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Studying visual search without an eye 
tracker: an assessment of artificial foveation
Laura E. Matzen*  , Mallory C. Stites and Zoe. N. Gastelum 

Abstract 

Eye tracking is a useful tool for studying human cognition, both in the laboratory and in real-world applications. 
However, there are cases in which eye tracking is not possible, such as in high-security environments where record-
ing devices cannot be introduced. After facing this challenge in our own work, we sought to test the effectiveness 
of using artificial foveation as an alternative to eye tracking for studying visual search performance. Two groups of 
participants completed the same list comparison task, which was a computer-based task designed to mimic an inven-
tory verification process that is commonly performed by international nuclear safeguards inspectors. We manipulated 
the way in which the items on the inventory list were ordered and color coded. For the eye tracking group, an eye 
tracker was used to assess the order in which participants viewed the items and the number of fixations per trial in 
each list condition. For the artificial foveation group, the items were covered with a blurry mask except when partici-
pants moused over them. We tracked the order in which participants viewed the items by moving their mouse and 
the number of items viewed per trial in each list condition. We observed the same overall pattern of performance for 
the various list display conditions, regardless of the method. However, participants were much slower to complete 
the task when using artificial foveation and had more variability in their accuracy. Our results indicate that the artificial 
foveation method can reveal the same pattern of differences across conditions as eye tracking, but it can also impact 
participants’ task performance.
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Significance statement
There are numerous high-consequence activities that 
involve visual search. Pathologists look for abnormal cells 
in tissue samples, aviation security personnel search for 
potential threats in x-ray images of luggage, and imagery 
analysts search radar images for evidence of improvised 
explosive devices in war zones, just to name a few exam-
ples. Eye tracking is an extremely useful tool for studying 
how people perform these complex visual search tasks, 
often providing a much richer and more accurate pic-
ture of what the searcher is doing than can be obtained 
from their verbal report (Hayhoe et al., 1998). The infor-
mation obtained from eye tracking experiments can be 

used to improve training, system design, and algorithms 
that support human decision making (cf. Matzen et  al., 
2016; Poole & Ball, 2006). However, there are many set-
tings in which eye trackers cannot be used, either due to 
security restrictions, privacy concerns, funding limita-
tions, or restrictions on in-person data collection. In this 
study, we sought to test the viability of artificial foveation 
as an alternative to eye tracking. If artificial foveation can 
reveal the same kinds of patterns in task performance 
that are revealed with traditional eye tracking methods, 
it could be a useful tool for studying visual search per-
formance in situations where eye tracking is not possible, 
which is the case for many visual cognition researchers 
during the ongoing COVID-19 pandemic.
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Introduction
Eye tracking is a widely used tool for studying patterns of 
human attention (Holmqvist et al., 2011). In the human 
eye, the center of the field of vision, the fovea, has the 
highest visual acuity (Provis et  al., 1998). We move our 
eyes to obtain high-resolution information from differ-
ent parts of our visual environment (Henderson, 2003). 
These movements are called saccades, and the pauses 
between saccades, when the eyes are relatively stationary, 
are called fixations. Eye tracking studies are often based 
on the “eye-mind hypothesis,” which is the assumption 
that people fixate on the information to which they are 
attending (Just & Carpenter, 1976, 1984). Saccades are 
typically preceded by a shift in attention to a new loca-
tion (Gottlieb et al., 1998; Kowler et al., 1995), so the pat-
tern of saccades and fixations can be used to track shifts 
in attention as cognitive processing unfolds over time. 
Although humans can attend to things that they are not 
fixating with foveal vision, such as attending to some-
thing in peripheral vision or attending to auditory rather 
than visual inputs (Holmqvist et al., 2011; Underwood & 
Everatt, 1992), patterns of fixations are generally a rea-
sonable indicator of what people are attending (Corbetta, 
1998; Hayhoe, 2004; Just & Carpenter, 1980; Liversedge 
& Findlay, 2000; Rayner, 1998). Outside of laboratory 
experiments where participants are explicitly directed to 
attend to stimuli without fixating on them, there are few 
tasks where people would fixate on something other than 
the item that they are attending to (cf. König et al., 2016; 
Land, 2009; Land et al., 1999).

Since eye movements are a reasonable proxy for pat-
terns of attention in most cases, recordings of eye move-
ments can be a useful tool for studying human cognition. 
Eye trackers have become increasingly affordable and 
accessible, making them a popular tool for many types 
of research. In addition to studying cognition in labora-
tory settings, eye trackers are being used to study driving, 
marketing techniques, usability and user experience, web 
design, and numerous other applications (Poole & Ball, 
2006).

While eye tracking can be a useful tool, there are also 
cases in which it is not practical. In naturalistic envi-
ronments, where the experimenter has little control 
over what the participant does or sees, the data can be 
very difficult to analyze. In other settings, such as high-
security environments, it may not be feasible to use an 
eye tracker due to concerns about the data collected by 
the eye tracker’s cameras. Additionally, in many applied 
research projects, the sponsors of the research may feel 
that the value added by using eye tracking is not worth 
the additional costs. After facing some of these challenges 
in our own work, we sought to test the effectiveness of 

using artificial foveation as an alternative to eye tracking 
in cases where we want to understand participants’ pat-
terns of attention but are unable to use an eye tracker. In 
this paper, we describe our method for implementing this 
technique and compare the results to eye tracking data 
obtained from a visual search task.

Artificial foveation
The term “artificial foveation” is most often used in the 
computer vision literature, when algorithms are devel-
oped to mimic properties of the human visual system. 
Computer vision researchers have found that using tech-
niques which mimic foveal vision and eye movements 
have similar object detection performance as techniques 
that process the whole scene at high resolution, but with 
significantly less computational cost (Akbas & Eckstein, 
2017). Other researchers have found that deep neural 
networks that are trained using images that are blurred 
to mimic human foveal and peripheral vision performed 
better on an object recognition task than models trained 
on other types of blur profiles (Pramod et  al., 2018). 
Additionally, a deep learning approach to visual search 
that could change its sampling layout developed a sam-
pling approach that resembles foveal vision (Cheung 
et al., 2016).

In our case, we are using the term “artificial fovea-
tion” to refer to an experimental technique that mimics 
foveal vision by blurring regions that the participant is 
not attending to. This approach is rooted in the history 
of process tracking research, which has developed vari-
ous tools aimed at understanding how people acquire, 
integrate, and evaluate information when making deci-
sions (Schulte-Mecklenbeck et al., 2011a). Eye tracking is 
often used as a process tracking tool, but there have been 
numerous efforts to develop other techniques that have 
lower cost or allow for data collection online rather than 
in a lab (Schulte-Mecklenbeck et al., 2011b).

One such method is mouse tracking. Software tools 
that stream the coordinates of a computer mouse while 
participants perform decision making tasks have allowed 
experimenters to test the temporal dynamics of deci-
sion making under different experimental conditions 
(Freeman & Ambady, 2010; Freeman et al., 2008; Spivey 
et  al., 2005, 2008). Other researchers have used mouse 
tracking to create artificial foveation paradigms. In this 
case, the area of the screen immediately surrounding the 
mouse pointer is displayed at full resolution, while the 
rest of the display is blurred (Schulte-Mecklenbeck et al., 
2011b). Alternatively, the relevant information may be 
covered by boxes, which open to reveal the information 
when the participant mouses over them (Jasper & Sha-
piro, 2002; Johnson et  al., 2002; Willemsen & Johnson, 
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2010). Another approach requires participants to click 
the mouse to reveal high-resolution visual information in 
that region (Kim et al., 2017). All of these methods force 
participants to move the mouse around the screen to find 
and view the information that is relevant to the task they 
are trying to complete.

There are several mouse tracking tools that have been 
marketed to user experience (UX) and web design-
ers, some of which explicitly promote themselves as an 
alternative to eye tracking. However, there has been lit-
tle research comparing these approaches to standard 
eye tracking methods. One commercially available tool, 
Attensee, provides a comparison to data collected from 
a Tobii eye tracker by showing heatmaps generated 
from the eye tracking data and from their mouse track-
ing method side-by-side (http://​www.​atten​see.​com/​
cases​tudies/​tobii/). While the heatmaps look similar, no 
quantitative comparison is provided, and neither heat-
map provides any information about the dynamics of the 
viewers’ attention (e.g., the time spent viewing the image, 
the order in which the different regions were viewed, 
etc.).

Only a handful of studies have directly compared arti-
ficial foveation methods implemented via mouse track-
ing to data collected via eye tracking. The researchers 
who developed the Flashlight tool (Schulte-Mecklenbeck 
et  al.,  2011b) compared their method to eye tracking 
on three tasks: an arithmetic task, a gambling task, and 
a reading task. They compared participants’ accuracy, 
completion time, fixations, and pattern and sequence of 
information acquisition across both methodologies in a 
between-subjects design. They found no significant dif-
ferences between the two methods in terms of partici-
pants’ accuracy, but participants had more fixations on 
all of the tasks in the eye tracking condition and longer 
response times for two of the three tasks in the Flashlight 
condition. The patterns of fixations were compared via 
heatmaps and transition matrices and were visually simi-
lar to one another.

In another study, heatmaps obtained through the use of 
the BubbleView tool (Kim et al., 2017) were compared to 
eye tracking data for free viewing and description tasks 
involving different types of visual stimuli (information 
visualizations, natural images, and static webpages). The 
researchers found that the distribution of clicks in the 
BubbleView tool were a reasonable approximation of 
the distribution of fixations collected via eye tracking. 
Similarly, Jiang et al. (2015) developed an artificial fovea-
tion technique based on mouse tracking. Participants 
moved the mouse to explore images of natural scenes in 
a free viewing task. The artificial foveation data were col-
lected both in a laboratory setting and online, via Ama-
zon Mechanical Turk. The researchers found that the 

distributions of mouse movements from both data col-
lection scenarios were similar to the distribution of fixa-
tions obtained via eye tracking for participants viewing 
the same images.

The results of these studies suggest that artificial fovea-
tion techniques based on mouse tracking could be a use-
ful proxy for eye tracking in  situations where using an 
eye tracker is not feasible. However, due to the scarcity 
of studies in this area, there are numerous unanswered 
questions. For example, is artificial foveation effective 
in visual search paradigms, where participants are using 
visual information to find some target item of inter-
est? Visual search is one of the cognitive processes that 
it most commonly studied using eye tracking, yet, to our 
knowledge, none of the prior studies on artificial fovea-
tion techniques have incorporated a visual search task. 
Instead, they have used tasks involving open-ended 
exploration (Egner et  al., 2018; Jiang et  al., 2015; Kim 
et al., 2017) or tasks that required access to visual stimuli 
but were not primarily visual tasks from the perspec-
tive of cognitive processing (Schulte-Mecklenbeck et al., 
2011b).

Our study aimed to address this gap by performing a 
direct comparison between eye tracking and artificial 
foveation for a visual search task. Our artificial foveation 
method was implemented in E-Prime 3.0 software (Psy-
chology Software Tools, Pittsburgh, PA), a widely used 
software package for stimulus presentation. Our code is 
available in Additional file 1 so that other researchers can 
use our approach to implement their own artificial fovea-
tion experiments in E-Prime. Our approach is a hybrid 
of the techniques that have been used in prior work. 
Like the BubbleView (Kim et  al., 2017) and Flashlight 
(Schulte-Mecklenbeck et  al., 2011b) tools, participants 
are able to see a blurred version of the entire stimulus, 
allowing them to get an overview of the locations of dif-
ferent pieces of information. However, instead of showing 
a circle of high-resolution information around the mouse 
pointer, we covered each item on the screen with a mask 
that is removed when the mouse pointer is in the vicin-
ity of that item. This approach is similar to the box-based 
method of revealing information that has been used in 
decision making studies (Jasper & Shapiro, 2002; Johnson 
et  al., 2002; Willemsen & Johnson, 2010). One notable 
difference is that our display had 72 boxes, rather than 
the small number of boxes that has typically been used 
in decision making studies. Since our focus is on visual 
search, the large number of items ensured that we could 
collect sufficient data on each trial to assess the impact 
of different search constraints on the participants’ perfor-
mance and search strategies.

Our implementation of artificial foveation shares 
some similarities with the gaze-contingent paradigms 

http://www.attensee.com/casestudies/tobii/
http://www.attensee.com/casestudies/tobii/
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pioneered by Rayner and colleagues, such as the moving 
window, moving mask, or boundary change paradigms 
(for reviews, see Rayner, 1998, 2009, 2014; Schotter 
et  al., 2012). These techniques have traditionally been 
employed to study the basic characteristics of foveal 
vision and the relationship between foveal and parafo-
veal processing in skilled reading. In the gaze-contingent 
moving window paradigm (McConkie & Rayner, 1975), 
an invisible “window” is created around the reader’s 
fixation point; the text shown within the window is cor-
rect, but the text outside of the window is manipulated 
in some way. The size of the window may be adjusted to 
measure how much information readers need to see in 
central fixation in order to maintain normal reading pat-
terns. The text outside of the window may also be manip-
ulated (i.e., replaced with x’s, similar looking letters, or 
filling in spaces) in order to understand how readers use 
parafoveal information to plan eye movements. In gen-
eral, this research has shown that as long as the letters in 
foveal vision are correct (the central 2°, usually 6–7 let-
ters in lab-based experiments), and that the letters in the 
perceptual span are maintained (usually 3–4 letters to the 
left of fixation and 14–15 characters to the right of fixa-
tion, in English), reading proceeds more or less normally 
(for reviews, see Rayner, 2009; Schotter et al., 2012). Our 
implementation of the artificial foveation paradigm most 
closely parallels the moving-window paradigm with a 
13-character window, which is just under the typical 
reader’s perceptual span and should allow reading of our 
experimental items to be relatively unimpeded by the 
window.

Our task involved a list-to-list comparison in which 
participants had to check off all of the items on one list 
by comparing them against a second list. The task was 
inspired by the cognitive demands on inspectors in the 
international nuclear safeguards domain (Gastelum et al., 
2017). Inspectors working for the International Atomic 
Energy Agency (IAEA) conduct inspections of nuclear 
facilities to ensure that nuclear materials are not being 
diverted from known, safeguarded facilities and that 
those facilities are not being misused for undeclared pur-
poses. They must complete complex visual search tasks 
in which they compare a facility’s declarations to its 
inventory records, physical inventory, and reports from 
prior inspections. Although safeguards inspectors do not 
have control over the formatting of the materials pro-
vided by the facility, they do have control over the inspec-
tion-related materials that they bring with them into the 
field, such as inventory records from prior inspections. 
In a series of experiments, we tested whether changes to 
the formatting of an inspector’s checklist would support 
faster and more accurate inspection of a facility’s records 
and inventory (Gastelum et al., 2018; Matzen et al., 2019). 

We manipulated the presentation of the “inspector’s” list 
by changing the ordering of the information and by pro-
viding color-coded cues that could be used to constrain 
the visual search process. These experiments showed 
that changes to the formatting of the inspector’s list 
impacted participants’ speed, accuracy, and likelihood 
of missing subtle errors for several different variants of 
the inspection task. In particular, we found that partici-
pants made good use of color cues that indicated which 
column of the facility’s inventory list was most likely to 
contain each item from their checklist. The participants 
used those cues to constrain their visual search process 
to the appropriate column, allowing them to complete 
each trial and check off the whole list much faster than 
they could without the assistance of the color cues. Other 
list presentation methods that could have constrained 
their visual search process, such as organizing the check-
list in numerical order, were less helpful. The participants 
could have selected items from the facility’s list and used 
the seal number to narrow in on where to find the cor-
responding item in their checklist. However, very few 
participants adopted this strategy, preferring to select 
an item from their checklist to search for in the facility’s 
list, even when searching in the opposite direction would 
have been much faster.

In order to assess the effectiveness of artificial foveation 
as a technique for studying visual search, we selected one 
of the experiments from our prior work and implemented 
it as an artificial foveation task instead of an eye tracking 
task. We collected data from a new group of participants 
under the artificial foveation paradigm and compared 
the results to the results of the eye tracking experiment. 
We assessed the effectiveness of the artificial foveation 
approach by comparing it to eye tracking in terms of the 
participants’ behavioral performance, response times, 
number of fixations, and search strategies.

Methods
Participants
The participants in both experiments were recruited 
from the employee population of Sandia National Labo-
ratories and were compensated for their time. The studies 
were reviewed and approved by Sandia’s Human Studies 
Board.

The eye tracking study had 18 participants, three of 
whom were later excluded from the analysis due to fail-
ure to follow the task instructions (two participants) or 
poor eye tracking data (one participant). The remaining 
15 participants (11 males and 4 females) had an aver-
age age of 37  years. The data collected from these par-
ticipants has been previously published (Gastelum et al., 
2018).
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To compare our artificial foveation method to eye 
tracking, we recruited an additional 15 participants (8 
males and 7 females) for the artificial foveation task. The 
participants had an average age of 35 years.

Task and materials
Both groups of participants completed the same task, 
which involved comparing two lists of alphanumeric 
strings. The task was designed to mimic an inventory 
checking task (as described in Gastelum et  al., 2018), 
where one list of sealed container numbers is checked 
against another. The participants completed the list 
checking task a total of six times using six different pairs 
of lists. The items on the “facility’s list” were always pre-
sented in a random order. The items on the “inspector’s 
checklist” were formatted differently in each of the six 
conditions, as described below.

Prior to beginning the list checking task, the partici-
pants were given some background information about 
the international nuclear safeguards domain and were 
told that they would be acting as facility inspectors, com-
paring their inspection checklists against the “facility’s” 
inventory lists. Their instructions were as follows: “In this 
experiment, you will complete a visual inspection task in 
which you will be comparing one list to another. The lists 
will be organized in different ways, and we are testing 
which type of organization leads to the best performance 
in terms of the speed and accuracy of the inspection. This 
task is based on tasks that are common for inspectors 
from the International Atomic Energy Agency (IAEA). 
These inspectors visit nuclear facilities to ensure that 
all nuclear materials are accounted for. For example, 
they may apply seals to containers of nuclear materi-
als to ensure that none of the material can be removed. 
On subsequent visits, they will check their records of the 
container and seal numbers against the inventory records 
provided by the nuclear facility. In this experiment, you 
will be conducting a simulated version of this task. In this 
experiment, the facility’s inventory list will always be pre-
sented on the right side of the computer screen. This list 
will always look the same. On the left side of the screen, 
you will see your list. You will act as the inspector and 
check to see if the seal numbers on your list match the 
seal numbers on the facility’s list. You will also check to 
make sure that the seals are listed with the correct con-
tainer number. You will check off the items on your list 
one by one until you have completed your inspection. 
The seal numbers are always a six digit number, like 
324159. The container numbers have four characters, like 
ZG-91.”

Figure 1 shows screen shots of the display shown to the 
participants during the list checking tasks. The top panel 
shows the eye tracking version of the task, in which all 

of the items were shown in high resolution. The bottom 
panel shows the artificial foveation version of the task, 
in which all of the items were obscured by a visual mask 
until the participant hovered the mouse over them. In 
this example, the participant’s mouse is revealing the top 
item in the fourth column.

Both the inspector’s checklist (left) and the facil-
ity’s inventory list (right) had 36 seal-container pairs, 
arranged in nine rows and four columns. The seal-con-
tainer pairs were shown in 14-point Courier New font 
on the inspector’s list and in 14-point Lucida Sans font 
on the facility’s list. The two fonts were used so that the 
items on the two lists were not perceptually identical to 
one another. On both lists, the items were spaced so that 
there was a buffer 70 pixels wide between each seal-con-
tainer pair and its neighbors in the same row or column. 
In our experimental setup, this was equivalent to approx-
imately 1.4° of visual angle. This spacing ensured that the 
participants could not easily read more than one item at a 
time and that fixations were assigned to the correct item 
in the eye tracking experiment.

The items on the lists, each of which represented a seal-
container pair, were 140 pixels wide (approximately 2.8° 
of visual angle) and 15 pixels tall (approximately 0.3° of 
visual angle). The seal numbers were six-digit numerical 
strings such as “945384” and the container names con-
sisted of two letters and two numbers, separated by a 
hyphen, such as “AB-37.” There were two spaces between 
the seal number and the container number in each pair. 
All of the seal-container pairs in each list were unique, 
but they were controlled in certain ways to make the vis-
ual search task more difficult. First, within each list, all 
of the seal numbers started with the same digit. To avoid 
any patterns within the seal numbers that could have 
attracted participants’ attention or made some numbers 
more memorable than others, the final five digits were 
pseudorandomly generated such that every digit (0–9) 
appeared approximately the same number of times in 
each position. Second, the letters within the container 
names were repeated across different containers. There 
were ten possible letter pairs, each consisting of two 
unique letters (AB, CD, EF, HK, LM, NP, RS, TY and 
VZ). The same letter pairs were repeated multiple times 
in each list, but always with different numbers attached 
such that each container number was unique.

The 36 seal-container pairs on each inspector’s list fell 
into one of five conditions. Eighteen “Match” items were 
matches to pairs on the facility’s list. Four of items on 
the inspector’s list, the “Wrong Container” items, con-
tained seals that were on the facility’s list but paired with 
a different container number. Two “Missing” items on 
the inspector’s list were entirely missing from the facil-
ity’s list. Four of the seal numbers on the inspector’s list, 
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Fig. 1  Examples of the stimulus display for the eye tracking (top) and artificial foveation (bottom) experiments. These screen shots show how the 
stimuli appeared to the participants in each experiment
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the “Transposed” items, had a near-match on the facil-
ity’s list, but with two numbers transposed. For exam-
ple, the seal-container pair on the inspector’s list might 
be “239851 EF-43” while the corresponding item on the 
facility’s list was “238951 EF-43”. Finally, eight of the items 
on the inspector’s list had both a match on the facility’s 
list and a transposed version of the seal that appeared on 
both lists. For example, seal “261543” and seal “265143” 
both appeared on the inspector’s list and both had a 
match on the facility’s list. These were called the “Trans-
posed Match” items and were included to increase the 
difficulty of the matching task. Although both of these 
similar seal numbers had a match on the facility’s list, 
participants who were not paying close attention might 
check off the wrong one, which could lead to mismatches 
later in their inspection process.

To complete the task, the participants had to compare 
the inspector’s list to the facility’s list. Each time they 
found one of the items from their list in the facility’s 
inventory, they clicked on that item on their list. Click-
ing on an item brought up four response choices in the 
center of the screen: “Seal present, correct container,” 
“Seal present, incorrect container,” “Seal missing” and 
“Other issue.” Participants clicked on one of the four 
responses, and then the corresponding item was greyed 
out on their list, indicating that it had been checked off. 
The first response choice, “Seal present, correct con-
tainer” was the correct response for 26 of the items on 
the list, the Match and Transposed Match items. The 
response “Seal present, incorrect container” was the cor-
rect response for the four Wrong Container items. “Seal 
missing” was the correct response for the Missing items. 
For the Transposed items, either “Seal missing” or “Other 
issue” was counted as a correct response.

After checking off all the items in their list, the par-
ticipants clicked on the “Inspection Complete” button to 
indicate that they had finished the task.

Participants completed the inspection task six times, 
with six different lists that comprised a 3 × 2 within-sub-
jects design. The seal-container pairs in the facility’s list 
were always presented in a random order, but the pres-
entation of the participant’s checklist was manipulated 
across conditions. There were three ordering conditions 
for the participant’s list: Random Order, Numerical Order 
by seal number, or Facility Order (in which the seals were 
presented in the same order as those in the facility’s list). 
There were also two color-coding conditions. In three 
of the lists (one in each of the list order conditions), all 
the list items were presented in black font. In the other 
three, the items on the participant’s list were color-coded 
according to which column of the facility’s list contained 
the corresponding item.

The color coding and list ordering conditions were 
intended to aid the participants by constraining their 
search process. When their list was in the same order as 
the facility list, the participants generally knew exactly 
where to look in order to compare the seals on the two 
lists. There were errors, such as the Transposed, Wrong 
Container, and Missing items, so there was not a perfect 
match between the two lists, but the participants could 
easily check off most of the items on their list simply by 
looking at the corresponding position on the facility’s list. 
Figure 1 shows an example of the Facility Order, No Color 
condition. Figure  2 shows an example of the Random 
Order, Color Coded condition in the artificial foveation 
version of the experiment. For any of the color coding 
conditions, the colors of the items on the inspector’s list 
corresponded to one of the columns on the facility list, 
allowing participants to narrow their search to only one 
column. This condition mimicked real-world scenarios 
in which different containers might be stored in different 
locations in a facility, and thus grouped into smaller sub-
sets on the inventory list. In the color conditions, partici-
pants typically only needed to look at nine of the 36 seals 
on the facility’s list. In the case of a Missing seal, they 
might search the additional columns as well, to ensure 
that the seal truly was missing from the facility’s list. 
Figures  9 and 10 show additional examples of lists with 
color coding cues. Figure 9 shows a list from the Numeri-
cal Order, Color Coded condition and Fig. 10 shows a list 
from the Random Order, Color Coded condition.

In the Numerical Order condition, participants could 
constrain their search if they started from the facility’s 
list and then used the numerical ordering of the inspec-
tor’s list to quickly zero in on the correct seal (or seals, in 
the case of the Transposed Match items, which were typi-
cally close together on the list in this condition) to check. 
The Random Order, No Color condition (also shown in 
Fig. 10) was expected to be the most difficult, since the 
inspector’s list did not provide any cues about where to 
look in the facility’s list, or vice versa. Thus, the partici-
pants had to search through all 36 items on the facility’s 
list until they found the item they were looking for.

While this experiment differed in many ways from clas-
sic visual search tasks, such as identifying a T in an image 
full of T and L stimuli (e.g., Wolfe, 1998; Wolfe et  al., 
1989), the list presentation manipulations led to different 
set sizes in the visual search task. In the Random Order, 
No Color condition, the set size was all 36 items. In the 
Color Coding conditions, the effective set size was nine 
items. And in the Facility Order condition, the set size 
was one item, since participants knew exactly where to 
look for each seal-container pair.

Prior to starting each of the six blocks, the participants 
were told how the inspector’s list in the upcoming block 
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would be organized. The explanation of the list format-
ting stated whether or not there was color coding corre-
sponding to the columns in the facility’s list and whether 
the inspector’s list would be shown in random order, 
numerical order, or the same order as the facility list. 
There were no suggestions about how to use this infor-
mation and participants were free to adopt their own 
strategies for completing each checklist.

Secondary change detection task
While participants were completing the inspection task, 
the background color of the screen changed occasionally. 
The images in Figs. 1 and 2 show the three possible back-
ground colors. The background color changed either two 
or three times during each inspection task. The changes 
were linked to particular seals, such that after a partici-
pant clicked on that seal, the background color would 
change on the next trial. The seals that triggered the color 
changes were different for each block. Participants were 
instructed to click on a button labeled “Color Change” as 
soon as they noticed a change in the background color. 
At the end of each block, they were also asked to report 
how many times the color had changed during that 
inspection task. Their choices ranged from zero to four, 
and they clicked on the number corresponding to their 

answer. The color change detection task was included as 
a measure of the participants’ situational awareness dur-
ing the inspection task.

Eye tracking procedure
After giving their informed consent, participants were 
seated in a dimly lit, sound attenuating booth. They 
were seated so that their eyes were approximately 80 cm 
from the computer monitor, which was 52 × 32 cm in 
size. The monitor displayed the stimuli at a resolution 
of 1920 × 1080 pixels. Participants completed a practice 
session that explained the task, including the background 
color changes and all of the possible configurations of 
the inspector’s checklist. Then they completed a simple 
version of the inspection task in which they had to check 
off a list of four seals. After participants had completed 
the practice block and indicated that they understood 
the task, the eye tracker was calibrated. Eye tracking data 
was collected with a Fovio eye tracker and recorded and 
analyzed with EyeWorks software. The participants com-
pleted a five-point calibration sequence, and then the 
accuracy of the calibration was assessed by the experi-
menter and repeated if necessary. The calibration process 
was repeated prior to each block of the experiment.

The practice and task blocks were presented using 
E-Prime 3.0 software. The participants completed the six 

Fig. 2  An example of a participant’s color-coded list from the artificial foveation experiment



Page 9 of 22Matzen et al. Cogn. Research            (2021) 6:45 	

blocks of the experiment in a random order. Each block 
began with a description of how the inspector’s list would 
be organized. Each trial began with a fixation cross that 
was presented in the center of the screen for 1.5 s. Then 
the lists appeared on the screen and remained there 
until the participant clicked on a seal on the inspector’s 
list. Clicking on a seal added the four response choices 
to the screen. After the participant clicked on one of 
the response choices, the next trial began and the seal 
that had been checked off turned silver, indicating that 
the response had been recorded. Clicking on the “Color 
Change” button also initiated a new trial. Once partici-
pants had checked off all of the seals on the inspector’s 
list, they clicked the “Inspection Complete” button. They 
were then asked to indicate how many times the back-
ground color changed during the inspection task. Finally, 
participants were asked to give a brief description of the 
strategy that they used during the inspection task.

Artificial foveation procedure
The study environment for the artificial foveation experi-
ment was identical to that of the eye tracking study, 
except that the eye tracker was not used. Participants 
were seated in a dimly lit, sound attenuating booth with 
their eyes approximately 80  cm from the computer 
monitor, which was 52 × 32 cm in size and displayed the 
stimuli at a resolution of 1920 × 1080 pixels. The partici-
pants were given a small lap desk on which they moved 
the mouse. They completed the same list inspection task, 
but in this case the E-Prime experiment files were con-
structed such that the seal-container pairs were masked 
until a participant moved his or her mouse into the area 
around one of the items. The mask image was behind the 
text of seal-container pairs but matched them in color, 
making them impossible to read. E-Prime was used 
to track the mouse movements and to update the dis-
play based on the position of the mouse. There were 72 
regions defined on the screen, one for each of the seal-
container pairs in both lists. Each region was 144 pixels 
wide and 20 pixels tall, which accommodated the seal-
container text plus a buffer zone around it. Any time 
the mouse entered one of those regions, an image of the 
appropriate seal-container pair surrounded by a grey box 
was added to the display in that location. This gave the 
appearance of removing the visual mask from that item. 
When the mouse left that region, the superimposed 
text box disappeared, showing the visual mask once 
again. When participants checked off one of the items 
on their list, the color of the text for that item changed 
to white. The white text was visible in front of the visual 
mask, allowing participants to see which items had been 
checked off of their list, just as they were able to see them 
in the eye tracking study. Figure  3 shows an example 

from one of the color-coded conditions. The mouse is in 
the region near the center item, so the mask for that item 
is hidden and the text is visible. The top item has already 
been checked off the list, so the text appears in white. 
It is difficult to read the text without mousing over that 
region to remove the mask, but participants can tell that 
the item there has already been checked off. The bottom 
item has not yet been checked off, so it appears as blue 
text on top of a blue mask.

Results
Accuracy
The participants’ accuracy for each list was calculated by 
determining how many of the 36 seal-container pairs on 
their inspection checklist was categorized correctly (as a 
match, missing, etc.). In general, participants performed 
near ceiling on both the eye tracking and artificial fovea-
tion tasks. The mean accuracy and the standard deviation 
for each list presentation condition in both experiments 
is shown in Table  1. A 2 × 3 × 2 ANOVA (experiment 
type × list order condition × color coding condition) 
showed that there was not a significant difference in 
accuracy between the two experiments (F(1,140) = 1.81, 
p = 0.19, ηp

2 = 0.06). There was a significant effect of 
color coding (F(1,140) = 5.85, p < 0.02, ηp

2 = 0.02), where 
accuracy was significantly higher for lists that had color 
coding than for those that did not. There was not a sig-
nificant effect of list ordering condition (F(2,140) = 1.12, 
p = 0.33, ηp

2 = 0.01) and there were no significant interac-
tions (all Fs < 1.67, all ps > 0.19).

Fig. 3  An example of an item that has already been checked off of 
the participant’s list (top), an item that the participant is currently 
viewing by pointing to it with the mouse (center), and an item that is 
masked and not yet checked off of the participant’s list (bottom)
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Change detection task accuracy
Participants in both experiments had a secondary task 
of indicating when the color of the background changed 
during the visual search task. Participants had equally 
poor performance on this task for both the eye tracking 
and artificial foveation experiments. The background 
color changed 2–3 times during each of the six blocks, 
depending on the order in which the participants clicked 
on specific items in the checklist. On average, partici-
pants in the eye tracking experiment detected 57.6% 
(SD = 36.0%) of the changes and participants in the arti-
ficial foveation experiment detected 59.9% (SD = 34.6%) 
of the changes. There was not a significant difference 
between the two groups (t(28) = 0.18).

Task completion strategies
To assess whether the constraints of the artificial fovea-
tion task impacted the way in which participants per-
formed the task, we analyzed the order in which they 
checked off the items on the inspection list in both exper-
iments. For the eye tracking experiment, as discussed in 
Gastelum et al. (2018), we identified five general patterns: 
checking off one row or column at a time, checking off 
one color group at a time, using numerical ordering to 
locate seals, or checking off items in a seemingly random 
order (“other”). Table  2 shows which strategies the par-
ticipants used in each list presentation condition for each 
experiment. Recall that there were 15 participants in each 

experiment, so each half of the table shows a different set 
of 15 participants. In addition, note that in the condition 
where the inspection list was color coded and presented 
in the Facility Order, each column corresponded to one 
color in the color coding scheme, so checking off the 
items column-by-column is the same as checking them 
off color-by-color.

This comparison indicates that participants in the 
artificial foveation condition were more likely to use the 
color coding information to guide the order in which 
they checked off items from their list. Since the task was 
more tedious and time consuming in the artificial fovea-
tion experiment, the participants may have relied more 
heavily on this cue to organize their approach to the task. 
However, the participants were no more likely to use the 
numerical ordering to speed their search process, when it 
was available. Only a small number of participants (four 
in each experiment) made use of the numerical ordering.

Response times
The participants’ response times were calculated for each 
trial based on the time from trial onset to the time they 
clicked on an item on their checklist to check it off. Their 
average response time per trial was calculated for each of 
the six list conditions. The results are shown in Fig. 4.

A 2 × 3 × 2 ANOVA (experiment type × list order con-
dition × color coding condition) showed that there was a 
significant difference in response times between the two 
experiments (F(1,140) = 37.10, p < 0.001, ηp

2 = 0.21), with 

Table 1  Average accuracy (and standard deviation) for each list presentation condition for the eye tracking and artificial foveation 
experiments

Facility order Numerical order Random order

Color No color Color No color Color No color

Eye tracking 95.6% (4.0%) 95.0% (3.8%) 96.9% (3.1%) 95.3% (4.6%) 96.1% (4.3%) 94.4% (6.5%)

Artificial foveation 94.6% (7.0%) 94.0% (6.4%) 93.0% (10.8%) 92.0% (6.4%) 94.0% (5.1%) 90.0% (11.3%)

Table 2  The number of participants using each task completion strategy for each list presentation condition in the eye tracking and 
artificial foveation experiments

List condition Eye tracking task completion pattern Artificial foveation task completion pattern

List order Color coding Rows Columns Color groups Numerical 
order

Other Rows Columns Color groups Numerical 
order

Other

Facility order Yes 2 13 N/A 0 0  15 N/A 0

No 6 9 N/A N/A 0 3 12 N/A N/A 0

Numerical order Yes 3 6 6 0 0 0 6 9 0 0

No 3 8 N/A 4 0 1 9 N/A 4 1

Random order Yes 4 6 5 N/A 1 0 5 10 N/A 0

No 7 7 N/A N/A 1 3 10 N/A N/A 2
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participants taking significantly longer to complete each 
trial in the artificial foveation task. For the eye tracking 
study, the average response time was 10.6 s (SD = 3.2 s), 
while the average response time was 18.7  s (SD = 4.0  s) 
for the artificial foveation study. There was also a signifi-
cant main effect of list order (F(2,140) = 152.58, p < 0.001, 
ηp

2 = 0.69), and a significant main effect of color coding 
(F(1,140) = 108.36, p < 0.001, ηp

2 = 0.44). There was a sig-
nificant three-way interaction between experiment type, 
list order, and color coding condition (F(2, 140) = 3.70, 
p < 0.03, ηp

2 = 0.05) and significant two-way interactions 
between experiment type and list order, experiment type 
and color coding, and list order and color coding (all 
Fs > 7.14, all ps < 0.01).

Within each dataset (eye tracking or artificial fovea-
tion), we ran a 3 × 2 within subjects ANOVA to exam-
ine the interactions between the list ordering conditions 
and the color coding conditions. In both experiments, 
there were significant main effects of list order (eye track-
ing experiment: F(2, 70) = 157.54, p < 0.001, ηp

2 = 0.82; 
artificial foveation experiment: F(2, 70) = 72.80, 
p < 0.001, ηp

2 = 0.65), significant main effects of color 
coding (eye tracking experiment: F(1, 70) = 67.90, 
p < 0.001, ηp

2 = 0.49; artificial foveation experiment: 
F(1, 70) = 73.36, p < 0.001, ηp

2 = 0.47), and significant 
interactions (eye tracking experiment: F(2, 70) = 18.44, 
p < 0.001, ηp

2 = 0.35; artificial foveation experiment: F(2, 
70) = 14.36, p < 0.001, ηp

2 = 0.26).

Impact of effective set size
While this task was not a traditional visual search task, 
we still had conditions that effectively had different set 
sizes, as described in the methods section. For the two 
facility order conditions, the effective set size was one, 
since participants only had to check one location in the 
facility list to confirm whether the corresponding item 
on their list was a match. For the numerical order + color 
coding condition and the random order + color coding 
condition, the effective set size was nine, since the partic-
ipants could constrain their search to a single column of 
the facility’s list or items of a single color on the inspec-
tor’s list. For the random order condition without color 
coding, the participants had to search through up to 36 
items on the facility’s list before finding the seal-con-
tainer pair that they were looking for.

Figure 5 shows the participants’ average response times 
for each effective set size in the eye tracking and artifi-
cial foveation paradigms. The solid lines show the par-
ticipants’ average RTs for match trials (trials when they 
checked off an item on their list that was a match to an 
item on the facility’s list) while the dotted lines show the 
participants’ average RTs for missing trials (trials where 
they checked off an item on their list that was missing 
from the facility’s list, and correctly identified it as being 
a missing item). As seen in classic visual search tasks 
such as the T and L task (Wolfe, 1998), the participants’ 
RTs increased roughly linearly as the effective set size 
increased.

0

5

10

15

20

25

30

35

40

Color No Color Color No Color Color No Color

Facility Order Numerical Order Random Order

Re
sp

on
se

 T
im

e 
(s

ec
on

ds
)

Average Response Time For Each Trial

Eye Tracking Artificial Foveation
Fig. 4  Average response time for each list presentation condition for the eye tracking and artificial foveation experiments. Error bars show the 
standard error of the mean



Page 12 of 22Matzen et al. Cogn. Research            (2021) 6:45 

In order to more directly compare our findings to 
standard set size effects in the visual search literature, 
individual set size slopes were calculated by comput-
ing linear regressions on RTs for each subject, for match 
trials and missing trials (i.e., target present and target 
absent) separately. Two participants from the artificial 
foveation experiment were removed from this analysis 
due to missing data in the “target missing” condition. A 
mixed ANOVA was conducted on the slope data with the 
between-subjects factor of experiment (eye tracking vs. 
artificial foveation) and the within-subjects factor of trial 
type (match vs. missing). Results showed a main effect of 
experiment (F(1, 26) = 20.62, p < 0.001, ηp

2 = 0.44), indi-
cating that the slopes for the artificial foveation paradigm 
were larger overall. In addition, the slopes were larger 
for missing items than for match items (F(1, 26) = 48.56, 
p < 0.001, ηp

2 = 0.96). This pattern indicates that our 
task is comparable to the classic visual search tasks 
that require inefficient visual search. Importantly, there 
was no interaction between experiment and trial type 
(F(1, 26) = 1.69, p = 0.20). This indicates that although 
the slopes were larger overall for the artificial foveation 
experiment, the magnitude of the difference between 
slopes for match trials and missing trials was comparable 
for the two experiments. To confirm this, we compared 
the slope ratio between the match and missing trials 
(mean artificial foveation ratio = 1.74, mean eye tracking 

ratio = 2.08). A between-subjects ANOVA with the factor 
of experiment confirmed that these slope ratios were not 
significantly different (F(1, 26) = 1.44, p = 0.24). Together, 
these results show that the relationship between target 
present and target absent search slopes was consistent 
across the two methodologies. The artificial foveation 
paradigm slowed participants down in general, but did 
not change the dynamics of the visual search process.

Visual search dynamics
To further investigate the relationship between the met-
rics produced by the artificial foveation paradigm and 
metrics that are commonly applied to eye tracking data, 
we compared how long, how often, and in what order the 
participants fixated on different types of items within the 
lists. First, we calculated the number of fixations (real 
or artificial) per trial to confirm the assumption that the 
more difficult list presentation conditions that produced 
longer response times per trial also had higher numbers 
of fixations per trial. We also assessed how often partici-
pants fixated and refixated on specific types of list items 
(Match, Wrong Container, etc.) within each trial. Next 
we used the eye tracking and artificial foveation data to 
compare how long the participants dwelled on the easier 
and more difficult list items during their visual search 
process. Finally, we used the artificial foveation data to 
generate scan paths that could be compared to scan paths 
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produced by eye tracking data. We then used the scan 
paths to investigate whether or not the participants in the 
two experiments used similar search strategies despite 
the different constraints imposed by the artificial fovea-
tion paradigm.

Number of fixations per trial
We compared the average number of regions viewed 
per trial in the artificial foveation paradigm to the aver-
age number of fixations per trial and the average num-
ber of regions fixated in the eye tracking paradigm. These 
results are shown in Fig. 6. The number of regions fixated 

per trial was lower in the eye tracking paradigm than in 
the artificial foveation paradigm, but the total number of 
fixations was higher in the eye tracking paradigm. This 
makes sense because it could take multiple fixations to 
read a seal-container pair, and these are counted sepa-
rately within a single region for the eye tracking experi-
ment, but the time it takes to read the seal-container 
pair only counts as one region view in our implementa-
tion of artificial foveation. Despite this difference, the 
patterns across conditions are remarkably similar for all 
three metrics. Once again, both data collection meth-
ods showed the same pattern of results. When looking at 
the total number of fixations per trial or the number of 
regions fixated per trial in the eye tracking experiment, 
there were significant main effects of list order (fixations 
per trial: F(2, 70) = 56.11, p < 0.001, ηp

2 = 0.62; number 
of regions fixated per trial: F(2, 70) = 92.78, p < 0.001, 
ηp

2 = 0.73) and color coding (fixations per trial: F(1, 
70) = 34.07, p < 0.001, ηp

2 = 0.33; number of regions fix-
ated per trial: F(1, 70) = 70.90, p < 0.001, ηp

2 = 0.50) and 
there was a significant interaction between the two (fixa-
tions per trial: F(2, 70) = 11.70, p < 0.001, ηp

2 = 0.25; num-
ber of regions fixated per trial: F(2, 70) = 19.86, p < 0.001, 
ηp

2 = ηp
2 = 0.36). The same pattern held when analyzing 

the number of regions viewed per trial in the artificial 
foveation experiment. Once again there was a signifi-
cant main effect of list order (F(2, 70) = 63.29, p < 0.001, 
ηp

2 = 0.64), a significant main effect of color coding 
(F(1, 70) = 92.77, p < 0.001, ηp

2 = 0.57), and a significant 
interaction between the two (F(2, 70) = 14.93, p < 0.001, 
ηp

2 = 0.30).
These results confirm that the differences in response 

times across list presentation conditions was driven by 
the length of the visual search process, rather than dif-
ferences in the time required to come to a decision about 
each seal-container pair.

Refixations within trials
On each trial, we expected that the participants would 
identify an item to search for, then look for it in the 
other list while holding all or part of the target item in 
memory. When they found a potential match, they would 
move their eyes or their mouse back and forth between 
the lists to confirm that the items matched before mak-
ing their response. Thus, we would expect multiple fixa-
tions and refixations on the item that the participant 
checked off on each trial and the corresponding item in 
the facility’s list, and fewer fixations on any items that 
were not the target on that particular trial. In addition, 
within each inspection list, there were different types of 
seal-container pairs that differed in difficulty. Items in the 
Match condition were relatively easy, as the participants 
simply had to confirm that an item in their inspection list 
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and the matching item in the facility’s list were identi-
cal. However, checking off the other item types (Missing, 
Wrong Container, Transposed, and Transposed Match) 
was more complicated. The Missing items did not appear 
in the other list, so participants might check and recheck 
the whole list to confirm that an item was missing. The 
other items all had problems that could necessitate more 
comparisons back to the target item on the participant’s 
checklist. We expected to see more refixations of the tar-
get item and the corresponding item in the facility’s list 
for these conditions than for the Match condition.

For this analysis, we focused only on the Random 
Order, No Color list presentation condition, because 

it was the most difficult condition and had the highest 
average number of fixations per trial. For each trial, we 
identified the item that the participant checked off on the 
checklist and its partner on the facility’s list as the “tar-
get items.” On trials where the participant checked off 
a Missing item, there was only one target item, but for 
every other trial type there were two target items, one 
on each list. We calculated the number of fixations to 
the target items on each trial, as well as the number of 
fixations to all non-target items that were fixated at least 
once. The average number of fixations to target and non-
target items per trial is shown in Fig. 7.
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For the eye tracking data, a 2 × 5 repeated measures 
ANOVA (target vs non-target by trial type) showed that 
there were significantly more fixations to targets than to 
non-targets (F(1, 126) = 86.21, p < 0.001, ηp

2 = 0.41), but 
there was not a main effect of trial type (Match, Missing, 
etc.; F(4, 126) = 0.37), nor was there a significant interac-
tion (F(4, 126) = 0.49).

For the artificial foveation data, a 2 × 5 repeated meas-
ures ANOVA showed that there were significantly more 
views of regions containing targets than regions contain-
ing non-targets (F(4, 126) = 311.94, p < 0.001, ηp

2 = 0.71). 
There was also a significant main effect of trial type (F(4, 
126) = 3.11, p < 0.02, ηp

2 = 0.09) but there was not a sig-
nificant interaction (F(4, 126) = 2.11, p = 0.08). Pairwise 
comparisons using the Bonferroni Method showed that 
there were no significant differences in the number of 
views to non-target items across trial types. For the target 
items, the Match items had the lowest numerical number 
of views, but it was not significantly lower than the num-
ber of views to targets in the Transposed Match, Trans-
posed, and Missing trials. However, the number of views 
to Match targets was significantly lower than the number 
of views to Wrong Container targets.

This analysis indicates that participants did look 
back and forth between the target items on both lists 
(and referred back repeatedly to the Missing items that 
appeared only on their checklist). We observed the same 
pattern in both the eye tracking and artificial foveation 
data. However, there were not substantial differences in 
the number of fixations to different types of targets. We 
predicted that the items containing errors would require 
more comparisons across lists than the Match items. 
While the Match items had the lowest average number 
of fixations per trial in both experiments, it was not sig-
nificantly different from any of the other trial types in 
the eye tracking experiment, or from any trial type other 
than the Wrong Container items in the artificial fovea-
tion experiment.

Dwell times
In addition to having more fixations to the target items 
on each trial, we predicted that the participants in both 
experiments would have longer fixation durations for the 
target items. We also predicted that participants’ aver-
age fixation durations would be shorter for the Match 
items than for the more difficult item types. Once again, 
we assessed this using the Random Order, No Color list 
presentation condition. We calculated the dwell time, the 
total time participants spent fixating on each item, then 
calculated the average dwell times for the target and non-
target items that were fixated on every trial. The results, 
averaged across trials of each type and then averaged 
across participants, are shown in Fig. 8.

For the eye tracking data, a 2 × 5 repeated measures 
ANOVA showed that the participants had significantly 
longer dwell times for the targets than for the non-targets 
(F(1, 126) = 61.45, p < 0.001, ηp

2 = 0.33). However, there 
was not a main effect of trial type (F(4, 126) = 0.84) or a 
significant interaction between target and trial type (F(4, 
126) = 2.20, p = 0.07). This confirmed our prediction that 
participants would spend more time looking at the items 
they had selected as the targets of their visual search pro-
cess on each trial. To test our second prediction, that the 
dwell times would be longer for non-match targets than 
for match targets, we used a paired t-test to compare the 
average total dwell time to targets that were match items 
versus targets that were not. The t test showed that there 
was not a significant difference in how long participants 
dwelled on match and non-match targets (t(14) = 0.97).

The results were very similar for the artificial foveation 
data. The average dwell times were significantly longer for 
targets than for non-targets (F(1, 125) = 250.10, p < 0.001, 
ηp

2 = 0.67), but there was not a significant main effect of 
trial type (F(4, 125) = 1.00, p = 0.41) or a significant inter-
action (F(4, 125) = 0.54). A paired t test comparing the 
participants’ average dwell times for match targets versus 
non-match targets showed that there was not a signifi-
cant difference between the two (t(14) = 1.44, p = 0.09).

While the general pattern of dwell times was very simi-
lar for the two experiments, the dwell times were much 
longer for the artificial foveation experiment than for the 
eye tracking experiment. There are two likely causes for 
this difference. First, in the artificial foveation task, par-
ticipants had to remove the mask on an item before they 
could begin reading it. This adds extra time to each region 
view, as does the slower speed at which people moved the 
mouse relative to the speed at which they moved their 
eyes from one item to the next. Second, the eye tracking 
data is noisier. Some gaze points were not included in any 
fixation, particularly when the participants were scan-
ning rapidly through the list, and some fixations fell in 
between items due to drift in the tracking. The duration 
of those fixations would not have been included in this 
calculation if the center of the fixation did not fall inside 
of the region of interest. In this sense, the artificial fovea-
tion data is cleaner, because we know precisely how long 
each item appeared on the screen, while calculating fixa-
tion durations and assigning fixations to the correct item 
introduces some error.

Scanpaths
One of the key advantages of using eye tracking to study 
visual search is its ability to capture the path that par-
ticipants take when scanning an image. As discussed 
in the introduction, scanpaths can provide insight into 
how participants are completing a task, and they can 
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capture information that is difficult for participants to 
articulate when describing their own performance. We 
found the same to be true of the artificial foveation tech-
nique. We developed a visualization to show the order 
in which participants moused over each of the regions 
defined by the artificial foveation paradigm. Exam-
ples are shown in Fig. 9. The first region viewed during 
the trial is indicated with a red star and the last region 
viewed is indicated with a black star, mimicking the cir-
cles that are used to mark the beginning and end of the 
eye tracking data in the EyeWorks analysis software. 
The first visit to each region is represented by a red box 

surrounding that region. The border of the box is thin 
when participants spent less than one second viewing the 
region, and it is thick when participants dwelled on the 
region for more than one second. Lines connecting the 
boxes show the order in which the regions were viewed. 
Revisits to a region are depicted with a box of a differ-
ent color placed around the first. Once again, this box 
has a thin border when the revisit lasted for less than one 
second, and a thick border when the revisit was longer 
than one second. It would be feasible to develop more 
nuanced representations of dwell time for each region, 
but this representation was sufficient for our purposes of 
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Fig. 8  The average total fixation time on the target item(s) for each trial for the eye tracking experiment (top) and total dwell time for the artificial 
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performing qualitative assessments of the participants’ 
visual search strategies.

One of the key questions in Gastelum et  al. (2018) 
was whether participants would make use of the cues in 
the inspection list to constrain their visual search of the 
facility list. The faster response times for the color cod-
ing conditions imply that the participants were using the 
colors to constrain their search of the facility list, but the 
eye tracking information was needed to confirm this. Fig-
ure 10 shows eye tracking data from the Random Order, 
No Color condition (top) and from the Random Order, 
Color Coding condition (bottom). When no color cod-
ing was available, this participant searched up and down 
through all of the columns in the facility list before find-
ing the target item. When color coding was available, 
as in the lower panel of Fig.  10, the participant’s visual 
search was constrained to the second column of the facil-
ity list, which was the column indicated by the color of 
the target item on the inspection checklist.

We observed very similar patterns for the artificial 
foveation scanpaths. The top panel in Fig. 9 shows a trial 
from the Random Order, No Color condition, just like 
the top panel of Fig. 10. Note that these two participants 
used search strategies that are nearly identical. Just like 
the eye tracking data, the artificial foveation data shows 
that the participant moved up and down the columns of 
the facility list until finding the target and then revisiting 
the initial region of interest to confirm that the two items 
matched. The lower panel of Fig. 9 shows a trial from the 
Numerical Order, Color Coding condition. In this case, 
the participant systematically checks all of the red items 
in the checklist when looking for a match for the first 
item on the facility list. Although this participant has a 
different search strategy than the participant whose eye 
tracking data are shown in the bottom panel of Fig.  10, 
the scanpath makes it clear that they were using the color 
cues to constrain their search.

Discussion
In this study, we compared a standard eye tracking meth-
odology to artificial foveation, an alternative method of 
assessing participants’ patterns of attention. The results 
revealed that both methods resulted in similar find-
ings regarding the impact of list order and color coding 
on participants’ performance in a visual search task. In 

addition, both techniques revealed detailed information 
about how participants searched the lists on each trial.

At the block level (where each block consisted of 
checking off one list of 36 items), participants were faster 
and had fewer fixations or region views per trial when 
their checklist incorporated cues, such as color coding or 
helpful list ordering, that constrained their visual search 
process. An analysis of the participants’ response times 
for trials with different search set sizes found a roughly 
linear relationship between set size and response time, 
with a shallow slope that is similar to the slope observed 
in classic visual search tasks that require inefficient visual 
search, such as the T and L task (Wolfe, 1998). We found 
overall slower response times for the artificial foveation 
procedure due to the speed limitations imposed by mov-
ing the mouse instead of simply moving one’s eyes. How-
ever, the constraints introduced by the artificial foveation 
procedure did not change the participants’ patterns of 
performance across conditions or the dynamics of their 
visual search process. We found similar patterns of 
results for the two data collection methodologies across 
all of our behavioral and eye tracking-based metrics.

At the trial level, participants in the eye tracking and 
artificial foveation experiments generally used simi-
lar task completion strategies. The participants in both 
experiments selected a target from their checklist and 
searched for it in the facility’s list, scanning through the 
items until they found a likely match. Then they com-
pared the probable match back to the target on their 
checklist in order to identify any discrepancies between 
the two. This led to participants having many more fixa-
tions or views to the target and its partner than to any 
of the distractor items (all items that were not the target 
of the participant’s search on that trial). While we pre-
dicted that participants would spend more time looking 
at the target items in conditions where there was an error 
on the facility’s list (Transposed, Wrong Container, or 
Missing items), we generally did not see substantial dif-
ferences between the different item types. This indicates 
that participants made roughly the same number of com-
parisons between the target item and its probable match 
on the facility’s list when the two items matched exactly 
and when the two items had discrepancies.

This experiment differs from many classic visual search 
studies because the stimuli on the screen remained 
the same throughout the 36 trials in each block, but 

Fig. 9  Examples of scanpaths obtained from the artificial foveation data. The top panel shows a trial from the Random Order, No Color condition 
and the bottom panel shows a trial from the Numerical Order, Color Coding condition. The first and last regions viewed are marked with red and 
black stars, respectively. The first visit to each region is indicated with a red box and the second visit is indicated with a yellow box. The box border is 
thicker when the dwell time in that region was more than 1 s

(See figure on next page.)
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Fig. 10  Examples of scanpaths obtained from the eye tracking data. The top panel shows a trial from the Random Order, No Color condition and 
the bottom panel shows a trial from the Random Order, Color Coding condition. The location of the participant’s gaze at the start and end of the 
trial is marked with green and red circles, respectively. The smaller circles indicate the gaze position each time the eye tracker sampled the data
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the participant’s choice of a search target on each trial 
changed which items were targets and which were dis-
tractors. Our choice of task was driven by the real-world 
constraints faced by international nuclear safeguards 
inspectors, who must compare detailed records from 
prior inspections to a nuclear facility’s current inven-
tory. While the inspectors have no control over the facil-
ity’s inventory records and how they are formatted, it 
is possible for them to format their records from prior 
inspections in ways that make this tedious task faster and 
easier. For example, they could place the items in their 
own checklists in numerical order, or they could color 
code them based on shipment date, storage location, or 
any other information that would constrain their search 
through the facility’s records. Thus, in these experi-
ments, we manipulated the list order and color coding to 
test which types of cues were most useful to the partici-
pants. In the Random Order, No Color condition, which 
is most representative of the real-world inspection task, 
the participants had to search through all 36 items on the 
facility’s list until finding their target. They repeated this 
process on every trial, in a slow and tedious inspection. 
At the other extreme, in the Facility Order conditions, 
the participants simply had to compare the items in the 
same position on the two lists. The effective set size for 
their visual search process was one item, so they were 
able to complete each trial very quickly. While match-
ing the orders of the two lists under comparison is clearly 
ideal, it is unlikely to be feasible in real facility inspec-
tions. However, color coding and/or placing the inspec-
tion checklist in numerical order are both feasible ways 
of constraining the inspectors’ search processes. In these 
experiments, we found that the participants were able to 
make good use of the color coding cues. The participants’ 
scanpaths and response times showed that they used the 
color cues to constrain their visual search to the appro-
priate column of the facility’s list. On the other hand, 
very few participants made use of the numerical order-
ing. Only four participants in each experiment reported 
that they used this strategy, and none of them used it 
when they could use the color cues instead. This indicates 
that numerical ordering, while simple to implement on 
an inspector’s checklist, may not be helpful to the inspec-
tors unless they are trained on how to change their search 
strategy to take advantage of this information.

Limitations
The fact that we did not use a classic visual search task 
leaves some questions about the similarities and differ-
ences between eye tracking and artificial foveation unan-
swered. For example, we do not know how changing the 
size of the stimuli or changing the size of the artificial 

foveation window might impact this comparison. In our 
task, the alphanumeric strings were small enough that 
participants had to fixate on them in order to read them. 
In a task that used larger stimuli or targets that could be 
identified using peripheral vision, we might see more dif-
ferences between data collected via eye tracking and data 
collected via mouse tracking or other artificial foveation 
techniques. In that case, participants might struggle more 
with the fact that portions of the image are obscured and 
might adopt different strategies to compensate for that 
difficulty.

We also do not know how changes to the size of the 
artificial foveation window would impact visual search 
performance. In the current study, we simply sized the 
windows so that each showed one seal-container pair, 
but the window could be larger (multiple items revealed 
at once) or smaller (part of an item). Smaller windows 
would provide more granular information. In this case, 
smaller windows would have allowed us to test whether 
participants were searching based on the seal number 
or the container number. Using smaller windows would 
likely have produced a closer match between the average 
number of fixations to target items and the average num-
ber of region views in the artificial foveation experiment. 
The seal-container pairs were long enough that multiple 
fixations were required to read the entire string. In the 
eye tracking data, those fixations are counted separately, 
but in the artificial foveation experiment a single region 
view could encompass multiple fixations. In a study with 
larger stimuli and larger windows, this difference would 
be even more pronounced. On the other hand, larger 
windows might reduce average response times, bringing 
them more in line with the response times obtained in 
the eye tracking paradigm. Similar manipulations of win-
dow size have been explored in the gaze-contingent read-
ing literature (e.g., Rayner, 2014), but could also be tested 
in the context of classic visual search tasks. The appro-
priate window size is likely to depend on the task, the 
stimuli, and the research question of interest, given that 
the size of the perceptual span is smaller for reading than 
in scene perception and visual search (e.g., Rayner, 2009). 
Future research in this area could vary the size of the arti-
ficial foveation window to see if the size of the window 
impacts the participants’ response times or visual search 
behavior. Another fruitful avenue for future research 
in this domain would be testing the artificial foveation 
approach in the context of multiple target search, where 
different metrics regarding search strategy and search 
termination are of interest to researchers.

The slower pace of artificial foveation relative to eye 
tracking is also an important limitation. As shown in 
Fig.  4, it took roughly twice as long for participants to 
complete each trial in the artificial foveation experiment 
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relative to the eye tracking experiment. This difference is 
likely due to the fact that moving the mouse is substan-
tially slower than moving one’s eyes. On each trial, par-
ticipants viewed multiple list items to find and compare 
the target items, and it took them longer to view each 
one when they had to move the mouse in order to reveal 
them. Anecdotally, the slower pace of the artificial fovea-
tion task could be frustrating for the participants. The 
additional time needed to collect the artificial foveation 
data is also important because the settings in which eye 
tracking is not feasible are often operational settings, 
such as secure buildings where recording devices like eye 
tracking cameras are not allowed. Researchers working 
in those settings often have limited time with their par-
ticipants, so the fact that our implementation of artificial 
foveation slows down task completion could be problem-
atic. The approach we used here is also less naturalistic 
than eye tracking. It requires participants to interact with 
images in a less natural way than by simply moving their 
eyes. It also requires a substantial amount of advance 
preparation to set up the experimental stimuli and the 
regions of interest for the artificial foveation technique. 
However, we would argue that a similar level of advance 
preparation is necessary for conducting well-controlled 
eye tracking experiments.

Conclusions
Although mouse tracking is sometimes called “poor 
man’s eye-tracking” (Mancas & Ferrera, 2016), our study 
demonstrates that implementing an artificial fovea-
tion technique via mouse tracking can provide effective 
characterizations of participants’ visual search behavior. 
Moving the mouse to view different regions of the screen 
impacts performance by slowing response times, but the 
artificial foveation technique and traditional eye track-
ing methods can reveal the same patterns of visual search 
performance and strategy across conditions. Our findings 
align with prior research using free viewing tasks, which 
have indicated that artificial foveation can be an effec-
tive substitute for eye tracking when determining which 
regions of an image are viewed most often (Jiang et  al., 
2015; Kim et al., 2017).

A major advantage of artificial foveation is that this 
data can be collected outside of laboratory settings. 
This is particularly relevant in the context of the ongo-
ing COVID-19 pandemic, which has made it difficult to 
conduct in-person human subjects experiments. Arti-
ficial foveation techniques can enable visual cognition 
researchers to continue their work via remote or online 
data collection. Participants can complete an artificial 
foveation task using their own computer, without hav-
ing to travel to a lab with an eye tracker set up. There is 
no need for calibration or specialized equipment, so data 

can be collected without an experimenter present. Mouse 
tracking can also be implemented in platforms such as 
Amazon Mechanical Turk, and prior research has indi-
cated that collecting mouse tracking data online pro-
duces very similar results to collecting mouse tracking 
data in the laboratory (Jiang et al., 2015).

Overall, our findings indicate that artificial foveation 
is a useful tool for studying visual search in  situations 
where eye tracking is not feasible. While there are some 
drawbacks to this technique, there are cases in which it 
provides valuable information that cannot be obtained in 
other ways.
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