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The effect of expertise, target usefulness 
and image structure on visual search
Samuel G. Robson1*  , Jason M. Tangen1 and Rachel A. Searston2

Abstract 

Experts outperform novices on many cognitive and perceptual tasks. Extensive training has tuned experts to the most 
relevant information in their specific domain, allowing them to make decisions quickly and accurately. We compared 
a group of fingerprint examiners to a group of novices on their ability to search for information in fingerprints across 
two experiments—one where participants searched for target features within a single fingerprint and another where 
they searched for points of difference between two fingerprints. In both experiments, we also varied how useful the 
target feature was and whether participants searched for these targets in a typical fingerprint or one that had been 
scrambled. Experts more efficiently located targets when searching for them in intact but not scrambled fingerprints. 
In Experiment 1, we also found that experts more efficiently located target features classified as more useful com-
pared to novices, but this expert-novice difference was not present when the target feature was classified as less 
useful. The usefulness of the target may therefore have influenced the search strategies that participants used, and 
the visual search advantages that experts display appear to depend on their vast experience with visual regularity 
in fingerprints. These results align with a domain-specific account of expertise and suggest that perceptual training 
ought to involve learning to attend to task-critical features.
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Significance statement
In the forensic sciences, decisions about the source of a 
handwriting sample, cartridge case, shoe print or finger-
print rest on the perceptual judgments of human exam-
iners. These decisions are often highly consequential, yet 
we lack a comprehensive scientific understanding of the 
nature and acquisition of perceptual expertise in these 
domains. Criticisms about the reliability and validity of 
the forensic sciences have prompted efforts to under-
stand the nature of forensic pattern matching expertise, 
including in fingerprint examination. Fingerprint exam-
iners can accurately distinguish fingerprints originating 
from the same source and those originating from differ-
ent sources, but what cognitive mechanisms underlie this 
ability? In this study, we use fingerprint examination as 

a case domain to investigate how well perceptual experts 
can search for features in domain-relevant tasks and how 
experts differ from novices. We found that examiners 
search efficiently for useful fingerprint features, but not 
less useful features, nor features in scrambled fingerprint 
images. It may follow that judgments made by perceptual 
experts are valid only in the domain with which they have 
had considerable practice. Effective training may also rely 
on developing a sensitivity to the most useful features in 
one’s particular domain.

Background
Many experts possess extraordinary perceptual and 
cognitive abilities for stimuli specific to their domain 
of practice. Medical diagnosticians, for example, can 
rapidly detect whether a chest radiograph contains an 
anomaly (Carrigan et al., 2019; Kundel & Nodine, 1975) 
or whether a mammogram is abnormal (Brennan et  al., 
2018; Carrigan et  al., 2018; Evans et  al., 2013). Feats of 
expertise like these exist in many fields (e.g., Abernethy, 

Open Access

Cognitive Research: Principles
and Implications

*Correspondence:  s.robson@uq.edu.au
1 School of Psychology, The University of Queensland, St Lucia 4072, QLD, 
Australia
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-2777-9347
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s41235-021-00282-5&domain=pdf


Page 2 of 19Robson et al. Cogn. Research            (2021) 6:16 

1991; Gobet & Simon, 1996; Thompson & Tangen, 
2014). To accurately and consistently determine the most 
appropriate response in tasks of this sort requires an abil-
ity to detect, locate and evaluate stimulus features (Seitz, 
2020). A sensitivity to useful features may help to explain 
why experts perform so well on these tasks relative to the 
general population. In this study, we use visual search 
tasks to explore whether experts are more sensitive than 
novices to useful features (as opposed to less useful fea-
tures) and whether any such advantage extends to stimuli 
that are unrelated to the experts’ specific domain.

Over many hours of training, individuals accumulate 
an extensive visual memory for category instances. In 
doing so, they typically develop an implicit appreciation 
for how visual features tend to co-occur and how cues 
or patterns relate to different response options (Brooks, 
2005; Brunswik, 1955; Chase & Ericsson, 1982; Klein, 
2008; Tanaka et al., 2005; Wiggins et al., 2014). Individu-
als can also learn to use cue-based associations from 
memory to make decisions quickly and accurately—a skill 
known as cue utilization (Lansdale et al., 2010; Sturman 
et al., 2019). For instance, the location of two objects on 
a screen and their relative trajectory may signal to an air-
traffic controller that a change of course is needed (Loft 
et  al., 2007). When using cues effectively, viewers rap-
idly attend to a small number of highly relevant features 
to arrive at accurate decisions, which has the benefit of 
reducing cognitive load (Brouwers et al., 2016; Carrigan 
et al., 2020; Curby & Gauthier, 2007; Curby et al., 2009; 
Sturman et  al., 2019). With this skill, experts tend to 
become sensitive to the most useful features of a domain 
and diverge from novices in what they perceive as sali-
ent (e.g., Carrigan et al., 2019). Eye-tracking studies, for 
example, have demonstrated that medical diagnosti-
cians are quicker to fixate on abnormalities in medical 
images than novices, and spend more time dwelling on 
anomalous regions (Krupinski, 1996; Krupinski et  al., 
2013; Kundel et al., 1978; van der Gijp et al., 2017). Simi-
lar expert-novice differences in attention exist in sev-
eral other applied domains (Mann et al., 2007; Maturi & 
Sheridan, 2020; Reingold et  al., 2001; Sheridan & Rein-
gold, 2014; Ziv, 2016). But do the visual advantages that 
experts possess extend beyond their domain of formal 
training?

Visual search comprises two stages, the first of which is 
nonselective, global or holistic, and occurs when a viewer 
extracts the image statistics or ‘gist’ of a scene (Drew 
et  al., 2013; Hoffman, 1979; Kundel et  al., 2007; Swens-
son, 1980; Torralba et al., 2006; Wolfe, 1994; Wolfe et al., 
2011). During this initial stage, a viewer gleans the global 
context of the scene or image where a target is located, 
and this context guides attention to regions of interest. 
Attention can be involuntarily drawn to salient colors and 

shapes, but also guided based on the expectations and 
experience of the viewer (Boot et  al., 2009; Itti & Koch, 
2001; Wolfe, 2020; Wolfe & Horowitz, 2017). For exam-
ple, if searching for a pen, our attention will be drawn 
toward a horizontal surface like a desk because our expe-
riences with objects and scenes of this sort indicate that it 
is the likely place for such an object to be located (Wolfe 
et al., 2011).

Similarly, an expert’s refined cognitive representa-
tion for the statistical regularities of their domain—how 
features tend to appear and co-occur—will guide them 
to particular locations (Chun & Jiang, 1998; Jiang et  al., 
2013; Torralba et  al., 2006; Wolfe et  al., 2011). A quick 
glance at a medical image, for instance, will cue a radi-
ologist toward a suspicious mass because the anatomi-
cal context sets up location priors about where such an 
abnormality is likely to be (Carrigan et  al., 2019). The 
context of a target is therefore critical to how attention 
is guided and to an expert’s sensitivity to useful features. 
Disrupting this global structure may then inhibit an 
expert’s performance.

Many perceptual and cognitive advantages that experts 
possess are in fact domain-specific (Carrigan et al., 2019; 
Chase & Simon, 1973a, b; Curby et al., 2009; Diamond & 
Carey, 1986, McKeeff et al., 2010; Memmert et al., 2009; 
Nodine & Krupinski, 1998; Richler et  al., 2011; Sims & 
Mayer, 2002). Expert chess players, for example, dem-
onstrate better recall than novices for briefly presented 
arrangements of chess pieces, but only when the pieces 
are configured in a typical game-like manner (Chase 
& Simon, 1973a, b; de Groot, 1965). When these pieces 
are randomized, an expert’s recall advantage disappears. 
Chess masters also attend to the most critical pieces 
and positions on a chess board when typical game sce-
narios are presented, but not when the pieces are placed 
in random positions (Bilalić et al., 2012;  Reingold et al., 
2001; Sheridan & Reingold, 2014). The implication of this 
research is that chess masters can mentally group pieces 
as ‘chunks’ because they have developed a refined cogni-
tive representation for how chess pieces tend to appear 
and cluster together (Chase & Simon, 1973a, b; Gobet & 
Simon, 1996). Chess masters can therefore encode, store 
and retrieve large amounts of information by memoriz-
ing it in a way that is coherent and familiar. When the 
typical chess board configuration is scrambled, on the 
other hand, a fine-tuned appreciation for patterns of 
chess pieces cannot aid recall because the way the board 
is arranged no longer bears any resemblance. Many per-
ceptual and cognitive skills that experts have are highly 
dependent on domain-specific knowledge of visual struc-
ture in much the same way.

There are, however, skills that appear to generalize 
beyond narrow fields of formal training (see Cain et al., 
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2012; Carrigan et al., 2020; Green & Bavelier, 2003, 2006; 
Sowden et al., 2000; Sunday et al., 2018). Perhaps experts 
in some fields are selected for because they possess above 
average general perceptual abilities, or perhaps their 
training has granted them skills that apply to a broad 
range of stimuli and tasks. In fact, a measure of domain 
general visual expertise—the Novel Object Memory Test 
(NOMT)—has been designed and validated in several 
studies (Sunday et  al., 2018; Carrigan et  al., 2020). It is 
unclear whether a sensitivity to useful features, and the 
ability to search for them, is domain-specific or driven 
by more general pattern recognition capacities. In the 
present study, we use fingerprint examination as case 
domain to examine whether experts are more sensitive 
to useful features than novices and whether this sensi-
tivity is domain-specific or domain general. Below we 
describe this field before outlining our experiments and 
hypotheses.

Fingerprint examination
Fingerprint examiners spend significant portions of their 
working day looking at and comparing fingerprints to 
determine whether they match. Many of these examiners 
work in this field for many years. For example, the aver-
age experience among 36 examiners reported by Tan-
gen et  al. (2020) was 16.4  years. Fingerprint examiners 
in Australia—where we conduct most of our research—
undergo five years of training. To be accredited as an 
examiner by the Australian Forensic Science Assessment 
Body (AFSAB), they must then pass a final multi-day test 
of their abilities. Accredited examiners also apply for 
recertification every five years where they receive further 
assessments of their competency (AFSAB, 2019).

Examining and comparing highly structured finger-
print impressions for several hours every day suggests 
that these examiners ought to be able to determine 
whether two fingerprints match. Several experiments 
demonstrate that these examiners are more accurate than 
chance and novice controls at discriminating whether 
two prints match (e.g., Tangen et  al., 2011; Thompson 
et  al., 2013). Examiners also possess many other non-
analytic, fingerprint-related abilities (e.g., matching dif-
ferent fingerprints from the same hand based on ‘style’ or 
matching prints that are heavily clouded in noise; Sear-
ston & Tangen, 2017b; Thompson & Tangen, 2014). In 
collaborating with these examiners for several years, it 
became apparent that one under-explored aspect of a fin-
gerprint examiner’s expertise is their visual search ability. 
For example, the traditional method for identifying fin-
gerprints has been described as a careful comparison of 
fingerprint features in two different fingerprint impres-
sions (Ashbaugh, 1999); examiners are typically said to 
select a small cluster of features in one print and search 

for this cluster, or any deviations from it, in a comparison 
print.

In the present study, we investigate the visual search 
skills of fingerprint examiners across two tasks. The first 
task assesses the ability to spot corresponding features 
(Experiment 1), and the second assesses the ability to 
spot differences (Experiment 2). Like other experts, fin-
gerprint examiners appear sensitive to the more useful 
features within fingerprints; examiners and novices often 
consider different kinds of features to be useful (Robson 
et al., 2020), and examiners, more so than novices, tend 
to constrain their attention to fewer but more distinctive 
regions (Roads et al., 2016). In these two experiments, we 
will examine whether professional examiners are more 
sensitive to useful fingerprint information, in which case 
they ought to be more efficient than novices at locat-
ing useful features and changes (but not less useful fea-
tures/changes). We will also examine whether any expert 
advantage in searching for useful features is limited to 
fingerprints or whether it persists even when the finger-
prints in the task are scrambled. Vogelsang et al. (2017) 
have demonstrated that examiners process upright fin-
gerprints very efficiently, but not so when the prints 
are inverted. Similarly, if a sensitivity to useful features 
is domain-specific, then scrambling a fingerprint may 
severely diminish an examiner’s ability to locate informa-
tion because the structure of the print can no longer effi-
ciently guide their search.

Experiment 1
In Experiment 1, we designed a ‘Find-the-Fragment’ task 
to investigate whether expert fingerprint examiners are 
more efficient than novices at locating features within 
prints. In their work, examiners routinely select a small 
cluster of features in one print and search for this group 
within the vast array of ridge detail in a comparison print. 
Such a task resembles the classic visual search paradigms 
where participants locate a target (e.g., a green X) among 
a jumble of other shapes and colors (Treisman & Gelade, 
1980). Similarly, the Find-the-Fragment task that we use 
in Experiment 1 instructs participants to locate a small 
‘fragment’ of ridge detail within a larger fingerprint image 
as quickly as possible.

Tasks of this sort have been used in previous stud-
ies of visual search in applied domains. For example, 
Maturi and Sheridan (2020) used eye-tracking meth-
ods to compare how well expert and novice musi-
cians could match a small section of musical score to 
its corresponding counterpart in a larger music score. 
Expert musicians were more accurate, spent longer 
looking at relevant regions, and returned to the target 
feature less often than non-musicians. Hicklin et  al. 
(2019) also created a similar visual search task with 
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fingerprint materials. They presented a target template 
either without any visual context or within the context 
of a fingerprint and instructed participants to search 
for the target in a second print. Examiners more eas-
ily spotted target features when presented with con-
text, but Hicklin and colleagues made no comparison 
between experts and novices in their study. Building on 
this work, we examine how expertise, target usefulness 
and image structure affect visual search. Specifically, we 
compare fingerprint examiners to novices on a finger-
print-like visual search task and manipulate both how 
useful the target features are and the structure of the 
image that participants search for these targets in.

As we have  outlined, perceptual experts show signs 
that they are more sensitive to diagnostic cues within 
their domain, resulting in superior performance com-
pared to novice participants. However, the superior 
capabilities of many experts diminish when the subject 
matter, such as a fingerprint, is changed or disrupted. 
An expert’s expectations about where useful features 
might be located within a fingerprint may no longer 
facilitate search if the spatial layout or context that typ-
ically cue attention to useful features are not present. 
We therefore hypothesize that examiners will outper-
form novices on the Find-the-Fragment task only when 
locating useful fragments within intact fingerprints. 
In essence, we predict a three-way interaction where 
the groups differ  in the useful-intact version of the 
task, but not in any of the other conditions. Prior work 
comparing fingerprint examiners and novices reveals 
large expert-novice effect sizes (e.g., Tangen et al., 2011; 
Thompson & Tangen, 2014) and thus we expect the 
effect of expertise in this critical  condition to be large 
as well.

Method
Preregistration
All methods, materials, event sequences, experimental 
code, sensitivity analyses, hypotheses and planned analy-
ses were preregistered on the Open Science Framework 
prior to collecting data. The preregistered project can be 
found here: https​://osf.io/azesx​.

Participants
Experts In total, we collected data from 44 fingerprint 
examiners who are accredited in their jurisdiction and 
court practicing. We originally planned to collect data 
from at least 30 participants, which provided sufficient 
power to (> 0.9) to detect a medium effect size for all 
planned analyses, but we intended to collect data from 
as many experts as possible. Every participant completed 
this experiment as well as Experiment 2 along with a suite 
of other tasks presented in a randomized order during 
the same testing session. These other tasks address dif-
ferent research questions beyond the scope of this paper.

Novices We collected data from 44 novice participants 
that were age (± 2 years), gender and education matched 
to each of the expert participants (see Table 1). We yoked 
each novice to their matched expert ‘twin’ such that they 
were shown identical event sequences and completed 
each task in the same order. These novices had no for-
mal experience with fingerprint examination and were 
recruited from the University of Adelaide, The Univer-
sity of Queensland, and Murdoch University communi-
ties, and some from the general public. To recruit novices 
who were motivated to perform well, we compensated 
them with 20 Australian dollars per hour of their time. 
They were also given an additional $5 if they could reach 
or surpass the performance of their expert ‘twin’ in the 
task.

Design
We employed a 2 (Expertise: expert, novice; between 
subjects) × 2 (Target: more useful, less useful; within 
subjects) × 2 (Structure: intact, scrambled; within sub-
jects) mixed design ‘yoked’ to expertise. Participants in 
each of the 48 trials saw a small fragment of fingerprint 
detail presented on the left of the screen and a larger 
fingerprint image (the array) on the right. They were 
instructed to click where they thought the smaller frag-
ment was located in the larger array (see Fig. 1). Half of 
the trials instructed participants to locate ‘more useful’ 
target fragments and half required them to locate ‘less 
useful’ fragments. Half of the trials also instructed par-
ticipants to find these target fragments within intact, 
unaltered fingerprint images and half required them to 

Table 1  Demographic details of the expert and novice participants

Each novice participant was age-matched, gender-matched and education-matched with an expert participant

Experts Novices

Age M = 43.6 (SD = 8.41, range 29–60) M = 43.6, (SD = 8.69, range 30–62)

Reported gender 25 females, 19 males 25 females, 19 males

Education 3-year undergraduate degree (min) 3-year undergraduate degree (min)

Professional experience (years) M = 14.9 (SD = 7.75, range 5–40) M = 0 (SD = 0)

https://osf.io/azesx
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Fig. 1  A schematic diagram of the Find-the-Fragment task used in Experiment 1. On the left, we provide an example of each of the trial types: the 
array fingerprint was either an intact fingerprint or scrambled, and the target feature was either a ‘more useful’ feature (a), or ‘less useful’ feature 
(b). When generating the scrambled fingerprints, we kept the location and appearance of the fragments identical to those in the intact prints. The 
correct locations of the fragments for each example are displayed on the right
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locate fragments within scrambled prints. We controlled 
for the target fragment’s location and appearance across 
the intact and scrambled conditions by keeping these 
unchanged when creating the scrambled images.

Materials
Intact array images We used 72 of the 100 fingerprint 
images used in Robson et al.’s (2020) study that we con-
sidered to be clearest and least noisy. Of these finger-
prints, 26 were latent prints—impressions left under 
uncontrolled conditions (to resemble crime-scene 
prints). The other 46 were tenprints—fingerprints col-
lected under controlled conditions using ink and rolled 
from nail to nail. Each image had been cropped such that 
the entire image was filled with ridge detail (750 × 750 
pixels).

Fragment images To generate the ‘more useful’ and ‘less 
useful’ target fragments, we used data collected in a pre-
vious study (Robson et al., 2020) where we asked experts 
and novices to mark a feature that they considered to be 
most useful if they were to distinguish the fingerprint 
from other prints, and also to mark a feature that they 
considered least useful. We observed that features clas-
sified as useful by fingerprint examiners tend to include 
aspects such as the core (i.e., the center of the finger-
print), the delta (i.e., a Y-shaped structure where two 
parallel ridges diverge, as depicted in Fig.  1) and other 
smaller discontinuities in a print, such as ‘ridge end-
ings’ and ‘lakes’ (Robson et al., 2020). Features identified 
as less useful included unremarkable sections of ridge 
detail, smudges and areas lacking clarity. We used these 
spatial judgments as center points to generate thousands 
of circular fragments with various radii. In a pilot experi-
ment (preregistered here: https​://osf.io/3g4e7​), we pre-
sented novices with a version of the Find-the-Fragment 
task where the target fragment gradually increased in 
size every five seconds. Participants were 50% correct 
when locating fragments that were 1.45% of the area of 
the larger fingerprint. We used this fragment size in the 
present study because 50% performance was equidistant 
from floor and ceiling, and therefore seemed appropri-
ately difficult. We randomly sampled eight ‘more useful’ 
fragments and eight ‘less useful’ fragments of this size 
from each of the 72 fingerprints in this experiment, a 
total of 1152 possible combinations.

Scrambled images The purpose of the scramble was to 
remove the fingerprint-like structure of the images while 
retaining low-level visual properties and the location and 
appearance of the fragments. We generated 16 differ-
ent scrambled versions of the 72 intact fingerprints (one 
for each of the randomly sampled fragments). We dese-
lected the area where the fragment was located, deleted 
and replaced one quadrant of the print with alternative 

information using Photoshop’s Content Aware Fill tool.1 
We continued this process for the other three quadrants 
moving around clockwise until the entire image was 
scrambled, except for the fragment itself. We began the 
procedure in each of the four quadrants in equal number. 
In total, we created a pool of 1152 scrambled prints.

Measures
We measured performance on the Find-the-Fragment 
task using a speed–accuracy measure known as the Bal-
anced Integration Score (BIS; Liesefeld et al., 2015). BIS 
was devised to give equal weighting to both response 
time and accuracy. It is calculated by standardizing 
response time and accuracy for only the correct trials 
(incorrect trials are affected more by speed–accuracy 
trade-offs) to bring both to the same scale. One standard-
ized score is then subtracted from the other to provide 
each participant with a single speed–accuracy score for 
each condition. BIS is considered a robust measure of 
speed–accuracy because it is insensitive to individual dif-
ferences in speed–accuracy trade-offs (Liesefeld & Janc-
zyk, 2019). The average BIS in a dataset is zero and the 
standard deviation is one. Positive scores indicate perfor-
mance that is above the mean and negative scores indi-
cate scores that fall below the mean.

In our preregistration, we planned to compare experts 
and novices on the proportion of correct responses 
(accuracy) and their Rate Correct Score (RCS), which 
measures speed–accuracy as the proportion of correct 
responses per second (Woltz & Was, 2006). However, 
we have since discovered that the accuracy data did not 
adequately reflect performance, and RCS, while easy to 
interpret, has many limitations (see Liesefeld & Janczyk, 
2019; Vandierendonck, 2018). Nonetheless, data analytic 
scripts for each measure can be found here: https​://osf.
io/94zf6​.

Software
The video instructions and the task were presented to 
participants on a 13-inch MacBook Pro or MacBook Air 
laptop screen, with over-ear headphones. The software 
used to generate the trial sequences, present stimuli to 
participants and record their responses, was developed in 
the open source ‘Community Edition’ of LiveCode (Ver-
sion 9.5.1).

Procedure
Participants first read information about the project 
and watched an instructional video about the task with 

1  Content Aware uses an algorithm called PatchMatch to approximate nearest 
neighbor matches between image patches (small, square regions; Barnes et al., 
2009).

https://osf.io/3g4e7
https://osf.io/94zf6
https://osf.io/94zf6
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examples. They were then presented with their 48 ran-
domly sequenced Find-the-Fragment trials. After clicking 
the array, immediate feedback was provided. If partici-
pants made an incorrect click (they did not click where 
the fragment was located) they were presented with a 
red cross, a blue semitransparent circle highlighting the 
correct location (as shown in Fig.  1), and they heard a 
dull tone. However, if a participant correctly clicked on 
the fragment in the array, they saw a green tick, a blue 
semitransparent circle highlighting the correct location, 
and heard a bright tone. There was a 1500-ms window for 
the feedback to appear and then another 500-ms blank 
screen before the images on the next trial appeared. All 
images remained on the screen until the participant 
made a response, but a text prompt appeared during the 
inter-trial interval if participants took longer than 15 s to 
respond, with the message: ’Try to respond in less than 
15  seconds.’ A progress bar in the bottom right-hand 

corner of the screen was displayed to indicate how many 
trials had been completed and how many remained.

Results
In this experiment, accuracy data were not homogenous 
nor normally distributed in every cell. Because the tar-
get fragment was present on every trial and participants 
could inspect the images for as long as they desired, there 
was a ceiling effect in accuracy. Overall, the time spent 
making a decision was moderately correlated with accu-
racy, r(86) = 0.53, p < 0.001. This correlation was simi-
lar for within  experts, r(42) = 0.57, p < 0.001, and within 
novices, r(42) = 0.59, p < 0.001. We present the speed–
accuracy correlations for each condition in Fig. 2. Some 
participants clearly prioritized accuracy while others 
prioritized speed, so speed–accuracy is a more suitable 
measure of task performance.

Fig. 2  The correlations between speed and accuracy for each group across the four conditions in the Find-the-Fragment task. An asterisk (*) 
signifies a significant correlation (p < .05)
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Speed–accuracy (BIS)
The speed–accuracy data are presented in Fig.  3. We 
performed both a parametric analysis (three-way mixed 
factorial ANOVA) and nonparametric analysis (three-
way Aligned Rank Transform [ART] ANOVA; Wobbrock 
et  al., 2011) to analyze the BIS data because some cells 
were skewed or had heterogenous variances. The ART 
factorial approach aligns the data before applying aver-
aged ranks so that common ANOVA procedures can be 
used. We found the pattern of effects in both models to 
be equivalent, so we only report the parametric ANOVA 
here.

The 2 (Expertise) × 2 (Target) × 2 (Structure) mixed 
methods ANOVA did not reveal a significant three-
way interaction, F(1, 86) = 0.94, p = 0.334. However, 
the Expertise × Target interaction was significant, F(1, 

86) = 21.61, p < 0.001, η2
G = 0.055. Experts (M = 1.04, 

SD = 0.9) were better than novices (M = 0.16, SD = 1.15) 
at locating the more useful fragments, F(1, 174) = 32.49, 
p < 0.001, η2

G = 0.157, but there was no difference 
between the experts (M = − 0. 68, SD = 1.33) and novices 
(M = − 0.52, SD = 1.04) for the less useful target frag-
ments, F(1, 174) = 0.82, p = 0.367.

We also found a significant Expertise × Structure inter-
action, F(1, 86) = 8.06, p = 0.006, η2

G = 0.016. Experts 
(M = 0.42, SD = 1.48) were better at locating fragments in 
intact prints than novices were (M = − 0.22, SD = 1.26), 
F(1, 174) = 9.47, p = 0.002, η2

G = 0.052. However, the 
novices (M = − 0.15, SD = 1.02) performed as well as the 
experts (M = − 0.06, SD = 1.33) at locating target frag-
ments in scrambled prints, F(1, 174) = 0.23, p = 0.633.

Fig. 3  A visualization of the interactions for the speed–accuracy data (measured using Balanced Integration Scores) in the Find-the-Fragment 
task. We present the three-way interaction (left) comparing experts and novices for each fragment type for the intact trials (a) and scrambled trials 
(b). We also present all three two-way interactions (c–e). In all but panel e, the expert data are colored purple and the novice data yellow. Each 
participant’s individual performance is represented by the small circles, with grey lines connecting every expert to their yoked novice ‘twin’. The 
distributions depict the overlap in each group’s performance, the red error bars represent the confidence interval around each cell mean and a red 
line connects the group means for each cell. Panel E depicts the final two-way interaction comparing performance at finding more useful features 
(blue) and less useful features (orange) with each participant’s data connected by a grey line
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The Target × Structure interaction was also signifi-
cant, F(1, 86) = 9.34, p = 0.003, η2

G = 0.018. Participants 
were better at locating the more useful target frag-
ments (M = 0.85, SD = 1.02) than the less useful frag-
ments (M = − 0.65, SD = 1.28) during the intact trials, 
F(1, 87) = 95.95, p < 0.001, η2

G = 0.285. Experts were 
also better at spotting the more useful target fragments 
(M = 0.35, SD = 1.09) than the less useful fragments 
(M = − 0.56, SD = 1.11) during the scrambled trials, F(1, 
87) = 30.96, p < 0.001, but the effect size was smaller in 
comparison (η2

G = 0.147).

Exploratory analyses
Simple interactions We predicted that experts would per-
form better than novices solely when finding useful frag-
ments within intact fingerprints, but we did not find the 
expected three-way interaction that follows from this. 
We explored the results further by observing the simple 
interaction effects. As expected, there was an Expertise × 
Target interaction when observing solely the intact trials, 
F(1, 86) = 8.65, p = 0.004, η2

G = 0.036. Experts (M = 1.38, 
SD = 0.75) were better than novices (M = 0.32, SD = 1.13) 
at locating more useful target fragments in the intact 
prints, F(1, 86) = 27.23, p < 0.001, η2

G = 0.240. However, 
experts (M = − 0.54, SD = 1.40) performed similarly to 
novices (M = − 0.75, SD = 1.16) when locating less useful 
fragments in the intact prints, F(1, 86) = 0.57, p = 0.454. 
Unexpectedly, there was an Expertise × Target interac-
tion for the scrambled trials as well, F(1, 86) = 16.95, 
p < 0.001. Counter to our predictions, experts (M = 0.70, 
SD = 0.90) were better than novices (M = 0.00, SD = 1.16) 
at locating the more useful fragments in scrambled 
prints, F(1, 86) = 10.05, p = 0.002, η2

G = 0.105. Moreo-
ver, the novices (M = − 0.29, SD = 0.86) outperformed 
the experts (M = − 0.82, SD = 1.16) at locating less use-
ful target fragments in scrambled prints, F(1, 86) = 5.33, 
p = 0.023, η2

G = 0.058.
Correlating performance and experience When corre-

lating years of experience with performance on the Find-
the-Fragment task, we found no significant associations. 
Among experts, there was no correlation between their 
years of experience in fingerprint examination and their 
overall accuracy, r(42) = 0.05, p = 0.739, nor between 
years of experience and speed–accuracy, r(42) = − 0.19, 
p = 0.223. There was also no correlation between years 
of experience and accuracy when observing solely the 
useful-intact data, r(42) = − 0.14, p = 0.370, nor between 
years of experience and speed–accuracy for this cell, 
r(42) = 0.05, p = 0.755.

Discussion
In Experiment 1, we compared the performance of pro-
fessional fingerprint examiners to novices on a finger-
print-like visual search task. Our aim was to investigate 
whether any expert-novice differences in visual search 
depend on the usefulness of the target and the structure 
of the array image. We expected experts to outperform 
novices solely when locating useful target fragments in 
intact fingerprints. We did not find the expected three-
way interaction, but the findings nonetheless partially 
support our hypothesis. Overall, experts were better than 
novices at locating the more useful target fragments, but 
they performed like novices when locating the less use-
ful fragments. The examiners therefore appear highly 
sensitive to useful features, as has been demonstrated in 
many other domains of expertise (Carrigan et  al., 2019; 
Krupinski, 1996; Krupinski et al., 2013; Mann et al., 2007; 
Maturi & Sheridan, 2020; Reingold et  al., 2001; van der 
Gijp et al., 2017; Ziv, 2016). The vast amount of experi-
ence that examiners have accumulated over many years 
comparing highly structured prints has likely tuned them 
to the cues and features that are of greatest relevance for 
identifying fingerprints.

The fingerprint examiners also outperformed novices 
at locating fragments in intact fingerprints, but the two 
groups performed similarly when locating fragments 
in scrambled fingerprints. Our findings therefore align 
with other studies that have shown similar domain-
specific expert performance (e.g., Carrigan et  al., 2019; 
Chase & Simon, 1973a, b; Curby et al., 2009; Diamond & 
Carey, 1986, 2009; Sims & Mayer, 2002). It seems that an 
expert’s appreciation for visual regularity—or the context 
of a feature in an image—cues them to that target (Car-
rigan et al. 2019; Wolfe et al., 2011). When a fingerprint is 
scrambled, an expert’s familiarity with the typical spatial 
layout of a fingerprint can no longer guide their search 
as efficiently as it would when faced with a normal print. 
Participants, in general, also found it easier to locate the 
more useful fragments compared to the less useful frag-
ments, but the difference was greater on the intact trials 
compared to the scrambled trials. Scrambled prints may 
contain more discontinuities than intact prints because 
of the way they were generated, and perhaps salient fea-
tures are easier to locate in their typical context.

We did not find the three-way interaction that we 
expected because experts performed better than novices 
at searching for useful fragments not only in intact prints, 
but in scrambled prints as well. Examiners may have per-
formed relatively well even in this scrambled condition 
because the location of the fragment was kept constant 
between and experts could have surmised a fragment’s 
location based on where it is usually located in a typical 
fingerprint. For example, if they know that deltas tend 
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to appear in the bottom corners of a fingerprint, then 
they may also appear in the same location in a scrambled 
image. Alternatively, an expert’s visual search skills may 
be somewhat domain-general such that they are able to 
efficiently search for features even among novel stimuli. It 
is unclear, however, why a domain-general visual search 
ability would not also include an advantage searching for 
less useful features.

A more reasonable explanation for why experts per-
formed well when locating useful fragments within 
scrambled prints is a superior working memory for use-
ful features. During visual search, one must hold in mind 
the target feature and then find it in the array. Maturi and 
Sheridan (2020) have shown that when searching for a 
section of a musical score within a larger array, experts 
returned to the target feature far less than novices. 
Switching between target and array less frequently sug-
gests that experts have a richer working memory for the 
target feature than novices. Similarly, experts in our study 
may have been more efficient than novices when search-
ing for useful features even in scrambled fingerprints 
because they could hold more of the featural information 
in mind during the task. Perhaps efficiently searching for 
features depends both on the context of the target and a 
superior visual working memory for the target itself, and 
these two effects may be additive.

Experiment 2
In Experiment 1, we investigated how well domain 
experts and novices could locate points of correspond-
ence, whereas in Experiment 2, we investigate their 
ability to locate points of difference using the ’Spot-the-
Difference’ task. In this task, participants are instructed 
to spot differences between two otherwise identical 
images. While the Find-the-Fragment task is in many 
ways an adaptation of traditional visual search tasks, the 
Spot-the-Difference task resembles a comparative visual 
search task or static change detection task. Mirroring 
Experiment 1, we manipulate whether the target is more 
useful or less useful and whether participants search 
between intact prints or scrambled prints.

When comparing a latent fingerprint to a rolled print, 
examiners must seek out not only corresponding fea-
tures, but also any features that are different. The side-
by-side comparison inherent to the Spot-the-Difference 
task is therefore quite similar to what fingerprint exam-
iners routinely encounter in their everyday workflow. 
Moreover, processing alternative solutions or evaluating 
disconfirmatory evidence can aid problem solving more 
generally. For example, toggling back and forth between 
two misaligned images can improve a mammogra-
pher’s diagnostic accuracy (Drew et al., 2015). Detecting 

differences between prints may therefore be a distinct but 
critical skill that examiners possess.

As discussed in the introduction to this paper, per-
ceptual experts are highly sensitive to the most use-
ful domain-specific information, and their perceptual 
skills hinge on domain structure. Studies from change 
detection paradigms support these findings further. For 
instance, football players are more efficient than novices 
at detecting meaningful changes to football scenes (e.g., 
the ball being removed), but not less meaningful changes 
(e.g., a change to the referee’s glove) or changes to scenes 
unrelated to football (e.g., traffic scenes; Werner & Thies, 
2000). People are also better at identifying features and 
detecting changes to upright faces—an orientation that 
is familiar—far more readily than inverted or scrambled 
faces (Buttle & Raymond, 2003; Tanaka & Farah, 1993). 
We therefore anticipate a three-way interaction just as 
we did in Experiment 1. We expect fingerprint examiners 
to outperform novices, but only at spotting differences 
between useful features located in intact fingerprints, 
and we predict that the group difference in this condition 
will be large.

Method
Preregistration
All methods, materials, event sequences, experimental 
code, sensitivity analyses, hypotheses and planned analy-
ses were preregistered on the Open Science Framework 
prior to collecting data. The preregistered project can be 
found here: https​://osf.io/aphxg​

Participants
All 88 participants in Experiment 2 (44 experts and 44 
novices) were the same as in Experiment 1 because each 
participant completed both tasks in the same testing ses-
sion. Novices were compensated in the same manner as 
in Experiment 1.

Design, procedure and measures
The design, procedure and software used in Experi-
ment 2 were identical to Experiment 1 except for the 
nature of the task (see Fig.  4). On each of the 48 tri-
als, participants were presented with two identical fin-
gerprint images side-by-side, except for one change in 
the image on the right—a circular section we swapped 
out for alternative ridge information. Participants were 
instructed to spot this difference as quickly as they 
could. On half of the trials, the two images presented 
were two intact fingerprints, and in the other half, two 
scrambled fingerprints were presented. In addition, 
half the trials included a change made to a more use-
ful feature and in the other half of the trials the change 
had been made to a less useful feature. We kept the 

https://osf.io/aphxg
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Fig. 4  A schematic diagram of the Spot-the-Difference task used in Experiment 2. We provide an example of each of the trial types on the left: 
either two intact fingerprints were displayed or two scrambled prints, and the target change had been made to either a ‘more useful’ feature (a) or a 
‘less useful’ feature (b). When generating the scrambled fingerprints, we kept the location of the target change identical to those in the intact prints. 
The correct location of the change in each example is displayed on the right
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location of these changes equivalent when creating the 
scrambled images. For each trial, we measured accu-
racy and response time. We also use BIS as our meas-
ure of speed–accuracy for the same reasons outlined 
in Experiment 1, but all data analytic scripts for each 
measure can be found here: https​://osf.io/my28c​.

Materials
Intact images The 72 intact fingerprint images (750 × 
750 pixels) in this task were identical to the intact fin-
gerprints from Experiment 1. However, we also created 
altered versions of each print where we made a change 
to some feature. We used the more useful and less use-
ful points gathered by Robson et  al. (2020) as center 
points to generate circular changes of different sizes in 
each of the 72 intact prints. In each case, we deleted 
the selected area and replaced it with alternative infor-
mation using Photoshop’s Content Aware Fill tool. In a 
pilot study (https​://osf.io/3g4e7​), we gave 48 novices a 
Spot-the-Difference task where the size of the change 
gradually increased every five seconds. These novices 
could spot the change about 50% of the time when it 
was 3.71% the size of the image that it was located in. 
We used changes of this size as it was equidistant from 
floor and ceiling. For each of the 72 fingerprints, we 
created a pool of 16 altered images; eight had a change 
made to a more useful feature and eight had a change 
made to a less useful feature.

Scrambled images We generated a scrambled image 
for each of the 16 variants of every intact fingerprint. 
We scrambled them in the same way as we did in 
Experiment 1, except the area we kept unchanged was 
larger this time (3.71% the size of the image). In total, 
we generated 1152 scrambled prints (750 × 750 pix-
els). For each of the scrambled images, we also created 
an altered variant just as we did for each intact print.

Results
We found that participants who took more time to make 
a decision in the Spot-the-Difference task tended to 
be more accurate, r(86) = 0.50, p < 0.001. Among nov-
ices, accuracy and response time were positively cor-
related, r(42) = 0.68, p < 0.001, as well as among experts, 
r(42) = 0.36, p = 0.015. The speed–accuracy correlations 
for each condition are presented in Fig. 5. We only report 
on speed–accuracy here as it appears more suitable than 
accuracy as a measure of performance.

Speed–accuracy (BIS)
We performed a parametric test (three-way mixed meth-
ods ANOVA) and a nonparametric test (three-way mixed 
ART factorial analysis) on the BIS data. The pattern of 

effects was identical in both models, so we only report 
the parametric ANOVA here (see Fig. 6). Counter to our 
predictions, the 2 (Expertise) × 2 (Target) × 2 (Struc-
ture) mixed ANOVA revealed no significant three-way 
interaction, F(1, 86) = 0.912, p = 0.342. The Expertise × 
Target interaction was nonsignificant, F(1, 86) = 0.07, 
p = 0.790, and the Target × Structure interaction was 
also nonsignificant, F(1, 86) = 1.41, p = 0.239. However, 
there was a significant Expertise × Structure interac-
tion, F(1, 86) = 10.04, p = 0.002, η2

G = 0.025. Experts 
(M = 1.15, SD = 0.75) were better than novices (M = 0.3, 
SD = 0.89) at spotting differences between intact finger-
prints F(1, 174) = 49.98, p < 0.001, η2

G = 0.213, whereas 
experts (M = − 0.65, SD = 1.57) and novices (M = − 0.81, 
SD = 1.11) performed similarly at spotting differences 
between scrambled prints, F(1, 174) = 0.59, p = 0.445.

Exploratory analyses
Simple interactions We explored why we did not find 
the expected three-way interaction by observing simple 
interactions. We expected experts to outperform nov-
ices only when spotting changes to useful features in 
intact prints, but we found no significant Expertise × 
Target interaction for the intact trials, F(1, 86) = 0.35, 
p = 0.559. Experts (M = 1.28, SD = 0.71) were indeed 
better than novices (M = 0.49, SD = 0.96) at locat-
ing changes to more useful features in intact prints, 
F(1, 86) = 19.16, p < 0.001, and the effect was large 
(η2

G = 0.182). However, experts (M = 1.02, SD = 0.78) 
were surprisingly better than novices (M = 0.11, 
SD = 0.77) at locating changes to less useful features in 
intact fingerprints as well, F(1, 86) = 30.43, p < 0.001, 
and the effect was larger still (η2

G = 0.261). As expected, 
we found no significant Expertise × Target interac-
tion when observing only the scrambled trials, F(1, 
86) = 0.45, p = 0.506, Experts (M = − 0.32, SD = 1.18) 
and novices (M = − 0.59, SD = 1.05) did not differ at 
spotting changes to more useful features in scram-
bled prints, F(1, 86) = 1.36, p = 0.247, nor did experts 
(M = − 0.98, SD = 1.13) and novices (M = − 1.02, 
SD = 1.15) differ at locating changes to less useful fea-
tures in scrambled prints, F(1, 86) = 0.12, p = 0.912.

Correlating performance and experience We found no 
significant correlations between performance on the 
Spot-the-Difference task and years of experience as an 
examiner. Years of experience did not correlate with 
accuracy in the task, r(42) = − 0.25, p = 0.103, nor did 
years of experience and speed–accuracy, r(42) = − 0.27, 
p = 0.080. There was also no correlation between years 
of experience and accuracy in the useful-intact condi-
tion, r(42) = − 0.19, p = 0.205, nor years of experience 
and speed–accuracy for this condition, r(42) = − 0.28, 
p = 0.062.

https://osf.io/my28c
https://osf.io/3g4e7
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Discussion
In Experiment 2, we set out to compare fingerprint exam-
iners and novices on a fingerprint comparative visual 
search task. We also sought to understand how the use-
fulness of the target and the structure of the array affect 
performance. We expected that experts would outper-
form novices only at spotting useful changes to intact fin-
gerprints, but not in any other condition. We did not find 
the expected three-way interaction, but our results par-
tially support our hypothesis. Experts were indeed better 
than novices at locating differences between intact fin-
gerprints, but not scrambled prints. Their visual search 
abilities therefore do not appear to generalize beyond the 
stimuli that they have been exposed to in their formal 

training and everyday workflow. This finding lends sup-
port to a domain-specific account of perceptual expertise 
(Carrigan et  al., 2019; Chase & Simon, 1973a, b; Curby 
et al., 2009; Diamond & Carey, 1986, 2009; Sims & Mayer, 
2002) given that the experts’ perceptual advantages dissi-
pated when the familiar domain structure was scrambled.

Contrary to our expectations, experts and novices per-
formed similarly not only when spotting changes to use-
ful features, but also when spotting changes to less useful 
features. Because perceptual experts in many domains 
are more sensitive to the most useful features of their 
domain (Krupinski, 1996; Krupinski et  al., 2013; Mann 
et  al., 2007; Maturi & Sheridan, 2020; Reingold et  al., 
2001; van der Gijp et  al., 2017; Ziv, 2016), we predicted 

Fig. 5  The correlations between speed and accuracy for each group across the four conditions in the Spot-the-Difference task. An asterisk (*) 
signifies a significant correlation (p < .05)



Page 14 of 19Robson et al. Cogn. Research            (2021) 6:16 

that examiners would be more efficient than novices at 
spotting changes to highly relevant areas, but not to less 
relevant areas. This was not the case. However, the nature 
of the task may have forced examiners to approach the 
task differently to how they might approach their rou-
tine work. In reality, it is likely that examiners seek out 
clusters of features in one print and then see whether this 
cluster is also present or absent in a comparison print. In 
this scenario, examiners may pick out the set of features 
that will be most helpful for confirming or disconfirm-
ing whether the prints match. However, participants in 
the Spot-the-Difference task are not cued as to whether 
a change will be located in a useful or less useful region. 
Without this information, it would be counterproductive 
to hedge one’s bets on the regions and features that one 

might be most sensitive to because the change could just 
as likely be in a less useful region. Instead, the examin-
ers may have outperformed novices in the intact trials 
regardless of the location of the change because experts, 
as demonstrated in several domains (e.g., Carrigan et al., 
2019; Chase & Simon, 1973a, b), tend to process domain-
relevant stimuli more efficiently than novices.

Comparing performance across the two tasks
We found a moderate positive correlation between 
speed–accuracy in the Find-the-Fragment task and 
speed–accuracy in the Spot-the-Difference task, 
r(86) = 0.50, p < 0.001. The correlations were simi-
lar among novices, r(42) = 0.48, p = 0.001, and among 
experts, r(42) = 0.44, p = 0.003. Overall, the relationship 

Fig. 6  A visualization of the interactions for the speed–accuracy data (measured using Balanced Integration Scores) in the Spot-the-Difference 
task. We present the three-way interaction (left) comparing experts and novices for each type of change for the intact trials (a) and scrambled trials 
(b). We also present all three two-way interactions (c–e). In all but panel e, the expert data are colored purple and the novice data yellow. Each 
participant’s individual performance is represented by the small circles, with grey lines connecting every expert to their yoked novice ‘twin’. The 
distributions depict the overlap in each group’s performance, the red error bars represent the confidence interval around each cell mean, and a red 
line connects the group means for each cell. e Depicts the final two-way interaction comparing performance at finding more useful changes (blue) 
and less useful changes (orange) overall with each participant’s data connected by a grey line
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was weaker but still positive in the useful-intact condi-
tion, r(86) = 0.30, p = 0.005. However, the relationship 
between speed–accuracy on each task for this condi-
tion was nonsignificant among experts, r(42) = − 0.07, 
p = 0.640, and nonsignificant among novices, r(42) = 0.20, 
p = 0.19.

We also conducted a binomial logistic regression to 
establish whether performance in the useful-intact vari-
ations of each task could correctly classify participants 
as either an expert or a novice. Speed–accuracy on the 
useful-intact versions of each task predicted expertise, χ2 
(2, N = 88) = 36.72, p < 0.001, together explaining 30.1% 
of the variance. In fact, performance on both tasks con-
tributed to the model. Every increase of one in BIS on 
the Find-the-Fragment task translated to 3.15 (b = 1.15, 
p < 0.001) times greater odds of being an expert, and 
every increase of one in the BIS on the Spot-the-Differ-
ence task translated to 3.32 (b = 1.20, p = 0.002) times 
greater odds of being an expert. A dominance analysis 
revealed that Find-the-Fragment performance was the 
most important predictor, contributing an average of 
17.5% of the variance, whereas Spot-the-Difference per-
formance contributed an average of 12.6%.

General discussion
Across two experiments—one where participants 
searched for points of correspondence and one where 
they searched for differences—we tested whether 
domain experts have superior visual search skills than 
novices. We also examined whether any visual search 
advantages are constrained to useful target features 
and to images containing intact domain structure. In 
both experiments, we hypothesized that fingerprint 
examiners would be better than novices at spotting use-
ful features and changes (but not less useful features 
and changes) in intact fingerprints (but not scrambled 
prints). We did not find the expected three-way inter-
action in either experiment, but our findings nonethe-
less supported our hypotheses to a large extent. Across 
both experiments, experts were generally more effi-
cient at searching for targets compared to novices when 
these targets were located in the intact fingerprints, but 
not when they were located in the scrambled prints. 
Just as a chess expert’s recall for chess pieces is dis-
rupted when the pieces are randomly arranged (Chase 
& Simon, 1973a, b; Gobet & Simon, 1996), the finger-
print examiners demonstrated more efficient search 
when faced with intact fingerprints but performed like 
novices when the prints were scrambled. This finding 
suggests that disrupting the visual structure of a finger-
print (e.g., by scrambling the image) removes the usual 
structural cues surrounding target features, effectively 
disabling expert search patterns. This visual context 

specificity is in line with the existing body of evidence 
in perceptual expertise in other domains (e.g., Carrigan 
et al., 2019; Curby et al., 2009; Diamond & Carey, 1986, 
2009; Sims & Mayer, 2002). An expert’s visual search 
ability appears to depend on experience with the struc-
tural regularities of that domain.

In Experiment 1, the fingerprint examiners also 
appeared to be highly sensitive to useful domain features, 
but not to less useful features. They were far more effi-
cient than novices at locating useful features, but equal to 
novices at locating less useful features. Perceptual experts 
across a range of domains demonstrate a similar sensi-
tivity to the most useful features and regions for the task 
at hand (e.g., Krupinski, 1996; Mann et al., 2007; Maturi 
& Sheridan, 2020; Reingold et  al., 2001; Ziv, 2016). The 
years of experience that experts have accumulated with 
various cues and response options enables them to learn 
which features are the most relevant to the task (e.g., 
Lansdale et al., 2010; Sturman et al., 2019). This fine-tun-
ing to cue-based associations can enhance the saliency of 
useful features and draws an expert’s attention.

In sum, our results suggest that professional fingerprint 
examiners possess superior visual search skills compared 
to novices. However, their skills are limited to domain-
specific stimuli and to features that are most relevant to 
their routine decisions. Our results say little about the 
proficiency of these examiners, nor how often they might 
make mistakes, but they do speak to the nature of their 
expertise. The fact that an examiner’s visual search abil-
ity is highly constrained by the stimuli used in the task 
is a finding that we would expect from a group that pos-
sesses genuine expertise. Nevertheless, our results devi-
ated somewhat from our expectations. Below we discuss 
why this might be, along with the broader implications of 
our findings.

Experts in the Find-the-Fragment task outperformed 
novices at finding useful fragments in both intact and 
scrambled fingerprints. Therefore, an expert’s sensitivity 
to useful features may aid their visual search even when 
a target is situated in an unfamiliar context. Experts 
possess a rich visual working memory for useful fea-
tures, which means they need to switch between tar-
get and array far less than a novice would (e.g., Maturi 
& Sheridan, 2020). Superior visual working memory 
therefore appears to facilitate search in addition to, and 
largely  independent of, the advantages that contextual 
cueing provides. We also found that experts were better 
than novices at spotting both more useful and less use-
ful changes in the Spot-the-Difference task when these 
changes were situated in intact prints. Unlike the Find-
the-Fragment task, participants had no cue as to what 
needed to be located and therefore where the change 
may be located. Examiners likely outperformed novices 
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because, like many experts, they process domain-specific 
stimuli more efficiently than novices (Carrigan et  al., 
2019; Chase & Simon, 1973a, b; Maturi & Sheridan, 
2020). A superior visual working memory and the nature 
of the task can therefore boost or diminish an expert’s 
visual search ability, and this may explain why our results 
did not align entirely with our original hypotheses.

Despite the differences between the two tasks, perfor-
mance on one task correlated with performance on the 
other. This association suggests that the tasks tap into 
a similar underlying ability, presumably visual search 
efficiency. However, in the only condition where we 
expected an expert-novice difference—the useful intact 
condition—the relationship between the two tasks was 
weaker. We also found that speed–accuracy performance 
for the useful-intact variants of both tasks uniquely con-
tributed to predicting expertise, together explaining 
almost one-third of the variance. Efficiently locating cor-
responding features and locating differences may be two 
unique and necessary skills to reach expert levels of per-
formance in a domain. However, many other perceptual 
abilities underlie feature comparison expertise, including 
working memory and statistical learning (see Growns & 
Martire, 2020).

Our results also revealed that neither the Find-the-
Fragment task nor the Spot-the-Difference task could 
distinguish between examiners with more experience 
from those with less. Perhaps the tasks were not suffi-
ciently sensitive to parse the varied levels of skill within 
our sample of experts. Alternatively, self-reported years 
of experience is a poor measure of actual domain exper-
tise because it can vary considerably from one person to 
the next and does not capture the quality of one’s training 
(Carrigan et al., 2020). There is also evidence that compe-
tence in a domain plateaus within a few years (Choudhry 
et  al., 2005; Ericsson, 2004). The skills of fingerprint 
trainees, for instance, seem to reach asymptote within a 
year of their traineeship (Searston & Tangen, 2017a). In 
future studies, superior measures of experience (Sunday 
et al., 2018) and more valid measures of job performance 
are needed to test these claims.

In any case, our findings have implications for recruit-
ment and training. Some police agencies in the past have 
recruited forensic pattern matchers, such as fingerprint 
examiners, using tasks that supposedly measure general 
visual comparison abilities. It may be that general skills 
before training predict who flourishes later on, but there 
is no evidence that this is true for fingerprint identifica-
tion. Moreover, if an ability to search for features only in 
domain-specific stimuli is what separates experts from 
novices, as we demonstrate here, then time and resources 
may be wasted by recruiting individuals with tasks that 
are unrelated to the domain.

Learning to efficiently locate features and spot differ-
ences between prints may also help one develop the abil-
ity to match fingerprints. Training programs of this kind, 
such as attentional highlighting, are already being tested 
(Roads et  al., 2016), but it is still unclear whether this 
training actually improves matching ability. The Find-the-
Fragment and Spot-the-Difference tasks, at least in their 
useful-intact forms, may prove to be useful training tasks 
for developing pattern matching expertise. Nonetheless, 
both tasks ought to be adapted to reflect the complex-
ity of the decisions that examiners typically make. Dur-
ing their day-to-day work, examiners typically compare 
fingerprint impressions that appear very different from 
one another. However, in the Find-the-Fragment task, 
the fragment appears exactly (pixel for pixel) as it does in 
the array, and the two images in the Spot-the-Difference 
task are almost entirely identical, except for the change 
that needed detecting. An understanding of the variation 
within and between identities is crucial to many forms of 
perceptual expertise (Kramer et al., 2018) and an effective 
training program ought to instill this appreciation.

Conclusions
This is the first study to investigate how fingerprint 
examiners and novices differ in their visual search abil-
ity, and how the target feature and structure of the 
stimuli affect performance. Across both tasks, examin-
ers demonstrated more efficient search than novices, 
but only for images specific to their domain of exper-
tise. Although these experts performed exception-
ally well at locating features in typical fingerprints, 
scrambling the structure of these prints reduced expert 
search performance to novice levels. In our first experi-
ment, examiners also efficiently located ‘useful’ features 
that they typically encounter in their routine decisions. 
However, their performance fell to novice levels when 
locating less useful features. Visual search ability in the 
domain of fingerprint identification clearly hinges on 
domain-specific experience and on the attentional fine-
tuning that results from extensive training.
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