for moderate evidence, BF10 > 3 or 
BF10 < 1/3 (Lee & Wagenmakers, 2014). From our total of 
106 participants, we excluded 26 for below-chance per-
formance on either of the two tests used for estimating o.1 
This left 80 participants in the final analysis (Mage = 34.7, 
SD = 14.8; 32 men, 46 women, 2 other).

1  19 excluded participants were from the Mechanical Turk sample, and 7 were 
from the student sample.
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Materials and procedure
Participants completed three on-screen tests. First, they 
completed the Blast Test—a category learning test involv-
ing the identification of cancerous cells. After this, they 
completed the Novel Object Memory Test (NOMT) and 
the Object Matching Test, which were used to estimate 
o. Example stimuli for all three tests can be seen in Fig. 1. 
We used a fixed order of trials for all tests to minimise 
variance due to factors other than individual differences. 
Informed consent was obtained from all participants, 
and the study was approved by the Vanderbilt University 
Institutional Review Board.

Development of Blast Test
We obtained images of blast and non-blast blood cells 
from peripheral blood smears conducted at Vanderbilt 
University Medical Center. These images have been used 
in prior research on medical decision making (Hasan 
et al., 2021; Trueblood et al., 2018). They were categorised 
by expert consensus as blast or non-blast. They were addi-
tionally sorted into easy or hard categories on the basis of 
whether each cell image shared features common to the 
other category (Trueblood et  al., 2018). We initially cre-
ated 100 trials. Each trial was composed of two non-blast 
cells, and one blast cell. The task on each trial was to iden-
tify the blast cell from a side-by-side display of the three 
images. The use of three cells to choose from on each test 
trial reduces the importance of response bias and reduces 
the successful random guessing rate for each trial, com-
pared to using only two. We initially created 25 trials 
composed of one easy blast image, and two easy non-blast 
images; 25 trials composed of one easy blast and two hard 
non-blast images; 25 trials composed of one hard blast 
and two easy non-blast images; and 25 trials composed 
of one hard blast, and two hard non-blast images. On the 
basis of pilot testing, we selected trials from a broad range 

of difficulty levels to maximise the informativeness of our 
test across a wide range of ability levels. Trials were also 
selected for high reliability; we checked item-rest corre-
lations, and internal consistency if an item was dropped, 
and dropped those that reduced reliability. In the final 
Blast Test, the trials were ordered from easiest to hardest 
based on our pilot data. To familiarise participants with 
the two categories, participants were first shown 6 blast 
blood cell images, and 6 non-blast blood cell images, 
with category membership clearly labelled. Participants 
then completed 60 trials. Feedback indicating whether 
responses were correct appeared at the top of the screen 
for 1  s after each of the first 10 trials. No feedback was 
given for the remaining 50 trials. Percent correct over the 
60 trials indexed performance.

Tests to estimate o
As in prior work, we used the aggregate of two object rec-
ognition tests to estimate o (e.g. Chang & Gauthier, 2021; 
Chow et  al., 2022; Sunday et  al., 2018). These two tests 
were chosen from a battery of tests that were good indi-
cators of o in confirmatory factor models (Richler et al., 
2019; Sunday et  al., 2022), on the basis that they have 
different test constraints and use different categories of 
novel objects. The aggregation of scores from tests using 
different object categories and different task demands 
purifies the measurement of domain-general ability, by 
reducing the proportion of variance in scores that is due 
to irrelevant variation specific to particular task demands 
or stimuli (Rushton et al., 1983). The expected correlation 
for a pair of such tests is relatively low (0.3–0.4) because 
superficial features of the tests and stimuli are different. 
The aggregate of standardised performance on two tests 
provides a good estimate (r ≈ 0.8) of o measured as a fac-
tor score in a confirmatory factor analysis based on six 
tests (Smithson et al., 2022).

Fig. 1  Example Stimuli. A: Symmetrical Greebles used in the NOMT. B: Novel objects used in the Object Matching Test. From the top left, 
anticlockwise: vertical and horizontal Ziggerins, asymmetrical Greebles, and Sheinbugs. C: White blood cells used in the Blast Test
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Novel object memory test
The NOMT was developed to assess object recognition 
ability (Richler et  al., 2017). Participants were asked to 
memorise six exemplars from a category of novel objects 
(symmetrical Greebles; Gauthier & Tarr, 1997). They 
then viewed these six targets for as long as they needed, 
before completing six test trials. On each test trial, one 
target Greeble appeared alongside two distractor Gree-
bles. Participants had unlimited time to select the target 
Greeble with their mouse on each trial. Participants then 
reviewed the targets and completed a further 18 test tri-
als. Participants were then informed that the Greebles 
could appear in different viewpoints on remaining trials. 
The targets were presented again for review, prior to the 
final 24 test trials. Percent correct over the 48 test trials 
indexed performance.

Object matching test
On each trial participants had to determine whether 
two serially presented images displayed the same object. 
The objects were selected from four categories of novel 
objects: asymmetrical Greebles, Sheinbugs, and two dis-
tinct categories of Ziggerins (Richler et  al., 2019). Each 
trial used either one or two objects from the same cat-
egory. Each trial began with the presentation of a cen-
tral fixation cross for 500 ms. The target object was then 
presented for 300 ms before a visual mask composed of 
scrambled object parts appeared for 500  ms. Finally, 
another object was presented which was either the same 
as the target or different. Participants had four seconds 
to respond by clicking either the same or different but-
tons on-screen. The target object could change in orien-
tation or size from study to test, but participants were 
asked to judge only whether the identity of the object 
was the same. After an initial four practice trials, partici-
pants completed 70 test trials. Performance was indexed 
by a signal detection theory measure of sensitivity (d′). 
Timed-out responses were not included in the calcula-
tion. Less than 1% of all trials had timed-out responses.

Results
Descriptive statistics and reliability for each test can be 
seen in Table 1. To estimate o, z-scores for percent accu-
racy on the NOMT and d′ on the Object Matching Test 
were averaged. Correlational analyses used a Jeffreys-
beta prior (Jeffreys, 1961) with a scale of 1 and were con-
ducted with the BayesFactor Package (Morey & Rouder, 
2021) in R. BF+0 indicates a one-sided test in the positive 
direction, and BF10 is used for two-sided tests. We report 
highest posterior densities as 95% credibility intervals, 
and the median of the posterior distribution is used for 
parameter estimation. Our reported CIs and parameter 
estimates are always calculated from two-sided analyses. 

As expected, there was very strong Bayesian evidence 
for a positive correlation between performance on the 
NOMT and the Object Matching Test (r = 0.33, 95% CI 
[0.13, 0.52], BF+0 = 31.07). We obtained moderate evi-
dence against a correlation between o and percent accu-
racy on the Blast Test (r = 0.03, 95% CI [−  0.18, 0.25] 
BF+0 = 0.18, Fig. 2), although this was somewhat sensitive 
to the choice of prior, with the Bayes factor rising above 
1/3rd for prior scales equalling or below 0.32.

Discussion
Contrary to our hypothesis, o did not predict perfor-
mance on the Blast Test. One possible reason for the 
lack of a relationship with category learning may be the 
limited amount of feedback that participants received. 
Although tests that are used to estimate o do not use 
feedback, and o can predict other skills measured in tests 
without feedback, such as working memory judgements 
with musical notation (Chang & Gauthier, 2021) or food 
oddball judgements (Gauthier & Fiestan, 2023), the strat-
egies and mechanisms recruited during category learning 
may be particularly sensitive to feedback. Early on in cat-
egory learning, people tend to rely on simple rule-based 
judgements and then update these rules as they receive 
further feedback, before shifting to similarity-based 

Table 1  Descriptive statistics

Reliability is calculated using Pearson’s r between two halves composed 
of alternating trials, with the Spearman–Brown prophecy formula applied. 
Aggregate reliability of o was calculated with equal weighting using a formula 
adapted from Wang and Stanley (1970)

Test Mean (SD) Reliability

NOMT (percent accuracy) 55.4% (15.2%) 0.75

Object Matching (d′) 0.98 (0.53) 0.73

o 0 (0.82) 0.81

Blast (percent accuracy) 64.5% (19.1%) 0.93

Fig. 2  Correlation between o and percent accuracy on the Blast Test
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exemplar retrieval as expertise develops (Johansen & 
Palmeri, 2002). In Study 1, we only provided participants 
with feedback on the first ten trials of the Blast Test. As 
earlier trials in the Blast Test are easier, participants did 
not receive any feedback on more difficult trials. Indi-
vidual differences in performance may thus result from 
divergent initial rule choices, or differing success in the 
application of these rules. Due to the limited feedback, 
participants may have seen no need to update their ini-
tial rules or may have had no basis on which to do so. 
Additionally, the lack of feedback may have discouraged a 
switch in strategy to reliance on judgements of perceptual 
similarity to prior exemplars. Harder trials are presum-
ably more likely to require methods of judgement other 
than simple rule use. The tests used to estimate o require 
within-category individuation, which also cannot usually 
rely on the use of simple rules, as objects in a common 
category will share a basic configuration of parts.

To test whether the lack of association between o and 
Blast Test accuracy was due to the limited feedback, we 
repeated the study with the addition of a full-feedback 
condition, wherein participants received feedback for all 
60 trials of the Blast Test.

Study 2
Materials and procedure
Participants completed the same three tests as in study 
one. However, the tests were in a different fixed order: 
NOMT, Object Matching Test, and Blast Test. In Study 
2, we compared the limited feedback and the full-feed-
back versions of the Blast Test, so placing this test last 
ensured that performance on the two object recognition 
tests could not be affected by assignment to either condi-
tion of the Blast Test. The NOMT was modified such that 
participants had a fixed 20  s to familiarise themselves 
with the six targets on each study trial, reducing differ-
ences in study time as a source of individual differences. 
The Object Matching Test was altered so that for the first 
35 trials the study object was presented for 600 ms. This 
was done to lower difficulty on some trials, as mean d′ 
was low in Study 1 (0.97). For the remaining 35 trials, 

the study object was presented for 300  ms, as in Study 
1. Another alteration was to allow unlimited time to 
respond, eliminating timed-out responses so that d′ was 
calculated for the exact same trials for all participants.

Participants
Due to the high percentage of participants excluded 
in Study 1 for below-chance performance (27.4%), 
we switched recruitment platform to Prolific.co. We 
recruited 245 participants, with the requirement of 
English fluency. Our pre-set exclusion criteria excluded 
one participant who failed more than one of five atten-
tion checks spread throughout the study. This method 
of exclusion allowed us to treat low scores as valid. The 
attention checks were dummy trials in which participants 
were instructed to click on a specific response option. 
Participants were randomly assigned to the limited or 
the full-feedback condition. Due to error, the first 6 par-
ticipants were non-randomly assigned to the limited 
feedback condition. Once we reached 122 participants 
in the limited feedback condition (64 men, 57 women, 1 
other; Mage = 25.4, SD = 6.3), we added 21 participants 
to the full-feedback condition (50 men, 67 women, 5 
other; Mage = 26.3, SD = 8.8) to achieve equal group sizes 
(which were unequal due to random assignment as well 
as the initial error). We then ceased collecting data as we 
were able to find a conclusive Bayes factor for the exist-
ence of a correlation between o and categorisation accu-
racy in the full-feedback condition.

Results
Descriptive statistics and reliability for each test can 
be seen in Table  2. As expected, there was a correla-
tion between the NOMT and the Object Matching Test 
(r = 0.26, 95% CI [0.14, 0.37], BF+0 = 752.82) across all 
participants. There was inconclusive evidence for an 
overall difference in accuracy on the last 50 trials of 
the Blast Test (conditions diverge after the first 10 tri-
als) between the limited and the full-feedback condi-
tions (BF+0 = 2.48). For the limited feedback condition, 
there was inconclusive evidence against a correlation 

Table 2  Descriptive statistics

Reliability is calculated using Pearson’s r for two halves composed of alternating trials, with the Spearman–Brown prophecy formula applied. Blast Test analyses here 
are of the last 50 trials only. Aggregate reliability of o was calculated with equal weighting using a formula adapted from Wang and Stanley (1970)

Limited feedback Full feedback

Test Mean (SD) Reliability Mean (SD) Reliability

NOMT (percent accuracy) 59.72% (15.76%) 0.82 57.07% (14.24%) 0.76

Object Matching (d′) 1.44 (0.6) 0.81 1.33 (0.6) 0.83

o 0 (0.77) 0.85 0 (0.81) 0.84

Blast (percent accuracy) 61.46% (17.62%) 0.89 66.46% (18.49%) 0.92
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between o and percent accuracy on the Blast Test 
(r = 0.11, 95% CI [− 0.07, 0.28], BF+0 = 0.41, Fig. 3.). For 
the full-feedback condition, there was strong evidence 
for a correlation between o and percent accuracy on the 
Blast Test (r = 0.26, 95% CI [0.10, 0.43], BF+0 = 18.75, 
Fig.  3.). Using BFpack (Mulder et  al., 2019) in R, we 
obtained moderate Bayesian evidence for the hypoth-
esis that the correlation between o and blast percent 
accuracy is greater in the full-feedback condition than 
in the limited feedback condition, compared to its com-
plement (BF10 = 8.34).

Discussion
In support of our main hypothesis, we found a rela-
tionship between o and accuracy in the full-feedback 
condition of the Blast Test. We further showed that 
this relationship was greater than the relationship 
between o and Blast Test accuracy in the limited feed-
back condition. This suggests a relationship between 
o and category learning. We hypothesised that such 
a correlation would emerge in the full-feedback con-
dition because greater feedback may allow for a shift 
from the use of simple rules for categorisation judge-
ments to the use of complex rules, or a change in 
strategy from rule-based judgements to judgements 
based on perceptual comparison of cells against prior 
exemplars. However, because each trial included one 
blast image, and two non-blast images, one task-spe-
cific strategy that participants could have employed 
is to select the odd one out. Perhaps particularly for 
the limited feedback condition, participants may have 
used this strategy instead of trying to learn to cate-
gorise blast cells explicitly. To test this possibility, in 
study 3 we assessed participants in a no-feedback ver-
sion of the Blast Test.

Study 3
Participants and method
Fifty-one participants (Mage = 24.69, SD = 6.8; 24 men, 
24 women, 3 other) were recruited on the Prolific.co plat-
form, with a requirement for English fluency. We then 
assessed if our stopping criteria had been met, which was 
a Bayes factor < 1/3 or > 3 for a correlation between o and 
Blast Test accuracy. No participants were excluded, as 
none missed more than one of five attention checks. Par-
ticipants completed the same tests in the same order as 
in Study 2. The only differences were that the Blast Test 
gave no feedback on performance, and no examples of 
blast and non-blast cells were given prior to testing. Par-
ticipants were instructed to try their best to choose the 
cancerous cell on each trial, despite the lack of examples 
or feedback.

Results and discussion
Descriptive statistics are presented in Table  3. Perfor-
mance in the no-feedback condition of the Blast Test 
was slightly below-chance level (chance = 33%; M = 0.3, 
SD = 0.16), and we obtained strong Bayesian evidence 

Fig. 3  Correlation between o and percent accuracy on the Blast Test

Table 3  Descriptive statistics

Reliability is calculated using Pearson’s r for two halves composed of alternating 
trials, with the Spearman–Brown prophecy formula applied. Blast Test here is 
the no-feedback version. Aggregate reliability of o was calculated with equal 
weighting using a formula adapted from Wang and Stanley (1970)

Test Mean (SD) Reliability

NOMT (percent accuracy) 59% (15%) 0.79

Object Matching (d′) 1.24 (0.71) 0.85

o 0 (0.72) 0.83

Blast (percent accuracy) 30% (16%) 0.90
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from a one-sample t-test that performance is not above 
chance (BF+0 = 0.06). It appears that the presentation of 
a small number of examples and the presence of limited 
feedback are required for most people to perform above 
chance. Given the high performance in Study 1 and 2, 
it is unlikely that participants in those studies made use 
of an odd-one-out strategy. There was no correlation 
between o and accuracy in this version of the Blast Test 
(r = − 0.01, 95% CI [− 0.28, 0.25], BF+0 = 0.16).

To determine whether trial difficulty was consistent 
between the feedback conditions in Study 2 and the no-
feedback condition in Study 3, we tested for cross-condi-
tion correlations for the percentage of participants who 
responded correctly on each trial. Figure  4 shows aver-
age accuracy per trial. To counter skewness, we applied 
a log transformation to the limited (− 0.75 to 0.32) and 
full (− 1.44 to − 0.15) feedback conditions, and a square 
root transformation to the no-feedback condition (0.82 
to 0.25). There was a high correlation between trial 
accuracy in the full-feedback condition and the lim-
ited feedback condition (r = 0.83, 95% CI [0.74, 0.91], 
BF10 = 9.18 × 1013). There were much smaller correla-
tions between trial accuracy in the no-feedback condi-
tion and the full feedback (r = 0.24, 95% CI [− 0.01, 0.48], 
BF10 = 0.94) and limited feedback (r = 0.31, 95% CI [0.08, 
0.53], BF10 = 3.42) conditions.

Although the Blast Test was not designed to reveal 
strategy use, we suspected that participants who rely pri-
marily on a simple rule may choose to use size as the basis 
and select the largest cell as being cancerous. We meas-
ured the maximum diameter of the cells in each trial, 
excluding small appendages (except in the case of ties), 
and found that size was diagnostic in nine of the first ten 
trials, and 70% of first-half trials, but only diagnostic in 

33% of second-half trials.2 If participants in the limited 
feedback condition rely on a simple rule, it is likely that 
they would form a size-based rule, given that it is so diag-
nostic for early trials. Indeed, we found a strong correla-
tion between percent accuracy on each trial and whether 
size was diagnostic in the no feedback (r = 0.56, 95% CI 
[0.37, 0.72], BF+0 = 26,208.3) and limited feedback con-
ditions (r = 0.4, 95% CI [0.18, 0.60], BF+0 = 54.78), but a 
weaker one in the full-feedback condition (r = 0.31, 95% 
CI [0.08, 0.53], BF+0 = 7.43).

General discussion
We found evidence in Study 2 that o predicts perfor-
mance on a category learning task requiring the assess-
ment of radiological images. This demonstrates a link 
between individual differences in individuation and cat-
egorisation, adding to a growing corpus of literature sug-
gesting that individual differences in a wide variety of 
visual tasks are related (Chang & Gauthier, 2021, 2022; 
Growns et  al., 2022). We also demonstrate in Study 1 
and 2 that o either does not predict or at most predicts 
to a lesser extent, categorisation accuracy when partici-
pants receive feedback on only a very limited number 
of easy categorisation trials. This is despite the fact that 
performance in this limited feedback condition was very 
similar to performance in a condition where feedback 
was given continuously. Furthermore, participants who 
received limited feedback in Study 1 and 2 successfully 
categorised cells as cancerous or not with a success rate 
approximately double that of participants in Study 3, who 
received no feedback. In other words, we find the big-
gest difference in performance on the Blast Test between 
the no-feedback condition (Study 3) and any of the other 
conditions in which examples and some feedback were 
presented. This is not surprising given the extensive lit-
erature on the advantages of supervised learning for cat-
egories that are not based on a simple verbalisable rule 
(Ashby et  al., 1999, 2002). In contrast, the difference 
between providing feedback only on ten trials vs. all trials 
was more modest in terms of average performance on the 
Blast Test. Nonetheless, this additional feedback made 
a substantial difference across individuals, leading to an 
advantage for those participants with higher o.

The correlation between o and performance in the full-
feedback condition was small (r = 0.26, or r = 0.30 when 
accounting for attenuation from measurement error). 
The effect is similar to that in Sunday et al. (2018), who 
found a correlation of r = 0.28 between o and decisions 
on a test of tumour detection in chest radiographs, after 
controlling for intelligence. The correlation could be 

Fig. 4  Percentage of participants who responded correctly per trial 
in Study 2 and 3. Note. Limited-feedback and full-feedback conditions 
are from Study 2, No-feedback condition is from Study 3. The solid 
vertical line indicates trial 10, after which feedback only continues for 
the full-feedback condition

2  Trial images are available at https://​osf.​io/​yaqs8/.

https://osf.io/yaqs8/
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limited by the fact that the Blast Test is short and allows 
different strategies. But more importantly, o is conceived 
as a general ability that does not reflect specifics of the 
domain or the task constraints. Performance on any 
test is explained by a variety of factors, some of them 
general and some specific to the test. For instance, two 
similarly formatted matching tests may correlate more 
strongly (e.g. Growns et al., 2022), but some of this cor-
relation may be due to specific task requirements. When 
tests with different formats use similar stimuli (e.g. faces, 
Wilmer et  al., 2014), the resulting strong correlation is 
partially due to the common domain. But when two tests 
differ in both format and domain, like the tests we use to 
estimate o, the shared variance is expected to be smaller. 
Importantly, the advantage is that we can expect a 
domain-general ability to predict some of the variance in 
other very different tasks, such as the Blast categorisation 
test. This is somewhat analogous to intelligence, which 
is, for instance, a predictor of job performance in many 
domains, with effect sizes that are comparable to what we 
observe here (e.g. r = 0.33; see Ree & Earles, 1992, for a 
review). In addition, it is important to note that a small 
effect size when measured in a single task can translate 
into large consequences in the long run, in real-world 
situations where individuals make a very large number of 
perceptual decisions in the course of their work (Funder 
& Ozer, 2019).

By crossing the measurement of o with an experimen-
tal manipulation, our results are the first to speak to the 
mechanisms that support this ability, because of the 
extensive literature distinguishing different modes for 
category learning. One influential model proposes two 
systems for category learning, one using simple explicit 
rules, and the other for learning more complex multi-
dimensional categories that are difficult to verbalise 
(Ashby et  al., 1999). A different account suggests that 
even within a single system, feedback is more critical 
for more cognitively demanding categorisation tasks 
(Le Pelley et al., 2019). In the Blast Test, early category 
learning can plausibly rely primarily on simple rule 
generation. As difficulty increases, a simple rule will 
become ineffective and participants need to switch to 
judgements of similarity to stored exemplars. In sum-
mary, many different visual tasks tap into o, but this 
ability may not support categorisation following sim-
ple verbalisable rules, or categorisation of a multidi-
mensional nature without mechanisms responsible for 
supervised learning. Fully supervised learning may not 
be necessary; semi-supervised learning (e.g. labelling 
a few exemplars) is the predominant method by which 
humans learn categories (Gibson et  al., 2013; LaTour-
rette & Waxman, 2019), and we would also expect o 
to predict categorisation abilities that have developed 

through this method. These conjectures could be more 
directly addressed by testing for correlations between o 
and accuracy on categorisation tasks that only require 
simple rules, require a combination of rules to increase 
cognitive demands, or which require multidimensional 
judgements which cannot easily be reduced to verbalis-
able rules. To make strong claims about the underlying 
categorisation strategies being employed by individual 
participants would require an analysis of response pat-
terns in tasks that have been designed to reveal strategy 
use.

The finding that o can predict successful categori-
sation adds to existing knowledge that o can predict 
successful visual search in a radiological task (Sunday 
et  al., 2018). Both perceptual and interpretative skills 
are fundamental for radiological diagnostics. Therefore, 
o may plausibly predict diagnostic accuracy; although 
we have not yet tested this in an ecologically valid 
design. Accuracy on category learning experiments can 
be influenced by task demands and sequence effects, in 
which case, performance may reflect the successful use 
of task-specific strategies that may be hard to account 
for (Richler & Palmeri, 2014; Stewart et al., 2002). Nev-
ertheless, when combined with the influences of experi-
ence and general intelligence, the contribution of o may 
provide a fuller explanation of individual differences in 
diagnostic accuracy. Further research should explore a 
relationship between o and categorisation accuracy in a 
radiological task using an expert sample. The contribu-
tion of o to performance and the conditions necessary 
for it to be used may well differ in experts. For instance, 
the contribution of o to categorisation may be greater 
for experts than for novices, because experts have more 
exemplars in memory and may rely less on simple cat-
egorisation rules. In addition, feedback may not be nec-
essary for a relationship with o to emerge in experts 
who can already categorise blast from non-blast cells.
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