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Location probability learning 
in 3‑dimensional virtual search environments
Caitlin A. Sisk1*  , Victoria Interrante2 and Yuhong V. Jiang1 

Abstract 

When a visual search target frequently appears in one target-rich region of space, participants learn to search there 
first, resulting in faster reaction time when the target appears there than when it appears elsewhere. Most research 
on this location probability learning (LPL) effect uses 2-dimensional (2D) search environments that are distinct from 
real-world search contexts, and the few studies on LPL in 3-dimensional (3D) contexts include complex visual cues or 
foraging tasks and therefore may not tap into the same habit-like learning mechanism as 2D LPL. The present study 
aimed to establish a baseline evaluation of LPL in controlled 3D search environments using virtual reality. The use of 
a virtual 3D search environment allowed us to compare LPL for information within a participant’s initial field of view 
to LPL for information behind participants, outside of the initial field of view. Participants searched for a letter T on the 
ground among letter Ls in a large virtual space that was devoid of complex visual cues or landmarks. The T appeared 
in one target-rich quadrant of the floor space on half of the trials during the training phase. The target-rich quadrant 
appeared in front of half of the participants and behind the other half. LPL was considerably greater in the former 
condition than in the latter. This reveals an important constraint on LPL in real-world environments and indicates that 
consistent search patterns and consistent egocentric spatial coding are essential for this form of visual statistical learn-
ing in 3D environments.
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Background
Visual search in real-world environments is a complex 
task that requires efficient shifts of attention, recognition 
of complex visual stimuli, and frequent reorienting as 
one turns to search all regions of the 3-dimensional (3D) 
space. Previous research has identified several mecha-
nisms that support visual search, including search history 
(Awh et al. 2012). Imagine yourself standing in the center 
of your living room, searching for your keys, glasses, or 
the TV remote. Presumably, you have searched for these 
objects in this space before, and that search history may 
inform your current search (Oliva et al. 2004). However, 
the vast majority of research on selection history effects 
thus far lack one key component of real-world search 
environments: their 3D nature, which results in the need 

for search both in front of and behind one’s initial field 
of view.1 As a result, the mechanisms by which selec-
tion history guides search in 3D navigable environments, 
where search involves turning one’s body and reorient-
ing, rather than just oculomotor movements, remain 
unclear. The current study investigates the role of selec-
tion history in visual search in 3D environments using 
virtual reality.

One well-researched selection history effect in small-
scale, 2-dimensional (2D) environments is location 
probability learning (LPL). When a search target dis-
proportionately appears in one “target-rich” region of a 
computer monitor, participants harness that statistical 
regularity, becoming faster at finding targets when they 
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1  In virtual reality research, the term field of view is typically contrasted with 
the term field of regard, with the latter referring to the entire virtual space and 
the former referring to the area of that space that is within a participant’s view. 
Here, we use field of view to refer to the region of space in front of partici-
pants that is visible without the need for body movements.
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appear in that region than when they appear elsewhere 
(Druker and Anderson 2010; Geng and Behrmann 2002; 
Jiang et al. 2013; Miller 1988). LPL can guide search inde-
pendently of conscious awareness (Jiang et al. 2018), and 
the attentional bias that participants develop toward 
the target-rich region is lasting and robust: participants 
retain this attentional preference for an extended period 
of time after learning (Jiang et  al. 2013), the preference 
persists in the face of added cognitive load (Won and 
Jiang 2015), and aging and serious neurological condi-
tions do not interfere with the acquisition or expres-
sion of LPL (Sisk et al. 2018). These findings suggest that 
LPL is supported by repeated shifts of attention in space, 
resulting in a robust attentional bias or preference akin to 
a search habit (Jiang and Sisk 2018).

The robust nature of LPL suggests that the effect should 
extend to search in large-scale 3D environments. Indeed, 
two lines of previous research have observed evidence of 
LPL in either visual search in complex outdoor environ-
ments (Jiang et al. 2014; Won et al. 2015) or foraging in 
an indoor controlled environment (Smith et al. 2010). In 
Jiang et al. (2014), participants searched for a coin on the 
ground in an outdoor search space. Unbeknownst to par-
ticipants, the coin more often appeared in one region of 
the ground. Participants developed LPL, exhibiting not 
only faster search time but also an increased tendency 
to turn their head in the direction of the high-probabil-
ity region. Smith et  al. (2010) created a visually sparse 
indoor 3D environment that consisted of an empty room 
surrounded by black curtains with colored lights embed-
ded into the floor. All of the lights were initially the same 
color. Participants had to press switches next to the lights 
embedded in the floor until they found the light that 
changed colors when the switch was pressed. Because the 
target was not defined by visual characteristics until the 
participant actively interacted with it, the task involved 
foraging rather than visual search. As in 2D LPL studies, 
the target appeared in one region—either the left or the 
right half of the room—more often (80% of all trials) than 
the other region (20% of all trials). Participants located 
the target more quickly in the “rich” side of the room if 
they began each search trial from the same starting point. 
Thus, despite increased size and complexity of the search 
environment, when the target frequently appears in one 
region of space, participants appear to have the capacity 
to acquire LPL.

Although LPL has been observed in both 2D computer-
based experiments and 3D search or foraging tasks, it is 
unclear whether the effects observed in 3D tasks were 
the result of the same attention learning mechanism 
underlying LPL in 2D search tasks. Real-world search 
experiments (e.g., Jiang et  al. 2014) were conducted in 
natural environments that provided rich visual cues, 

such as landmarks, which could lead to high levels of 
explicit awareness about the target’s location probabil-
ity. The floor-light foraging task of Smith et  al. (2010) 
did not contain rich visual cues, but the task took many 
seconds to complete and entailed complex foraging strat-
egies, yielding a pattern of navigation behavior that dis-
tinguished it from visually guided search (Pellicano et al. 
2011; Smith et al. 2008). In fact, participants in both Jiang 
et  al. (2014) and Smith et  al. (2010) achieved high lev-
els of explicit awareness, with the majority of them cor-
rectly identifying the target-rich region when probed. If 
the learning effect observed in these 3D tasks is driven by 
explicit awareness of where the target-rich region is, then 
LPL in these 3D tasks may reflect goal-driven attentional 
guidance, rather than implicitly guided search habits.

Because implicit selection history effects can function 
independently of goal-directed attention (Awh et al. 2012; 
Jiang 2018), previous studies in these visually rich real-
world search environments or foraging tasks may not 
represent an extension of the LPL that researchers have 
observed in 2D tasks. To understand LPL in 3D search 
environments, where search involves the space behind 
one’s starting position, it is necessary to first characterize 
LPL in highly controlled 3D environments in the absence 
of rich visual cues or complex foraging strategies. Only 
then can we systematically evaluate the influence of vari-
ous environmental features, such as landmarks, navi-
gability, and spatial scale on selection history effects in 
searching for items outside of the initial field of view.

The present study therefore used virtual reality to cre-
ate a 3D search environment with three primary aims. 
First, we aimed to establish LPL in 3D environments with 
sparse visual cues. By eliminating the visual cues and 
landmarks present in previous studies, and by using vis-
ual search, rather than a foraging task, the present study 
can investigate LPL in a visually sparse 3D environment. 
This provides a “baseline” for future research on selec-
tion history effects in such large-scale environments. 
Although removing discrete visual cues eliminates the 
possibility of associating landmarks with target prob-
abilities, it does not preclude participants from acquir-
ing explicit awareness of the target’s location probability 
through learning the room geometry. Therefore, the sec-
ond aim of the present study was to determine whether 
LPL in visually sparse 3D environments is associated 
with high levels of explicit awareness.

Finally, we aimed to test whether LPL is equiva-
lent, regardless of whether target-rich locations appear 
in front of someone or behind that person. Although 
humans are capable of representing space that is out-
side of the field of view, the computational demands 
of attending to space in front us are different from the 
demands of attending to space behind us. Two primary 
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computational distinctions can be noted. First, visual 
search among stimuli appearing in front of a partici-
pant is guided by perceptual properties of the search 
items. The integration of such perceptual representation 
with top-down goals is a hallmark of theories of visual 
search (Itti and Koch 2001; Treisman 1988; Wolfe et  al. 
2015). In contrast, stimuli behind a participant cannot 
be seen, depriving participants of bottom-up sources of 
attentional guidance and preventing them from engag-
ing in visually guided search. Instead, search for regions 
behind someone is initially guided only by internal rep-
resentations, with perceptual features of the search 
stimuli becoming available only after participants have 
physically oriented toward that region. Previous stud-
ies showed that participants tend to rely on perception, 
rather than memory in search tasks (O’Regan 1992). For 
example, participants frequently re-fixate the same object 
to extract different features of that object in visuomotor 
tasks instead of relying on memory for the object (Ballard 
et  al. 1995; Droll and Hayhoe 2007). When participants 
searched within the same environment but for different 
targets, search was not more efficient, despite the famili-
arity of the search environment (Oliva et al. 2004). This 
may again reflect a tendency to rely on perceptual cues, 
rather than memory for the locations of objects within a 
familiar environment. A possible result of this tendency 
may be that people attend to space in front of them dif-
ferently than to space behind them due to the availabil-
ity of perceptual cues only for the space in front of them. 
This could, in turn, influence their ability to learn from 
prior selection history within those regions.

Second, because search of space behind oneself 
depends on physically turning one’s head or body, learn-
ing of a target-rich region behind oneself may be more 
challenging than learning of a target-rich region in front 
of oneself. Consider first a case in which the target-rich 
region is in the front right corner of the room relative to 
the initial perspective of a participant. Since this region 
is in front of the participant, they do not need to turn 
their body and reorient to find the target. Although the 
initial field of view does not include the entire front two 
quadrants of space if the search space is divided into four 
quadrants, participants in virtual reality studies typically 
use only head movements—not torso or body move-
ments—when searching within this region (Sidenmark 
and Gellersen 2020). This region is therefore consist-
ently referenced as “front right” on each trial where the 
target appears in that part of the room. Now consider a 
case in which the target-rich region is in the back right 
corner of the room, relative to the initial perspective of 
a participant. To find the target, the participant has to 
turn and reorient. Yet the lack of visually guided features 
prevents participants from knowing which direction to 

turn—clockwise or counterclockwise. Because the par-
ticipant may turn clockwise on some trials and counter-
clockwise on others, and because the participant may 
turn 90º on some trials and 180º on others before search-
ing the back quadrants, the position of the target-rich 
region relative to the participant after reorienting will not 
be consistent across trials, even when its position in the 
room remains constant. Because LPL may depend on a 
viewer-centered representation of space (Jiang and Swal-
low 2013; Jiang et al. 2014; Smith et al. 2010), the lack of 
consistent spatial coding introduced by spatial reorient-
ing could impair LPL for target-rich regions behind the 
participant.

Previous studies have yet to explore the role of direc-
tion on LPL in 3D, large-scale search environments. In 
Smith et  al. (2010), participants began search from one 
end of the room, meaning that the items never appeared 
behind them at the start of the trial. Participants in Jiang 
et  al. (2014) began search in the middle of the outdoor 
space, yet that study did not report the effect of direction 
on LPL. Other studies have tested the role of direction on 
contextual cueing, a form of learning in which the dis-
tractor layout is predictive of the target’s location (Marek 
and Pollmann 2020; Shioiri et al. 2018). However, contex-
tual cueing is distinct from LPL (Sisk et al. 2019), so the 
findings are not directly applicable to understanding the 
question at hand.

Thus, the present study investigated the acquisition 
of LPL in a virtual reality 3D space, where targets can 
appear frequently in front of or behind participants, in 
the absence of rich visual environmental cues. Partici-
pants searched for a letter T among letter Ls on the floor 
of a large nondescript virtual room with sparse visual 
cues. Participants began each trial at the center of the 
square room, facing the same direction in the virtual 
space. They pressed a key on a handheld controller to 
begin each search trial. After the start key was pressed, 
distractor Ls and the target letter T appeared on the 
floor of the search space. Participants searched until they 
found the letter T, pressing another button on the con-
troller when they identified the target. After identifying 
the target, they indicated whether the T was light gray 
or dark gray using their controller. During training, the 
target appeared in one quadrant of the floor on half of 
the trials, with that target-rich quadrant being counter-
balanced across participants. This allowed us to assess 
whether participants could acquire LPL in a visually 
sparse 3D space, and whether learning differed depend-
ing on whether the target-rich regions appeared in front 
of or behind the participants.
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Method
Participants
College students between the ages of 18 and 25 years par-
ticipated in this study in exchange for extra course credit. 
All participants had normal or corrected-to-normal vis-
ual acuity and were naive to the purpose of the study. The 
protocol was approved by the University of Minnesota 
Institutional Review Board.

Sample size was guided by previous studies on LPL, 
with typical sample sizes ranging from 8 to 24 partici-
pants (Jiang et al. 2013, 2014). Based on the effect size of 
ηp

2 = 0.63 (Jiang et  al. 2014), G-power analysis suggests 
that a minimum of 4 participants were needed to reach a 
power of 0.95 with an alpha level of 0.05 (two-tailed). We 
therefore tested 16 participants.

Participants included 11 women and five men with a 
mean age of 19.7 years.

Equipment
Stimuli were presented in an HTC Vive. The Vive weighs 
470  g and is equipped with two OLED displays, each 
presenting a 1080 × 1200 pixel image to each eye, with 
partial stereo overlap. The combined image content is 
presented over a field of view that is approximately 112° 
horizontally and 116° vertically (Murphy et  al. 2018). 
The Vive refreshes images about every 11  ms (90  Hz). 
The position and orientation of the Vive HMD is tracked 
at a rate of 120  Hz (Kreylos 2016) with < 22  ms latency 
(Niehorster et al. 2017) using a hybrid inertial and optical 
tracking system.

The virtual environment and experimental procedure 
were created using Unreal Engine version 4.22.

Materials
A virtual environment designed to simulate a 30ft by 30ft 
square room was presented in the Vive headset. Each of 
the four walls were gray, and the floor was a concrete 
texture in a gray color. The texture of the floor created 
visual noise to simulate naturally occurring noise in real-
world search environments. The floor texture was even in 
luminance across space, and shadows were not visible on 
the floor, in order to prevent uncontrolled modulations 
of search difficulty throughout the search space. The 
luminance of the four walls was based on an illumination 
model with a fixed angled light source from above, so the 
four walls were distinguishable, though there were no 
salient visual cues to associate with any of the four walls.

The search stimuli consisted of a target letter T and 
distractor letter Ls. Half of the displays contained 11 Ls, 
half of them contained 15 Ls. In both cases the number of 
items appearing in each color in each quadrant was con-
trolled, such that the same number of items appeared in 
each color, and no more than 2 items of the same color 
appeared in the same quadrant. The search space was 
divided into an invisible 10 × 10 grid, yielding 96 pos-
sible locations, excluding a 2 × 2 cell space immediately 
surrounding the participant’s starting spot (Fig.  1). The 
target and each distractor appeared in the center of one 
of these cells on each trial. The cell in which each stimu-
lus appeared was random with the constraints that none 
of the stimuli overlapped, an equal number of stimuli 
appeared in each quadrant, and no stimuli appeared 
within a 2 × 2 space in the center of the search space. The 
final constraint prevented search stimuli from appearing 
directly beneath the participant’s starting position. The 

Fig. 1  Left) an image of an example search trial with the target T in the upper left quadrant in a light gray color and distractor Ls in the upper 
right and upper left quadrants, some appearing in light gray and some in dark gray. Right) a schematic of the search space, with 96 possible target 
locations, excluding a 2 × 2 cell space immediately surrounding the participant’s starting spot. The same number of search stimuli appeared in each 
of the four quadrants outlined here (lines were not visible to participants)
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stimuli could appear in any orientation. The size of the 
stimuli were scaled with distance from the participant’s 
starting position—the farther a stimulus was from the 
center of the room, the larger it appeared. Specifically, 
the horizontal distance between the center of the room 
and each stimulus was calculated then multiplied by 3.5 
before rendering. The stimuli could appear either in a 
light gray color or a dark gray color. The target’s color was 
randomized with the constraint that it appeared in each 
color on half of all trials. Each distractor’s color was ran-
domized with the constraint that each quadrant had an 
equal number of search stimuli in each color.

Design and procedure
Each trial began with the participant standing in the 
center of the search space, facing the same direction, both 
in the virtual world and in the real world. The researcher 
monitored each participant’s starting orientation on each 
trial and reminded participants to begin facing the cor-
rect direction if they were not consistently turning to face 
the starting wall before beginning search. Participants’ 
starting head direction was also measured, allowing for 
exclusion of trials without the correct starting orienta-
tion in head turn analyses. The researcher also monitored 
each participant’s starting position on the floor space. A 
large fixation cross on the floor of the virtual room ena-
bled participants to determine the appropriate starting 
place on each trial if they walked around during search 
(though few participants strayed from their starting posi-
tion during the experiment).

Once the participant was facing the starting direc-
tion—indicated by a temporary colored highlighting of 
the wall participants were to face—the participant began 
the search trial by pressing a button on their controller. 
Upon that button press, the highlighting of the start-
ing wall disappeared and the search stimuli appeared on 
the floor of the search space. A ding also provided audio 
feedback indicating the beginning of the search trial. Par-
ticipants were told to find the letter T as quickly as pos-
sible and to press a button on their controller as soon as 
they recognized the target. This stopped the timer. After 
that button press, the search stimuli disappeared. Partici-
pants then were instructed to indicate the color that the 
letter T had been when they found it: If it was light gray, 
they pressed their left controller key, and if it was dark 
gray, they pressed their right controller key. Participants 
received feedback on each trial in the form of a buzzer 
sound on incorrect trials.

Before beginning the experiment, participants read 
instructions appearing in their virtual environment, 
practiced using each of the controller buttons that was 
used in the experiment, and completed eight practice 

trials. Participants were welcome to complete more 
practice trials if they requested additional practice. 
Following practice, participants completed ten 24-trial 
blocks. Participants received enforced breaks after 
blocks 4 and 7, where they were required to remove the 
virtual reality headset. Participants were also allowed 
to take breaks as needed between trials or between 
other blocks. This minimized the effects of the fatigue 
that extended exposure to virtual reality can induce. 
Participants were free to move throughout the search 
space while searching, though most participants chose 
to simply turn in place while searching for the target. 
The experimenter monitored participants throughout 
the task to ensure they did not trip over the cord con-
necting the headset to the computer, they did not run 
into any obstacles in the real world, and they contin-
ued to follow instructions and turn to face the starting 
wall before starting a new search trial. Because partici-
pants rarely walked around during the experiment, they 
almost never had to be instructed to avoid real-world 
obstacles. However, as participants turned, the cord 
connecting the headset to the computer frequently 
wrapped around their legs. Most participants volun-
tarily unwound themselves between trials or stepped 
over the cord, though some required frequent remind-
ers between trials from the experimenter. Participants 
had 15  s to complete each trial. After 15  s, the target 
increased in size, so participants could easily identify 
it and complete the trial. This time limit was chosen to 
minimize the fatigue experienced by participants dur-
ing excessively long search trials.

Participants first completed two blocks of expo-
sure, where they participated in the task, searching 
for the letter T and reporting its color, and the target 
was equally likely to appear in each of the four quad-
rants in the search space. Next, participants completed 
six training blocks, where on each trial, the target 
had a 50% chance of appearing in one high-proba-
bility, or target-rich quadrant. The target had about a 
16.7% chance of appearing in each of the three target-
sparse, low-probability quadrants. After the six train-
ing blocks, participants completed two testing blocks, 
where the target was equally likely to appear in each 
of the four quadrants. Participants were not informed 
about the target’s spatial probability distribution. The 
location of the target-rich quadrant (in front and to the 
left, in front and to the right, behind and to the left, or 
behind and to the right) was counterbalanced across 
participants.

Once all experimental trials were complete, partici-
pants answered a series of questions to probe aware-
ness. Participants were asked whether they thought the 
target appeared in one area more often than in other 
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areas. Then, regardless of their answer to the first ques-
tion, laser pointer beams appeared, stemming from the 
participants’ controllers. They were asked to point the 
end of the laser beam at the location on the floor where 
they thought the target most often appeared. Finally, 
participants verbally rated on a scale of 0–4 their confi-
dence in their choice of frequent target location.

Results
Accuracy
Mean accuracy was 90.8% (91.8% in the rich quadrant, 
90.2% in the sparse quadrants, the difference was not sig-
nificant, t(15) = 1.27, p = 0.22, Cohen’s d = 0.32). Errors 
included both search errors—where participants incor-
rectly identified a distractor as the target—and color 
discrimination errors—where participants found and 
identified the target but selected the incorrect color as 
the target color due to perceptual error. The two error 
types cannot be differentiated in the data because the 
color response also served as the target identification 
response. Since only one response was made, we cannot 
determine the precise rates of each error type. Partici-
pants with lower accuracy scores reported more difficulty 
in discriminating between light and dark gray than par-
ticipants with higher accuracy scores. Inaccurate trials 
were excluded from further analysis.

Reaction time (RT)
Trials lasting longer than 15 s were excluded from analy-
ses (3% of all trials) because the target’s size was enlarged 
after 15 s of search time. Due to a coding error, the target 
was enlarged prematurely on a small number of trials, so 
those trials were also excluded (1% of all trials). Across 
all accurate trials under the 15-s cutoff, average RT was 
4953 ms (SE = 200 ms). When the target appeared in one 
of the two quadrants in front of a participant, they were 
more likely to quickly identify the target because little or 
no head or body movement was required to bring the tar-
get into the field of view. For these trials with the target 
in front, average RT was 3967  ms (SE = 161  ms). When 
the target appeared behind participants average RT was 
6009 ms (SE = 195 ms). RT for targets appearing in front 
was significantly faster than RT for targets appearing in 
back, t(15) = 15.89, p < 0.001, Cohen’s d = 3.97.

For all RT analyses, trial blocks of 24-trials each were 
pooled into two-block, 48-trial epochs. Epoch 1 includes 
the first two blocks in which probability distribution was 
even, meaning the target was equally likely to appear in 
each of the four quadrants. Epochs 2–4 include the six 
training blocks in which the target had a 50% chance of 
appearing in the high-probability quadrant on each trial 
and a 16.7% chance of appearing in each of the other 

three quadrants. Epoch 5 includes the final two testing 
blocks, in which the target was equally likely to appear in 
each of the four quadrants.

Because reaction time is much faster when the target 
appears in front of participants than when it appears 
behind them, we compared RT on trials where the tar-
get appeared in the target-rich quadrant only with RT on 
trials where the target appeared in the adjacent target-
sparse quadrant that matched the rich quadrant in direc-
tion. In other words, if the rich quadrant was in front of a 
participant (e.g., in front and to the left), the sparse quad-
rant used for RT comparison would also be in front of 
the participant (e.g., in front and to the right). If the rich 
quadrant was behind a participant, the comparison would 
be made using trials where the target appeared in the one 
sparse quadrant that was also behind the participant.

Data from all participants are shown in Fig. 2 (top). RT 
was numerically faster in the rich quadrant than in the 
direction-matched sparse quadrant. However, the pattern 
of results depended on whether the rich quadrant was in 
front of or behind the participant. For the participants 
with a rich quadrant in front of them, there is clear evi-
dence of learning—faster RT in the rich quadrant (Fig. 2, 
middle). For the other participants with a rich quadrant 
behind them, there is no evidence of learning (Fig.  2, 
bottom). Marginal means for the data can be found in 
Table 1.

Exposure phase (Epoch 1)
The first two blocks (Epoch 1) did not include a target 
probability manipulation. Instead, they served to accli-
mate participants to the task before probability training 
began. As expected, RT did not differ between trials in 
which the target appeared in what would later become 
the target-rich quadrant and trials in which the target 
appeared in the adjacent quadrant that would later be 
defined as target-sparse in the training phase, t < 1.

Training phase (Epochs 2–4)
An ANOVA using quadrant (sparse or rich), training 
epoch (2–4), and direction of rich quadrant (front or 
back) as factors showed a main effect of direction, with 
faster RT for participants with a rich quadrant in front of 
them than those with a rich quadrant behind them, F(1, 
14) = 52.00, p < 0.001, ηp

2 = 0.79. The main effect of quad-
rant was significant, F(1, 14) = 4.57, p = 0.05, ηp

2 = 0.25. 
The main effect of epoch was not significant, F < 1. Epoch 
did not interact with the direction of the rich quad-
rant, F < 1, or with quadrant, F < 1. However, the quad-
rant effect interacted with direction, F(1, 14) = 12.13, 
p = 0.004, ηp

2 = 0.46. The three-way interaction was not 
significant, F(2, 28) = 1.70, p = 0.20, ηp

2 = 0.11.
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To understand the quadrant by direction interaction 
effect, we analyzed data separately for participants with 
a rich quadrant in front of or behind them. For partici-
pants with a rich quadrant in front of them, an ANOVA 
on target quadrant (rich or sparse) and training epoch 

(2–4) produced a significant main effect of quadrant, F(1, 
7) = 15.48, p = 0.006, ηp

2 = 0.69, no main effect of epoch, 
F < 1, and no interaction, F < 1. Thus, there is clear evi-
dence of an RT benefit in the rich quadrant, relative to 
the direction-matched sparse quadrant for participants 
with a rich quadrant in front of them.

For participants with a rich quadrant behind them, an 
ANOVA on target quadrant and training epoch showed 
no main effect of target quadrant, F < 1, no main effect of 
epoch, F(2, 14) = 1.51, p = 0.25, ηp

2 = 0.18, and no inter-
action between quadrant and epoch, F(2, 14) = 2.12, 
p = 0.16, ηp

2 = 0.23. Thus, there was no evidence of LPL 
in RT for participants with a rich quadrant behind them.

Testing phase (Epoch 5)
There was no evidence that LPL persisted in epoch 5 
when the target was equally likely to appear in each quad-
rant. An ANOVA on RT in epoch 5 using target quadrant 
(previously rich vs. previously sparse) and direction (rich 
quadrant in front vs. rich quadrant in back) as factors 
found only a main effect of direction, F(1, 14) = 51.13, 
p = 0.001, ηp

2 = 0.79. There was no effect of target quad-
rant, F(1, 14) = 1.04, p = 0.33, ηp

2 = 0.07, and there was 
no interaction between quadrant and direction, F < 1. 
Follow-up tests showed no significant difference in RT 
between the previously rich and previously sparse quad-
rants for either participants with a rich quadrant in front, 
t(7) = 0.22, p = 0.83, or those with a rich quadrant behind 
them, t(7) = 1.08, p = 0.32.

The lack of persistence of LPL in the testing phase may 
suggest that the RT advantage observed during the train-
ing phase in participants with a rich quadrant in front 
was the result of repetition priming, rather than LPL. If 
this were the case, we would expect RT to be faster on 
trial N when the target appeared in the same quadrant 
on trial N as on trial N-1, regardless of whether the tar-
get appears in the rich quadrant. However, quadrant 
repeat trials (mean RT = 3534  ms, SE = 359) were not 
significantly faster than quadrant nonrepeat trials (mean 
RT = 3594, SE = 223). To confirm this, we analyzed data 
from the participants with a rich quadrant in front of 
them. An ANOVA on RT in the training phase, where we 
did see an LPL effect for these participants, with quad-
rant repetition and quadrant condition (rich or sparse) 
as factors showed no main effect of quadrant repetition, 
F < 1. Furthermore, when the analysis was restricted 
to trials in which the target’s quadrant differed from 
the preceding trial’s target quadrant, we continued to 
observe an LPL in participants whose rich quadrant was 
in front of them, t(7) = 6.27, p < 0.001, Cohen’s d = 2.22, 
with faster RT when the target appeared in the rich quad-
rant (M = 3191  ms, SE = 249) than when it appeared in 
the sparse quadrant (M = 4300 ms, SE = 216).

Fig. 2  Average RT across five epochs, presented separately for trials 
in which the target appeared in the target-rich quadrant and trials in 
which the target appeared in the direction-matched target-sparse 
quadrant. Data is presented for all participants (top), then presented 
separately for participants whose target-rich quadrant was in front of 
them (middle) and for those whose target-rich quadrant was behind 
them (bottom). The rich quadrant is classified as the quadrant that 
the target was most likely to appear in during the training epochs 
2–4. For epoch 1, the RT for the quadrant that would later become 
the rich quadrant is plotted as “rich,” and for epoch 5, the RT for the 
previously rich quadrant is plotted as “rich.” This allows for tracking of 
patterns of learning across changes in the probability distribution. 
Error bars represent ± 1 standard error of the mean
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First head turn  The position of participants’ headsets 
in degrees along the x-, y-, and z-axes were output every 
30 ms during the first two seconds of search. Participants 
were not given instructions regarding which direction to 
turn first during search, so on any given trial, they could 
turn their head to the left or to the right. We measured 
the direction of the first head turn by first identifying a 
time point at which the velocity of the head turn along the 
z-axis, or the azimuth, exceeded 20-deg/sec. Mean latency 
of the first head turn was 430 ms (SE = 31) overall. Mean 
latency on trials in which the target appeared in the rich 
quadrant was 425 ms (SE = 31), and mean latency on trials 
in which the target appeared in the sparse quadrant was 
435  ms (SE = 31). There was not a significant difference 
in latency of the first head turn between rich and sparse 
trials, t(15) = 1.16, p = 0.26, Cohen’s d = 0.29. We then 
compared the degrees on that plane at that time point 
to the starting value to calculate the direction—left or 
right—of the participant’s first head turn. Then, we deter-
mined whether the target-rich quadrant was to the left or 
the right of each participant and coded each head turn 
as either a turn toward the rich quadrant (+ 1) or a turn 
away from the rich quadrant (−1). If there is no bias in the 
direction of head turns, the mean should be 0. A tendency 
to turn toward the rich quadrant should result in posi-
tive values (mean greater than 0). This analysis includes 
all trials, not just correct trials under 15 s. All trials were 
included because this analysis only considers the first 
2000 ms of each trial in which the initial head turn is likely 
to occur. Trials in which participants take longer than 15 s 
to find the target or trials in which participants eventu-
ally make an incorrect response are unlikely to systemati-
cally differ from correct trials within the first 2000 ms of 
search. The same analysis excluding incorrect trials and 
trials over 15 s yielded the same pattern of results. Data 
are visible in Fig. 3.

First, it is worth noting that at the start of the experi-
ment, participants did not demonstrate a preference 
toward turning in a particular direction. The average 
direction of the first head turn across all of the trials in 
Epoch 1 (M = 0.01, SE = 0.10) was not significantly differ-
ent from 0, t < 1, meaning that participants turned both 
toward and away from the target-rich quadrant with 

Table 1  Mean RT in milliseconds by condition

Rich in front Rich behind

Exposure Training Testing Exposure Training Testing

Rich 4383 3370 3201 6202 6164 6250

Sparse 4164 4255 3285 6584 5952 6860

Fig. 3  Average direction of first head turn across trials within an 
epoch for all participants (top), for participants with a target-rich 
quadrant in front of them (middle), and for participants with a 
target-rich quadrant behind them (bottom). Positive values indicate 
a tendency to turn toward the target-rich quadrant, negative values 
indicate a tendency to turn away from the target-rich quadrant, 
and values near 0 indicate the lack of a consistent tendency to turn 
clockwise or counterclockwise at the start of a search trial. Bars 
represent standard error of the mean
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equal frequency at the start of the experiment. Second, 
participants also did not develop a preference of turning 
toward the rich quadrant over time. The mean across all 
epochs (M = 0.08, SE = 0.10) was not significantly greater 
than 0, t < 1, and neither the mean of any individual epoch 
nor the mean of the training epochs differed significantly 
from 0 or from the mean of epoch 1, lowest p = 0.08. The 
same was true when analysis was limited to participants 
with the rich quadrant in front of them. An ANOVA 
on head turn data in the training phase with epoch as a 
within-subjects factor and direction of the rich quadrant 
(front or back) did not yield a significant effect of epoch, 
F(2, 28) = 1.53, p = 0.24, ηp

2 = 0.10, nor an interaction 
between epoch and direction of the rich quadrant, F < 1.

General direction learning  While only participants with 
a target-rich quadrant in front of them displayed evidence 
of location probability learning in search RT, it is possible 
that participants with a target-rich quadrant behind them 
developed a more general bias. Specifically, they may have 
learned that the target appeared more often behind them, 
even if they could not learn that the target appeared to 
their back-left or back-right specifically. An ANOVA on 
RT with epoch (1–5) and the target’s general location 
(front or back) as within-subject factors and location of 
the rich quadrant (front or back) as a between-subjects 
factor found only a significant main effect of target loca-
tion (slower response to targets appearing behind a par-
ticipant), F(1, 14) = 269.72, p < 0.001, ηp

2 = 0.95, with no 
interaction between target location and location of the 
rich quadrant, F(1, 14) = 1.14, p = 0.30, ηp

2 = 0.08. This 
suggests that participants with a rich quadrant behind 
them did not show a significantly smaller RT cost when 
targets appeared behind them than participants with a rich 
quadrant in front of them. The cost, or the difference in 
RT between targets appearing behind and targets appear-
ing in front of participants, was numerically smaller for 
those with a rich quadrant behind them (1906 ms) than 
for those with a rich quadrant in front of them (2178 ms), 
but this effect was not significant, t(14) = 1.06, p = 0.31, 
Cohen’s d = 0.53.

When considering only the biased training phase 
(epochs 2–4), the interaction between the target’s general 
location and the direction of the rich quadrant reached 
marginal significance, F(1, 14) = 3.80, p = 0.07, ηp

2 = 0.21. 
However, this effect disappeared when only considering 
trials in which the target appeared in a different quadrant 
on trial N than it had on trial N − 1, F < 1. This suggests 
that any advantage for those with a rich quadrant behind 
them for targets behind them was likely due to repetition 
priming effects.

When looking at general leftward or rightward biases 
that disregard front-back differences, these same analyses 

yielded no significant effects, suggesting that no general 
directional biases were learned for those with the target-
rich quadrant behind them.

Set size  Previous studies on LPL in 2D search have shown 
that probability learning not only decreases RT for trials 
where the target appears in the target-rich quadrant, but 
it also reduces the search slope for those target-rich trials. 
Because our study included set sizes 12 and 16, we exam-
ined whether search slope was shallower in the rich quad-
rant (see Table 2). This analysis was restricted to the group 
that showed LPL in RT, using data from the three training 
epochs where the effect was observed. An ANOVA on RT 
with set size and target quadrant as factors showed a sig-
nificant main effect of quadrant, F(1,7) = 18.18, p = 0.004, 
ηp

2 = 0.72, but no significant effect of set size, F < 1, and no 
interaction between set size and quadrant, F < 1. Thus, we 
did not find evidence that LPL reduced search slope. The 
lack of a search slope effect might mean that LPL in 3D 
search environments did not enhance search efficiency. 
However, it is possible that we have missed a slope effect 
given the small number of observations in the target-
sparse condition (averaging 11 trials per participant in 
each condition). Future studies are needed to determine 
whether the mechanism of LPL in 3D search environ-
ments involves increased search efficiency.

Awareness  When asked whether the target appeared in 
some places more often than others, nine out of the 16 
participants answered yes. Of those nine, five correctly 
identified the target-rich quadrant. Two others who ini-
tially said the target was evenly distributed throughout 
the search space also correctly guessed the target-rich 
quadrant. Of the seven who correctly guessed the rich 
quadrant, three had had a rich quadrant in front of them, 
and four had had a rich quadrant behind them.

Confidence ratings were low for all participants, regard-
less of whether or not they correctly identified the target 
quadrant. On a scale of 1–4 with 1 being “completely 
guessing” and 4 being “absolutely certain,” the overall 
group average rating was 2.0, and those who guessed cor-
rectly were slightly less confident in their choice of tar-
get quadrant (average confidence of 1.86) than those who 

Table 2  Mean RT in milliseconds by condition

This table includes data from the training phase of the experiment. The number 
of observations differs across conditions. The average number of observations 
under each condition is indicated parenthetically and labeled as n

Rich in front Rich behind

Set size 12 Set size 16 Set size 12 Set size 16

Rich 3224 (n = 35) 3587 (n = 31) 5697 (n = 29) 6439 (n = 33)

Sparse 4087 (n = 11) 4132 (n = 11) 6129 (n = 11) 5921 (n = 9)
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guessed incorrectly (average confidence of 2.11). There 
was no significant difference in the magnitude of LPL 
(the RT difference between the sparse and the rich trials) 
between those who correctly guessed the rich quadrant 
and those who did not, t(14) = 1.82, p = 0.09, Cohen’s 
d = 0.91. The pattern of visual search results reported 
above remain unchanged when these seven participants’ 
data were excluded. Owing to the small sample size and 
the single-item nature of the recognition test, caution 
should be exerted in interpreting the explicit recognition 
data (Vadillo et  al. 2020). Compared with previous LPL 
studies, the proportion of participants correctly identify-
ing the high-probability quadrant in the current study—
44%—was comparable to that observed in small-scale 
search studies in 2D environments (Jiang et  al. 2018), 
and much lower than the proportion observed in previ-
ous large-scale search studies in 3D environments (~ 70% 
in Jiang et al. 2014 and nearly 90% in Smith et al. 2010). 
Additional testing is needed to further characterize the 
explicit versus implicit nature of learning in 3D environ-
ments with sparse visual cues.

Return to Jiang et al. (2014)  Previous studies on LPL in 
3D environments did not examine the effect of direction. 
To determine whether the current finding was unique or 
whether direction also mattered in previous studies, we 
re-analyzed the data from the outdoor search task of Jiang 
et  al. (2014). Specifically, we tested whether or not par-
ticipants with a target-rich quadrant behind them showed 
learning in an outdoor environment with many complex 
visual cues and landmarks. As in the present study, half of 
the 16 participants in Experiment 1 of Jiang et al. (2014) 
had the target-rich quadrant in front of them at the start of 
a trial. During the training blocks, these eight participants 
exhibited a significant LPL effect, F(1, 7) = 9.06, p = 0.02, 
ηp

2 = 0.56. In contrast, the LPL effect failed to reach sta-
tistical significance in the training blocks for the eight 
participants whose target-rich quadrant appeared behind 
them, F(1, 7) = 3.02, p = 0.13, ηp

2 = 0.30. Numerically, LPL 
was about twice as large (~ 2000 ms) for participants with 
a target-rich quadrant in front of them than for partici-
pants with a target-rich quadrant behind them (~ 900 ms). 
This exploratory analysis hints at the possibility that even 
with rich visual cues, LPL in 3D search spaces may be 
asymmetrical, favoring space within a participant’s field 
of view at the start of search.

Although Jiang et al. (2014) and the present study are 
methodologically distinct, there are enough similari-
ties in the task parameters that it may be informative to 
strengthen the power of the analyses by combining the 
two datasets. The number of blocks and epochs was not 
the same, so we averaged RT across all training blocks 
in each experiment. An ANOVA on RT with quadrant 

(rich or sparse) as a within-subjects factor and direction 
of the rich quadrant (front or back) as a between-sub-
jects factor found both a significant effect of quadrant, 
F(1, 30) = 14.73, p = 0.001, ηp

2 = 0.33, and a significant 
interaction between quadrant and direction of the rich 
quadrant, F (1, 30) = 5.74, p = 0.02, ηp

2 = 0.16. Consider-
ing only participants with a rich quadrant behind them, 
there was no significant effect of quadrant, t(15) = 1.62, 
p = 0.13, Cohen’s d = 0.40. Thus, doubling the sample size 
by combining these two studies still did not yield signifi-
cant location probability learning  in participants with a 
rich quadrant behind them.

Discussion
In this large-scale 3D search environment devoid of com-
plex visual cues, participants did show evidence of LPL, 
but only when the target-rich quadrant was in front of 
them, relative to their starting position. These findings 
demonstrate, on the one hand, the robust nature of LPL 
in large-scale visual search environments. On the other 
hand, they highlight a theoretically relevant limita-
tion of LPL: Learning may be disrupted for information 
appearing outside of the initial field of view. Because 
participants whose rich quadrant was behind them had 
to frequently turn around to find the target, and because 
the direction and degrees of that turn were not entirely 
consistent from trial-to-trial, they were unable to accu-
rately update and maintain statistical information about 
the target’s location across many trials. This suggests that 
consistent search patterns are necessary for LPL to occur 
in large-scale 3D environments in the absence of rich 
environmental visual cues.

Previous studies involving large-scale search in 3D out-
door environments did observe faster reaction time on 
trials where the target appeared in the target-rich quad-
rant than on trials where it appeared in a target-sparse 
quadrant across the entire pool of participants (Jiang 
et al. 2014). Further scrutiny of the data from Jiang et al. 
(2014) following the findings presented here revealed a 
previously unnoticed distinction between participants 
with a target-rich quadrant in front of them and partici-
pants with a target-rich quadrant behind them. Similar to 
the present findings, the participants in Jiang et al. (2014) 
showed a significant LPL effect during training only when 
the rich quadrant appeared in front of them.

The pattern of RT results is analogous between Jiang 
et  al. (2014) and the present study, but there are some 
interesting differences in the pattern of the head turn 
data. In Jiang et al. (2014), participants developed a habit 
of turning their head in the direction of the target-rich 
quadrant over the course of the experiment. Although we 
observed LPL in RT in participants with a rich quadrant 
in front of them, those participants did not tend to turn 
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their head in the direction of the rich quadrant. The exact 
reasons for the difference in head turn results are unclear, 
but several factors may have contributed to the findings. 
First, the search stimuli were different between the two 
studies. Jiang et al. (2014) asked participants to search for 
a single coin on the ground. Although the coin was small 
and difficult to find within the visual  noise of the con-
crete ground, it did not involve search for a target among 
discrete distractors as in the present study. This may have 
changed search behavior. In fact, the latency for the first 
head movement was considerably longer in the outdoor 
task (Won et al. 2016; mean 561 ms) than in the current 
study (~ 430  ms). It is possible that participants in the 
outdoor task turned their heads after they had spotted 
the target on some trials.

Another notable distinction between participants’ 
behavior in Jiang et al. (2014) and the present study that 
could have influenced head turns is that participants 
actively walked around the search space in Jiang et  al. 
(2014), while they remained mostly stationary in the 
present study. In both cases, participants were allowed 
to wander throughout the search space, but participants 
rarely did so in VR—they tended to rotate, rather than 
walk around during search, as is frequently observed in 
VR contexts (Pausch et al. 1996). The tendency to remain 
stationary, and the evident lack of navigational planning, 
may have precluded the formation of certain motor-
related habits. Experimentally induced movement, even 
in terms of required rotation or navigation, may increase 
the likelihood that statistical learning effects would be 
expressed in the pattern of head turns at the start of a 
search trial. Future research should be done to identify 
the factors that lead to expression of LPL in head-turn 
tendencies, as opposed to or in addition to RT effects.

Another distinction between the present study and 
prior studies on LPL is the lack of an RT bias for the high-
probability quadrant in the testing phase. Might the lack 
of persistence indicate a lack of probability learning, with 
the bias observed in the training phase reflecting repeti-
tion priming effects? Further analysis suggests that rep-
etition priming cannot explain the quadrant effects. In 
our study, the bias in the training phase existed indepen-
dently of repetition priming effects, with the effect per-
sisting when quadrant-repeat trials were removed. The 
lack of the effect in the testing phase then is likely attrib-
utable to one of two other factors. First, the relatively 
small number of training trials may have reduced the 
persistence of LPL. Typically, LPL studies include hun-
dreds of training trials. Due to fatigue effects caused by 
virtual reality, the present study was limited to 144 train-
ing trials. This may have made the bias more susceptible 
to interference from the new, even statistical distribution 
in the testing phase.

Second, in typical computerized LPL studies, search 
can be accomplished using only oculomotor move-
ments. In the present study, search required both 
oculomotor movements and head movements, with 
the possibility of body movements as well. This may 
increase the difficulty of maintaining search biases 
in the absence of reinforcement, as procedural hab-
its across many different systems must be maintained 
for an RT bias to persist. This may also have made it 
more difficult to detect search biases in RT alone. Con-
sidering these potential influences alongside the lack of 
dependence on repetition priming, our findings in the 
training phase likely do represent statistical learning, 
with the effect simply being more fragile and suscepti-
ble to interference in the testing phase than is typically 
observed in other LPL studies with longer training and 
simpler computerized search.

Some previous studies have observed spatial statistical 
learning in 3D environments, but these studies examined 
contextual cueing, rather than LPL (Marek and Pollmann 
2020; Shioiri et  al. 2018; Zang et  al. 2017). Shioiri et  al. 
(2018) tested contextual cueing in 3D by asking par-
ticipants to sit in the center of a circle of six monitors, 
each of which contained search stimuli. Participants 
were asked to find the letter T among letter Ls, and the 
search arrays repeated on some trials. On those repeated 
arrays, the positions of all of the distractors on all of the 
monitors and the target position repeated. As in previous 
research on contextual cueing in 2D, participants were 
faster at finding the target on repeated displays than on 
novel displays, showing that attention was guided by the 
learned association between the distractor array and the 
target location. Crucially, this RT benefit of display rep-
etition was observed even for displays where the target 
appeared behind the participant, outside of their initial 
field of view.

Marek and Pollmann (2020) took this line of experi-
mentation further and tested contextual cueing in 3D vir-
tual environments, much like we have done in the present 
study on LPL. Like Shioiri et al. (2018), Marek and Poll-
mann observed a contextual cueing effect that was pre-
sent even when the target was outside of the initial field 
of view. Although the studies that observed intact con-
textual cueing in 3D search spaces did use simple stim-
uli that controlled for the influence of visual complexity, 
contextual cueing represents a form of visual statistical 
learning that may be mechanistically distinct from LPL 
(see Sisk et  al. 2018, 2019). Contextual cueing involves 
learning of associations between the locations of dis-
tractors and the target’s location, whereas LPL involves 
repeated shifts of attention to one region of space across 
many search trials. The distinction between the two types 
of visual statistical learning is particularly relevant in the 
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context of a transition to a 3D search space. Contextual 
cueing, which relies on memory for the relative positions 
of the distractors and target, may be particularly robust 
to changes in the local search space that occur as one 
turns and reorients during search. This is because regard-
less of one’s orientation, the association between the dis-
tractor array and the target location is maintained. LPL, 
on the other hand, requires a consistent search pattern 
that may be disrupted by the turning and reorienting that 
occurs during search in 3D environments.

The present findings support this possibility, dem-
onstrating an absence of LPL in participants who fre-
quently had to turn around and reorient in order to 
find the search target. It is worth noting that both par-
ticipants with a target-rich quadrant in front and those 
with a target-rich quadrant in back had to turn around 
during search frequently, so reorientation during search 
does not inherently interfere with LPL. However, partici-
pants with a rich quadrant behind them had to reorient 
more frequently, and more crucially, they had to reorient 
before finding the target and coding its location. Partici-
pants with a rich quadrant in front of them often found 
and identified the target without having to turn and 
reorient, so its coding was consistent—if the target-rich 
quadrant was to their upper right when they began the 
trial, it was still to their upper right when they found the 
target. Participants with a rich quadrant in back, how-
ever, had to turn their bodies before finding the target in 
the rich quadrant, since the rich quadrant was not within 
their starting fields of view. If the target-rich quadrant 
were behind them and to the right, they may sometimes 
turn 90° to the right and find the target in the rich quad-
rant in a position that is in their upper right visual field. 
Other times, however, they may turn 180º to the left and 
find the target in the rich quadrant in a position that is in 
their upper left visual field. Thus, it is not the simple fre-
quency with which one reorients across all search trials 
that disrupts LPL—it is primarily the inconsistency of the 
rich quadrant’s position relative to the participant when 
they find the target there. If participants were required to 
turn in the same direction on every search trial, we may 
expect those with rich quadrants behind them to show an 
emergence of LPL. However, the lack of LPL in the test-
ing epoch when the probability distribution was even, 
even in participants with a target-rich quadrant in front 
of them, may suggest that the frequency of reorienting 
does interfere with expression of LPL after learning has 
occurred.

Alternatively, some evidence suggests that the lack of 
learning in those with a rich quadrant behind them is 
related to the tendency to rely on perception, rather than 
memory, in search tasks in which some items appear out-
side of the initial field of view. Oliva et al. (2004) found 

that in panoramic search, participants tended to search 
among visible objects first, rather than using memory 
for the location of objects in familiar environments to 
guide them directly to the search target that was out of 
the initial field of view. Other studies have also found that 
participants tend to minimize reliance on memory dur-
ing search, in favor of perceptually guided search (Ballard 
et al. 1995; Droll and Hayhoe 2007; O’Regan 1992).

This tendency to rely on perception before resorting 
to memory may interfere with either the acquisition or 
expression of LPL in those with a rich quadrant behind 
them. Searching for the target when it frequently appears 
behind a participant may interfere with the coding of the 
location of the rich quadrant, making it more difficult 
to acquire LPL. It may also interfere with the expression 
of LPL, as participants may be slowed by their procliv-
ity for searching for the target in front of them first and 
their over-reliance on potentially misleading visual cues, 
effectively masking the LPL effect. This may explain why 
those with a rich quadrant behind them were numeri-
cally slower at finding the target when it appeared 
behind them than those with a rich quadrant in front 
of them. It may also have contributed to the lack of an 
LPL effect in the testing phase, whereby even those who 
had been trained with a rich quadrant in front of them 
were slowed by their tendency to rely on visual informa-
tion, rather than memory. However, those with a rich 
quadrant in front of them did appear to rely on memory 
during search, as demonstrated by the significant LPL in 
that group, so search was not entirely guided by percep-
tual cues, even in the group that frequently had access to 
a perceptual view of the target. Regardless, this tendency 
to rely on perception, rather than memory, represents an 
additional computational challenge to LPL in 3D search 
environments where targets can appear either in front of 
or behind one’s starting position.

Using a controlled, visually sparse 3D search space, 
the present study provides important insights into the 
mechanisms underlying LPL in real-world search envi-
ronments by controlling for the influence of rich envi-
ronmental cues. These findings show the importance of 
consistent egocentric coding and consistent search pat-
terns in acquiring and expressing LPL. This suggests that 
attempts to harness the robust, powerful nature of spa-
tial statistical learning in real-world search scenarios may 
be limited by the locations of frequent target locations, 
consistency of search direction, and informed, consistent 
use of complex environmental cues. Future work must 
be done to establish a set of necessary and sufficient con-
ditions for LPL to occur in large-scale, 3D search envi-
ronments and to determine the conditions under which 
training in one setting can transfer to another. The pre-
sent study provides a baseline by which to compare the 
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effects of added visual cues, forced consistent search pat-
terns, and changes in the characteristics of the search 
space.

Next steps
The empirical scope of this paper is limited by the neces-
sity of in-person data collection for search in virtual real-
ity and the impossibility of conducting in-person testing 
during the ongoing COVID-19 pandemic. However, we 
believe this paper provides an important baseline that 
will be useful to researchers exploring this new genre of 
visual search in large-scale 3D environments once in-per-
son testing can resume.

First, future studies should explore the influence of 
varied starting positions and orientations on the effects 
observed here. Before in-person testing was halted, we 
collected preliminary data in two conditions: one in 
which the participant’s starting orientation changed ran-
domly from trial to trial while the rich quadrant’s loca-
tion in room coordinates remained constant (allocentric 
learning condition) and one in which the participant’s 
starting orientation changed while the rich quadrant’s 
location relative to the starting orientation on each trial 
remained constant (egocentric learning condition). While 
we have been unable to collect enough data to report in a 
published manuscript, our data thus far showed evidence 
of learning in the egocentric learning condition, but only 
for those with a target-rich quadrant in front of them. 
No evidence of learning was observed in the allocentric 
learning condition. This finding suggests that rich loca-
tions may be coded in an egocentric reference frame, 
though further data collection is needed to confirm this 
finding.

Second, future research should explore the influence of 
rich visual environmental cues on learning. One potential 
reason for why we did not observe learning for those with 
a rich quadrant behind them in the present study but 
Jiang et al. (2014) did find a larger (though still not sig-
nificant) effect in that group could be the presence of rich 
visual environmental cues in the latter study. We created 
an experiment that is identical to the one presented here 
except for the addition of a visually rich environment 
surrounding the search space. The data from four par-
ticipants resemble the findings observed here, with no 
evidence of learning in the group with the rich quadrant 
behind them. However, during testing it became clear 
that participants did not pay attention to the visual envi-
ronment, as it simply surrounded the search space and 
did not have any bearing on search itself. In fact, some 
participants noted more than halfway through testing 
that they had just realized that there was a visual envi-
ronment surrounding the floor of the search space. It will 

be important to create experimental settings in which the 
visual details surrounding the search space are integrated 
with the search space, and not automatically filtered out.

Finally, future research should further enhance the 
3D nature of search. In the present experiment, all 
search items appeared on the floor. Thus, although the 
search environment was 3D, and search required par-
ticipants to search behind them, the locations of search 
items only varied across two dimensions. It will be 
important to conduct an experiment where the loca-
tions of search items vary across all three dimensions, 
appearing at different heights as well as at different 
locations across the ground plane.

While inclusion of these planned experiments in the 
present report would have been ideal, we believe that 
this study is important and potentially influential in 
establishing a baseline on which these future experi-
ments can build. Location probability learning is a 
powerful effect that is robust to aging, cognitive load, 
and serious neurological disorders. It therefore has the 
potential to greatly improve search efficiency in many 
real-world search tasks, if the proper training can be 
provided. In order to utilize location probability learn-
ing in real-world search, however, researchers must first 
understand i) the capacity of the effect in 3-dimensional 
search environments and ii) the factors that modulate 
this kind of visual statistical learning in 3-dimensional 
search environments. The present study provides a cru-
cial baseline by exploring location probability learning 
in 3-dimensional search spaces while controlling for 
confounding factors like complex visual cues or land-
marks. The observation that location probability learn-
ing is weaker when targets most often appear behind a 
person is critical in considerations of location probabil-
ity learning in real-world contexts, as many real-world 
search contexts involve search of space outside of one’s 
initial field of view. Future research may focus on iden-
tifying the factors that allow participants to overcome 
this limitation of location probability learning while 
maintaining the implicit, habitual nature of location 
probability learning that likely underlies its resistance 
to aging, cognitive load, and neurological disorders.
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