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Abstract 

Background:  It has repeatedly been reported that, when making decisions under uncertainty, groups outperform 
individuals. Real groups are often replaced by simulated groups: Instead of performing an actual group discussion, 
individual responses are aggregated by a numerical computation. While studies have typically used unweighted 
majority voting (MV) for this aggregation, the theoretically optimal method is confidence weighted majority voting 
(CWMV)—if independent and accurate confidence ratings from the individual group members are available. To deter-
mine which simulations (MV vs. CWMV) reflect real group processes better, we applied formal cognitive modeling and 
compared simulated group responses to real group responses.

Results:  Simulated group decisions based on CWMV matched the accuracy of real group decisions, while simulated 
group decisions based on MV showed lower accuracy. CWMV predicted the confidence that groups put into their 
group decisions well. However, real groups treated individual votes to some extent more equally weighted than 
suggested by CWMV. Additionally, real groups tend to put lower confidence into their decisions compared to CWMV 
simulations.

Conclusion:  Our results highlight the importance of taking individual confidences into account when simulating 
group decisions: We found that real groups can aggregate individual confidences in a way that matches statistical 
aggregations given by CWMV to some extent. This implies that research using simulated group decisions should use 
CWMV instead of MV as a benchmark to compare real groups to.

Keywords:  Group discussion, Group decision, Confidence weighted majority vote, Wisdom of the crowd

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.

Significance statement
The question of how a group determines an overall group 
decision from the individual votes of its group members 
is pervasive and likely as old as mankind. It is at the basis 
of democratic voting rules and is also prevalent with new 
urgency in the age of the Internet, where often many 
individual votes, or ratings, are available that one wants 
to combine to an optimal overall group decision—with-
out there being the possibility of real group discussions. 
From a theoretical point of view, the situation is clear: 
Individual confidences should be taken into account and 

confidence weighted majority voting (CWMV) is the 
statistically optimal aggregation procedure (under quite 
general assumptions). However, in research on group 
decisions, CWMV is not routinely used for compari-
son to real group performances, but instead the simpler 
majority vote (MV) that ignores the individual confi-
dences. Therefore, it is currently not clear whether real 
groups weigh individual votes in the same way CWMV 
does. Real groups may be limited in their capacity to take 
individual confidence ratings into consideration or may 
rely on different strategies. We compared real group deci-
sion to simulated group decisions based on the CWMV 
and MV procedures. We found that real groups weigh 
individual confidences in a way that can be well described 
by CWMV. These results suggest that basic research as 
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well as online-based aggregation of individual votes or 
ratings could benefit from using CWMV instead of MV.

Background
Under uncertainty, groups make more accurate decisions 
than individuals (Koriat 2015; Mannes et al. 2014): Medi-
cal students achieve more accurate diagnoses in groups 
than individually (Hautz et  al. 2015); medical diagno-
ses improve when groups of independent doctors are 
involved (Kurvers et  al. 2016; Wolf et  al. 2015); groups 
of students make more accurate judgments about crimi-
nal cases than individuals (van Dijk et  al. 2014); groups 
detect lies more accurately than individuals (Klein and 
Epley 2015); groups achieve higher IQ scores than indi-
viduals [referred to as wisdom of the crowd (Bachrach 
et  al. 2012; Vercammen and Burgman 2019; Kosinski 
et al. 2012)], etc. Exceptions occur when group members 
have widely different levels of competence (Galesic et al. 
2018; Puncochar and Fox 2004; van Dijk et al. 2014). Nev-
ertheless, groups generally outperform individuals.

Although some of the above-mentioned studies also 
used real groups (Hautz et al. 2015; Klein and Epley 2015; 
van Dijk et al. 2014), all of these studies simulated group 
decisions: Individuals gave responses that were then sta-
tistically aggregated into one simulated group response 
without a real group discussion occurring. A crucial 
aspect is therefore the choice of aggregation method 
that is used to simulate group decisions. One frequently 
used method is majority voting (MV; Hastie and Kameda 
2005; and see for example Klein and Epley 2015; van Dijk 
et al. 2014; Kosinski et al. 2012; Kurvers et al. 2016; Sor-
kin et al. 2001).

In MV, the most frequent individual decision (vote) is 
taken as the simulated group decision. By design, MV 
weighs all individual responses equally. Note, however, 
that real groups typically perform better than simulated 
groups using MV (Bahrami et  al. 2010; Birnbaum and 
Diecidue 2015; Klein and Epley 2015; Sniezek and Henry 
1989). This shows that MV cannot capture all the pro-
cesses that are at work in real group decisions.

In particular, MV overlooks that individuals can esti-
mate how accurate their own decisions are in many situa-
tions (Brenner et al. 1996; Fleming et al. 2012; Griffin and 
Tversky 1992; Martins 2006; Zehetleitner and Rausch 
2013; Regenwetter et al. 2014) even though there are also 
situations in which they cannot (Klein and Epley 2015; 
Koriat 2012b, 2017; Litvinova et al. 2019). When reliable 
confidence estimates are available, they can influence real 
group discussions: It is plausible that individuals share 
their sense of confidence during group interactions (Bang 
et al. 2014) such that votes from confident individuals are 
weighted more than those of less confident individuals.

There are methods that have taken confidence ratings 
from individuals into account. One of the most promi-
nent is the maximum confidence slating algorithm by 
Koriat (2012a, b). In this algorithm, the most confident 
individual decides the vote. Another approach for dealing 
with multiple confidence ratings is to not only consider 
the most confident individual but a small subgroup of the 
top most confident individuals (Mannes et  al. 2014), or 
to average all confidences (Litvinova et  al. 2020). How-
ever, these methods to simulate group decisions do not 
strictly follow the mathematically optimal way to aggre-
gate confidences.

The theoretically optimal method to aggregate indi-
vidual confidences is confidence weighted majority vot-
ing (CWMV; Grofman et  al. 1983; Nitzan and Paroush 
1982)—assuming that individuals can accurately assess 
confidences in their independently formed decisions. 
CWMV aggregates these independent responses (votes 
and confidences) in the mathematically optimal way 
by giving more weight to reliable than unreliable votes. 
Thus, statistically aggregating individual responses into a 
simulated group decision using CWMV rather than MV 
may reflect real groups better and provide a more appro-
priate benchmark.

Do real, interacting groups weigh individual confi-
dences in a way that is reflected by simulating a group 
discussion using CWMV? It is not clear whether real 
group decisions are adequately represented by CWMV, 
since CWMV is only sporadically applied in the current 
research. Bahrami et  al. (2010) found that group per-
formance of dyads is well predicted by CWMV. Hautz 
et al. (2015) found that real dyads performed better than 
CWMV, which predicts the group response of a dyad to 
be that of the most confident member. CWMV is also 
discussed in animals from an evolutionary perspec-
tive (Marshall et  al. 2017). However, to our knowledge, 
no study has yet considered groups with more than two 
members comparing decisions from real group discus-
sions versus simulated decisions using CWMV on a trial-
by-trial basis.

In our experiment, we investigated whether CWMV 
simulations can predict real group decision of triads 
(groups of three). We compared simulated group deci-
sions to real group decisions on a trial-by-trial basis. Our 
groups consisted of three individuals because we wanted 
to investigate whether real groups weigh confidences in a 
way that is adequately reflected by CWMV. In contrast, 
using only dyads, CWMV simulates the group decisions 
to be the vote of the more confident individual (similar 
to maximum confidence slating) and CWMV can only 
contribute by predicting a dyad’s combined confidence 
based on the individual responses. But triads can display 
qualitatively different behaviors than dyads: While it is 
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sometimes the case that the most confident individual 
determines the group decision in triads, triads also allow 
for the possibility that the most confident individual is 
overruled by the two other group members when they 
are sufficiently confident in the alternative choice. Thus, 
we want to clarify whether real groups of three weigh 
individual votes in a way that can be characterized by 
CWMV.

Before describing our experiment, we will give a more 
formal description of the simulation methods MV and 
CWMV. We will present a formal cognitive model (e.g., 
see Forstmann et  al. 2011) that allows us to measure in 
how far real groups deviate from CWMV simulations.

Majority voting (MV) versus confidence weighted majority 
voting (CWMV)
CWMV assumes that multiple individuals report inde-
pendent decisions (votes) as well as confidence ratings. 
These confidence ratings indicate how reliable individual 
decisions are. CWMV weighs the decisions by the confi-
dence ratings in a theoretically optimal way to simulate a 
group decision (Grofman et al. 1983; Nitzan and Paroush 
1982). This section shortly introduces the basic math-
ematical notation, first of MV and then of CWMV.

Let a group consist of n individuals. The task is to 
decide between multiple (usually two) options from 
which exactly one is correct. For example, consider 
n = 3 students trying to determine whether a suspect of 
a criminal case is guilty or not (cf. van Dijk et al. 2014). 
First, each individual forms a decision yi which is either 
+1 (not guilty) or −1 (guilty). Second, in a real, interactive 
group discussion, the individual group members reach a 
common decision yg.

The real-world group decision yg can be simulated by 
statistically aggregating the independently formed indi-
vidual responses. MV simulates the group decision to be 
that of the majority of individuals, yMV

g = sign(
∑n

i=1 yi) . 
MV (as well as CWMV) assumes that individual 
responses are independent from each other given the 
ground truth, that is, individuals must form their deci-
sion only based on material that is not systematically 
shared between members. To illustrate a violation of 
this assumption, consider as another example a group of 
radiologists forming their individual diagnoses based on 
one and the same X-ray. They will not come to fully inde-
pendent conclusions about the true state of the patient’s 
condition because their opinions will be commonly influ-
enced by the quality of the X-ray. In the worst case, mul-
tiple individual responses are fully dependent offering no 
more information than one single response. In our exper-
iment, independence will be ensured by design in order 
to study CWMV—even though many real-world situa-
tions will not allow for such a controlled environment.

When individuals report confidence ratings, ci , MV 
can be improved upon by using CWMV instead. These 
confidence ratings are assumed to be in the form of esti-
mates for the probability of their decision being correct, 
ci = P(yi is correct) . In some situations, individuals can 
make such estimates (Griffin and Tversky 1992; Martins 
2006; Regenwetter et al. 2014; Koriat 2012a) and, under 
specific circumstances, assessing confidences is essen-
tially the same as estimating the relative frequency of 
being correct (Brenner et  al. 1996; Pouget et  al. 2016). 
CWMV transforms these confidences into optimal 
weights, which are the logarithmic odds (log odds), 
wi = log(ci/(1− ci)) . See Nitzan and Paroush (1982) as 
well as Shapley and Grofman (1984) and find an intuitive 
account for using logarithmic odds as weights at the end 
of this section. Using these weights, CWMV simulates 
the group decision by

Similar to the individual confidence ratings, real groups 
can also report how confident they are in their group 
decision cg . CWMV can simulate these group confi-
dences based on the individual confidences by

To illustrate the computation of CWMV, consider again 
the three students deciding whether a suspect is guilty. 
Say, Student  1 votes for the suspect being innocent, 
y1 = + 1 , but Students 2 and 3 believe the suspect to be 
guilty, y2 = − 1 and y3 = − 1 . Aggregating these deci-
sions using MV determines the simulated group decision 
to be guilty, yMV

g = sign((+1)+ (− 1)+ (− 1)) = − 1 . 
Additionally, Student  1 reports being quite confident 
in their vote such that the probability of their judg-
ment being correct is 76%, c1 = 0.76 . In contrast, Stu-
dents  2 and 3 are very unsure with a confidence of 
only 51%, c2 = c3 = 0.51 . Using CWMV to integrate 
these individual responses into a simulated group deci-
sion, the individual confidences are first transformed 
into weights with Student 1 having a higher confidence 
and, thus, a larger weight: w1 = log(0.76/0.24) = 1.15 
versus w2 = w3 = log(0.51/0.49) = 0.04 . Then, 
CWMV leads to a different simulated group deci-
sion than MV finding the suspect not guilty, 
yCWMV
g = sign((+1.15)+ (−0.04)+ (−0.04))

= sign(+1.07) = + 1 . Moreover, CWMV simulates 
the group’s confidence in their verdict to be 75%, 
cCWMV
g = 1/[1+ exp(−|(+1.07)|)] = 0.75 . That is, 

the confident response from Student  1 is only slightly 
attenuated by the unconfident, opposing responses from 

(1)yCWMV
g = sign

(

n
∑

i=1

wiyi

)

.

(2)cCWMV
g =

1

1+ exp(−|
∑n

i=1 wiyi|)
.
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Students  2 and 3 as might be realistic in a real group 
discussion. This example corresponds numerically to 
Scenario II from our experiment, which we use to study 
in how far real groups are better represented by MV or 
CWMV simulations, see Table 1.

A technical note: The weights in CWMV are log odds 
because the logarithm is used as a convenient trick to 
transform a multiplication into a weighted sum. When 
computing the probabilities of a suspect being guilty 
or not, the basic probability theory gives that odds 
( oi = ci/(1− ci) ) can be multiplied. In our example, the 
odds of the suspect being innocent are o1 = 0.76/0.24 
and o2 = o3 = 0.51/0.49 . Multiplying these odds results 
in group odds, og = o1 × o−1

2 × o−1
3 = 3 ( o2 and o3 

are inverted because Student 2 and 3 vote for guilty). 
Observe that the group odds are indeed equivalent to the 
75% group confidence computed by CWMV from above, 
cg/(1− cg ) = 0.75/0.25 = 3 . By applying the laws of log-
arithm, multiplication of these odds is transformed into 
a sum of the log odds: log(o1 × o−1

2 × o−1
3 ) = (+ log(o1))

+(− log(o2))+ (− log(o3)) , which allows to derive Eqs. 1 
and 2. Note further that, when an individual is absolutely 
certain in their decision ( ci = 0 or ci = 1 ), the odds oi 
and weights wi are undefined. In this case, by conven-
tion, the simulated group is set to be absolutely certain 
as well ( cg = 0 or cg = 1 ). But if two participants came to 
opposite decisions and were both absolutely certain, by 
convention, their two responses would be discarded and 
the third individual’s vote would decide (this situation did 
not occur in our experiment).

Given this formal framework of CWMV, the purpose of 
this study is to investigate how well individual responses 
( yi and ci ) aggregated into simulated group responses 
( yCWMV

g  and cCWMV
g  ) represent the real group responses 

from actual group discussions ( yg and cg ) on a trial-by-
trial basis. We will modify Eqs. 1 and 2 using formal cog-
nitive modeling in order to characterize how real groups 
deviate from these CWMV simulations.

Methods
Participants
A total of 21 participants (11 females, mean age = 21.4, 
range = 19–26) completed the experiment in seven 
groups of three. All were students who received either 
course credit for 30  min of participation or payment (4 
EUR, equivalent to 4.5 USD). All participants had nor-
mal or corrected-to-normal vision and provided written 
informed consent prior to participation.

Stimuli and procedure
We adopted a procedure that has been established by 
Griffin and Tversky (1992) and extended it to a group 
setting. The experiment consisted of three practice trials 
followed by 12 experimental trials. Each trial consisted of 
an individual phase and a group phase, see Fig. 1. Partici-
pants viewed rapid stimulus sequences consisting of 11 
to 13 red and blue disks. Their task was to guess whether 
the stimulus sequence was generated by a fair coin (pro-
ducing in expectation 50% red and 50% blue disks) or a 
biased coin (producing 60% red and 40% blue disks). 
Participants were instructed that both, the fair and the 
biased coin, are a priori equally likely. Griffin and Tversky 
(1992) showed that, in this task, participants’ individual 
confidence ratings are well calibrated.

Participants viewed different stimulus sequences simul-
taneously at individual laptops. Their viewing distance to 
the screen was approximately 60 cm. Each disk was pre-
sented for 100 ms with a diameter of 2.2 cm correspond-
ing to a viewing angle of 2.1◦ . Disks were intermitted by a 
100-ms blank interval creating the impression of a rapid 
stream. This presentation prevented participants from 
performing explicit mathematical calculations so that 
they could only obtain an intuitive sense of confidence.

Depending on which coin better matched the stimu-
lus sequence, participants made a decision for either 
the fair or the biased coin. Some stimulus sequences 
were more ambiguous than others providing different 

Table 1  Ideal decisions and confidences

In each trial, we applied one out of four scenarios (I–IV), which is defined by three stimulus sequences (A, B and C). Each of the three participants from a group viewed 
one stimulus sequence. Each individual stimulus sequence entails an ideal decision y∗i  and ideal confidence c∗i  that can be derived from probability computations. 
The ideal individual responses from each scenario determine the groups’ ideal decision y∗g and confidence c∗g (see “Methods” section for an example calculation 
corresponding to Scenario II)

Scenario Individual Group

A B C

y∗
1

c∗
1
 (%) y∗

2
c∗
2
 (%) y∗

3
c∗
3
 (%) y∗g c∗g (%)

I Fair coin 87 Fair coin 70 Fair coin 62 Fair coin 96

II Biased coin 76 Fair coin 51 Fair coin 51 Biased coin 75

III Biased coin 88 Biased coin 54 Fair coin 81 Biased coin 66

IV Fair coin 81 Biased coin 58 Biased coin 72 Fair coin 54
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levels of confidence that participants reported on a vis-
ual analog scale from 50% (“I am completely unsure. The 
other option is equally likely.”) to 100% (“I am completely 
sure. My decision is definitively correct.”). Participants 
were instructed to report their subjective probability 
with which they believed their decision to be correct. 
In contrast to verbal scales, where participants give 
responses such as “somewhat likely” or “almost certain,” 
this numeric scale is necessary because numeric values 
(here, ci ) are required to simulate group decisions (see 
Eq. 1). However, it is noteworthy that a numerical scale 
can prompt participants to engage in formal thinking, 
which they would otherwise have not (Windschitl and 
Wells 1996).

The presented stimulus sequences determined ideal 
individual responses, which reflect posterior prob-
abilities that can be computed using probability theory. 
Table  1 shows which responses the stimulus sequences 
would produce if participants were ideal observ-
ers. For example, assume that a participant saw the 
disk sequence red, red, blue, red and red. A fair coin 
would have produced such a sequence with a likeli-
hood of pfair = 0.55 = 3% and the biased coin with 
pbiased = 0.64 · 0.41 = 5% . Because the biased coin was 
more likely to produce this stimulus sequence, the ideal 
decision is for the biased coin denoted by y∗i = + 1 (the 
asterisk denotes ideal values). The ideal confidence was 
c∗i = pbiased/(pfair + pbiased) = 5%/(3%+ 5%) = 62%.

Note that scheduling individual reports before a group 
discussion (as in our experiment) improves group per-
formance and prevents contamination of individual 
reports by the group decision (Sniezek and Henry 1990). 
That is, individual reports remain independent because 

participants interacted only after they gave their individ-
ual responses.

After the individual phase, participants entered the 
group phase. Since participants had viewed different 
stimulus sequences that were produced by the same 
coin, they engaged in a group discussion to aggregate the 
individually gathered evidence and produce a real group 
response. Similar to the individual responses, groups 
reported a decision and rated their confidence in that 
decision. We label these responses based on real group 
discussions reported group decision and reported group 
confidence and later compare them to the simulated 
group decision and simulated group confidence, which we 
obtain from statistically aggregating individual responses 
using CWMV. Groups were allowed to give a group 
response not earlier than 30 s and discussions usually did 
not last longer than 2 min.

The ideal group responses, y∗g and c∗g , can be determined 
by adding the number of red and blue disks from all three 
stimulus sequences shown to the participants. Then, the 
same calculations as for ideal individual responses can 
be applied to compute the ideal group responses. Alter-
natively and equivalently, aggregating ideal individual 
responses using CWMV (Eqs.  1,  2) also produces the 
ideal group responses because CWMV aggregates confi-
dences in the theoretically correct way.

Across the 12 experimental trials, there were four Sce-
narios I–IV. Each scenario was defined by three stimulus 
sequences: A, B and C. Table  1 shows the ideal deci-
sion and confidence for each stimulus sequence in each 
scenario as well as the ideal group responses. Each par-
ticipant saw one of those sequences from the current 
scenario. These scenarios were repeated three times in a 

a

b

c

Decision

Confidence
Discussion

Decision

Confidence
Lottery

Individual phase Group phase
Fig. 1  Individual and group phase in each trial. In the individual phase, each participant viewed different stimulus sequences consisting of 11–13 
disks. Based on these sequences, individuals decided whether their sequence has more likely been produced by a fair coin (50% red, 50% blue) or 
a biased coin (60% red, 40% blue). Based on the ambiguity of the sequence, individuals reported a confidence in their own decision. In the group 
phase, participants combined their evidence into one group decision and confidence. In each trial, participants were incentivized for accurately 
judging their real group confidence using the matching probability method by Massoni et al. (2014)
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randomized order for a total of 12 trials, and the stimulus 
sequence that participants saw (A, B and C) was rotated 
so that participants viewed different stimulus sequences 
when a scenario was repeated. Importantly, Scenarios II 
and IV were designed so that MV and CWMV yield dif-
ferent predictions because the most confident individual 
should—according to CWMV—outweigh the relatively 
unconfident majority.

At the end of the group phase in each trial, the group 
was incentivized for giving an accurate group confidence 
rating. They entered a lottery in which the group could 
win money depending on how accurate the reported 
group confidence was. This lottery, the matching prob-
ability method, was conceived by Massoni et  al. (2014), 
see also Dienes and Seth (2010). The probability to win 
in this lottery is maximized if the group confidence is 
neither under- nor overestimated. Participants were 
instructed about the rules of this lottery, and it was 
emphasized that chances to win are best when confi-
dence ratings reflect the probability of the group decision 
to be correct. In each trial, groups could win 0.60 EUR 
(approximately 0.66 USD). Across 12 experimental tri-
als, groups could win a total maximum of 7.20 EUR (7.90 
USD) in addition to their compensation for participation. 
The sum was split equally among the three participants 
of the group. We did not apply this lottery for individ-
ual confidence ratings because these have already been 
shown to be reliable (Griffin and Tversky 1992) so that 
incentivation was not necessary in the individual phase. 
In contrast, incentivation was applied in the group phase 
because we assumed that it is important to additionally 
motivate participants there and keep them engaged in 
the group discussions.

Formal cognitive modeling of CWMV
CWMV is the theoretically optimal way of aggregat-
ing individual responses. Real groups on the other hand 
may deviate from CWMV in various ways. To measure 
these deviations, we introduce four parameters into the 
CWMV framework in order to capture different aspects 
in which real groups deviate from CWMV:

•	 σi : precision of individuals in recovering the ideal 
confidence in their reported confidence ratings,

•	 β : equality effect, or, tendency of groups to weigh 
individual votes more equal or more extreme than 
CWMV would based on the individual confidences,

•	 γ : group confidence effect determining whether 
groups tend to over- or underestimate their confi-
dences, and

•	 σg : precision of groups in determining the group 
confidence in accordance with CWMV simulations 
based on the individual confidence ratings.

We estimate individuals’ precision, σi , in recovering 
the true strength of evidence of the displayed stimuli 
sequences. We assume that individuals are not able to 
determine the ideal confidence but, instead, their actual 
responses will scatter around the ideal values. We 
describe this by an error term ǫi:

This error term ǫi is normally distributed with mean 
zero (reflecting no absolute bias in individual confidence 
reports in accordance with Griffin and Tversky 1992) and 
standard deviation σi . This standard deviation character-
izes individuals’ precision in recovering the true confi-
dence. An ideal observer would be perfectly precise and 
make no errors, σi = 0 , whereas larger values of σi indi-
cate less precision.

Individuals make incorrect decisions if the actual 
confidence deviates below the 50% threshold resulting 
in the complementary confidence toward the incorrect 
decision.

In our experiment, we used a half scale ranging from 50 
to 100% toward the decision made by the participant. 
For correct estimation, we transform the reported con-
fidences into a full scale ranging from 0 to 100% toward 
the correct decision (see Olsson 2014) by inverting confi-
dences toward the incorrect decision. For example, when 
an individual responded incorrectly with a confidence 
of 60%, we transform the confidence to ci = 0.4 (40% 
toward the correct alternative) in order to estimate ǫi in 
each trial and thereupon σi.

Note that confidence ratings cannot be higher than 
100%, which potentially causes a ceiling effect (Griffin 
and Brenner 2004). However, in our experiment, ideal 
confidences for individual responses only range up to a 
maximum of 88% (Scenario III, Individual A in Table 1) 
so that there is enough room for positive deviations, ǫi , 
to avoid a large ceiling effect here.

Furthermore, we introduce the parameter β to esti-
mate the equality effect capturing whether real groups 
weighted individual responses in a way that deviates 
from CWMV. This parameter acts upon the weights wi 
as an exponent:

As the name suggests, the equality effect models groups 
assigning more equalized weights than naive CWMV, 
which is conceptually similar to the approach by 

ci = c∗i + ǫi.

yi =

{

y∗i (correct), if ci ≥ 0.5.
−y∗i (incorrect), otherwise.

(3)yCWMV
g (β) = sign

(

∑

i

w
β
i yi

)

.
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Mahmoodi et al. (2015), but our model is technically dif-
ferent because we incorporate it into the CWMV frame-
work. Here, the equality effect can vary between zero 
and infinity, β ∈ [0;∞] . In the edge case of β = 0 , every 
weight would be transformed equally to w0

i = 1 produc-
ing the special case of (unweighted) MV. On the other 
hand, β = 1 would leave weights unchanged, w1

i = wi , 
and would produce undistorted CWMV. Values in 
between, 0 < β < 1 , would represent some compromise 
in which individual confidences are considered to some 
extent, but groups tend to equalize those weights. On the 
other side of the spectrum, larger values of β > 1 would 
represent an exaggeration of differences between weights 
so that the most confident individual’s vote has a dispro-
portionately large impact. In such situations, the most 
confident individual would tend to decide the vote single-
handedly, which is equivalent to the predictions from 
maximum-confidence slating (Koriat 2012b).

We additionally estimate whether groups under- or 
overestimate their group confidence, which is captured in 
the group confidence effect γ:

The group confidence effect allows for a nonlinear scaling 
of the group confidences. This parameter can also vary 
between zero and infinity, γ ∈ [0;∞] , where γ < 1 repre-
sents groups underestimating their confidence relative to 
the ideal statistical aggregation of individual responses, 
whereas γ > 1 represents an overestimation of group 
confidences. The special case of γ = 1 recovers undis-
torted (naive) CWMV.

Note that the equality effect β modifies individual 
weights and can potentially change the simulated group 
decision. In contrast, the group confidence effect γ only 
modifies a group’s final confidence. (Hence, it does not 
appear in Eq.  3 where the simulated group decision is 
determined.) These two parameters capture deviations 
from naive CWMV simulations in a descriptive manner. 
For cautionary accounts against normative interpreta-
tions, see Gigerenzer (2018), Le Mens and Denrell (2011) 
and Neth et al. (2016).

Finally, we introduce an error term to the group con-
fidence cg = cCWMV

g (β , γ )+ ǫg . This error term ǫg acts 
similar to the error term of individual confidence ratings. 
It is normally distributed with mean zero and standard 
deviation σg , where smaller values indicate higher preci-
sion of the group discussion process matching the ideal 
aggregation.

For estimation, the individual precision σi was meas-
ured by computing the average of sample variances across 
individuals and taking the square root. For the group 

(4)cCWMV
g (β , γ ) =

1

1+ exp(−γ |
∑

i w
β
i yi|)

.

parameters, we performed a grid search in which we var-
ied β and γ in [0, 2] and σg in [0, 0.3] (larger values pro-
duced worse fits) with step sizes of 0.01. For each group, 
we chose the parameter combination that produced the 
maximum likelihood for the observed data using Eqs. 3 
and 4 to predict the real group responses.

We validated this approach by conducting multiple 
parameter recovery simulations as suggested by Wil-
son and Collins (2019): We simulated data based on our 
model for fixed values of σi , β , γ and σg and demonstrated 
that our estimation approach recovered the ground truth 
parameters, see open material for details.

Results
We compared the average and median performance of 
real versus simulated groups, see Fig.  2 and see Addi-
tional file  1: Table  S1 for estimates of each group. 
Real groups reported the correct (ideal) decision 
in 76.2% ( SEM = 3.4% ) of the trials ( Mdn = 75.0% , 
IQR = 75.0−83.3 ). CWMV adequately simulated 
the average performance of real groups with 76.2% 
( SEM = 2.8% , Mdn = 75.0% , IQR = 70.8−83.3 ). In 
contrast, simulating group decisions using unweighted 
MV produced a lower accuracy of 66.7% ( SEM = 3.6% , 
Mdn = 66.7% , IQR = 62.5−75.0 ) compared to CWMV 
with a mean difference of M = 9.5% ( SEM = 3.4% ), 
t(6) = 2.83 , p = 0.030 . Comparing MV to real groups 
yielded a trend toward the same difference, M = 9.5% 
( SEM = 4.6% ), t(6) = 2.07 , p = 0.084 . We conducted 
two-sided, exact binomial tests to confirm this pattern: 
MV simulations were less accurate than CWMV simula-
tions ( p = 0.016 ) and real group decisions ( p = 0.016).

Real versus ideal responses
Individual confidence ratings were well aligned with 
the ideal confidences, see Fig.  3a. The average correla-
tion between reported versus ideal confidences across 
individuals was r̄ = 0.73 , 95%  CI  [0.64,  0.80]. (We used 
Fisher’s z-transformation for combining correlations 
into averages.) This finding replicates Griffin and Tver-
sky (1992), showing that individual participants are 
able to evaluate the ambiguity in the presented stimulus 
sequences and report their confidences in form of sub-
jective probabilities. Estimating the precision of indi-
viduals, we observed that reported confidences scattered 
around ideal confidences with a standard deviation of 
σi = 13.3% , SD = 6.6 , 95% CI [9.8, 16].

However, confidence reports showed systematic 
deviations. In hard (difficult) trials with low ideal con-
fidences, individuals overestimated those confidences. 
This is reflected in regression lines on average being at 
M = 55% , 95%  CI  [50.2,  58.8], where they should be at 
50%. Additionally, high confidences were underestimated. 
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The average slope of regression lines was lower than the 
ideal value 1, b̄ = 0.78 , 95%CI  [0.61,  0.95]. A slope of 1 
would have indicated that ideal and reported confi-
dences increased equally, whereas, here, the observed 
slope below 1 indicated that increasing the true evidence 
strength from the presented stimulus sequences only led 
to a diminished increase in confidence.

Group confidence ratings showed a somewhat simi-
lar pattern, see Fig.  3b. (We again present median val-
ues.) The average correlation between reported and ideal 
group confidences was high, r̄ = 0.71 , 95% CI [0.57, 0.80], 
Mdn = 0.71 , IQR = 0.64−.79 , but there was a rela-
tively large root-mean-squared error, RMSE = 0.16 . 
Real groups did not deviate from ideal values at low 
confidences: The regression lines at the ideal 50% 
were M = 47% , 95%  CI  [40.7,  53.7], Mdn = 48.6% , 
IQR = 42.5−50.6 . Nevertheless, groups (similar to 
individual participants) underestimated high confi-
dences, resulting in an attenuated average slope rela-
tive to the ideal value of 1, b̄ = 0.79 , 95% CI [0.58, 0.99], 
Mdn = 0.77 , IQR = 0.73−0.96 . The large RMSE reflects 
this divergence for high confidences. Exact binomial 
tests confirmed these results: All groups had a correla-
tion above 0 and a slope below 1, both p = 0.016 , but 
intercepts scattered around 50%, p = 0.336 . Note that 
we avoid common problems of regression in the context 
of over- versus underconfidence estimation since our 
regressions use the fixed ideal confidences as independ-
ent variables (x-axes in Fig. 3), which exhibit no estima-
tion error that would otherwise have lead to a biased 
analysis (Fiedler and Krueger 2012; Olsson 2014).
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Fig. 2  Performance of real versus simulated groups. Comparing 
the accuracy of real group decisions to simulated group decisions 
using either CWMV or MV for aggregation of the individual decisions 
and confidences. Simulated groups based on CWMV predict the 
performance of real groups very well, while simulated groups based 
on MV underestimate the performance of real groups. Error bars 
indicate standard errors of the mean computed across groups. 
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Fig. 3  Comparing ideal versus reported confidences from individuals and groups. Ideal confidence (x-axis) ranges from 50 to 100% in accordance 
with Table 1. In contrast, reported confidences (y-axis) range from 0 to 100% because we flipped confidence ratings in cases where an incorrect 
decision was given (e.g., a reported confidence of 60% toward the incorrect decision is displayed as a confidence of 40% here). In a, reported 
confidences from individuals (y-axis) are compared to the ideal values (x-axis; cf. c∗

1
 , c∗

2
 , and c∗

3
 from Table 1). Similarly in b, reported confidences from 

groups (y-axis) are compared to the ideal values (x-axis; cf. c∗g from Table 1). Black points indicate mean values—averaged across individuals in a and 
across groups in b—for each ideal value. Grey points indicate single trial responses. Error bars indicate standard errors of the mean
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Real versus simulated group responses
Responses from real, interacting groups were well pre-
dicted by simulated responses using CWMV. Naive 
CWMV (Eqs.  1,  2) produced an average correlation 
between reported and simulated confidences of r̄ = 0.83 , 
95%  CI  [0.56,  0.94], Mdn = 0.82 , IQR = 0.64−.92 . 
Despite the high correlation, there was still a large dis-
crepancy, RMSE = 0.17 , reflecting deviations of real 
responses from naive CWMV, see Fig. 4a.

We applied our formal cognitive model to estimate in 
how far real groups deviated from naive CWMV. The 
equality effect β was on average M = 0.67 , SD = 0.30 , 
95% CI [0.38, 0.95], Mdn = 0.74 , IQR = 0.38−0.95 . This 
indicates that groups used confidences similar to CWMV 
but tended toward equalizing those weights. Votes from 
confident individuals were given more impact on the 
group decision compared to unconfident individuals but 
not to the extent suggested by CWMV. We observed tri-
als in which the most confident individual is overruled 
by the majority and the tipping point at which this hap-
pened was earlier than what naive CWMV simulations 
predict. This observation is captured in the equality effect 
estimate being smaller than 1, β = 0.67 < 1.

It is noteworthy that, since β estimates are always larger 
than zero, it is a priori expected to obtain an above zero 
average simply due to random errors. To account for this, 
we performed a randomization test where we randomly 
permutated individual confidences and estimated β from 

the resulting data set. Since the confidences in these ran-
domized data sets are not indicative of the group’s deci-
sion, the true equality effect is zero here. From 1000 of 
such randomizations, we found that 95% of the obtained 
β estimates were below 0.4. This confirms that groups in 
our experiment (with β = 0.67 ) did take confidences into 
account ( β > 0 ) but only to an attenuated extent ( β < 1).

The group confidence effect γ was on average 
M = 0.53 , SD = 0.09 , 95%  CI  [0.45,  0.61], Mdn = 0.62 , 
IQR = 0.55−0.74 , indicating that real groups tend to 
underestimate ( γ < 1 ) their confidence compared to 
CWMV simulations based on the individual responses. 
In Fig.  4b, this underestimation effect corresponds to 
a predicted curve (solid line) below the ideal values 
(dashed line).

The average group precision was σg = 11% (root mean 
square; SD = 4 ) with Mdn =  10%, IQR =  7–12%. This 
precision of group confidences is comparable to the pre-
cision of individual confidences.

The adapted CWMV model using β = 0.67 and 
γ = 0.53 predicted confidences that are correlated 
with reported confidences to the same degree as naive 
CWMV, r̄ = 0.84 , 95%  CI  [0.68,  0.93], Mdn = 0.84 , 
IQR = 0.72−.92 . But in absolute terms, this adapted 
CWMV model matched the reported confidences bet-
ter ( RMSE = 11% ) than naive CWMV ( RMSE = 17% , 
mentioned above), t(6) = 5.24 , p < 0.002 , because the 
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Fig. 4  Comparing real versus simulated group responses from statistically aggregating individual responses. We used individual responses to 
simulate group confidences via CWMV (x-axis). These simulations predict responses from real, interacting groups (y-axis). In a, we used naive CWMV 
as in Eqs. 1 and 2. The dashed line represents predictions from naive CWMV. This is equivalent to our formal cognitive modeling with equality effect 
β = 1 and group confidence effect γ = 1 . In b, we estimated the equality effect, β = 0.67 , and group confidence effect, γ = 0.53 , see Eqs. 3 and 4. 
This model predicts real group responses (solid line) but incorporates the fact that real groups treated individual votes more equal and displayed 
an underconfidence effect. In both subfigures, confidence ratings are inverted for incorrect responses. For example, the point (34%, 35%) in a 
corresponds to a trial with a simulated confidence of 66% and a reported confidence of 65% with both decisions being the same but incorrect; 
hence, both confidences were inverted
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adapted model simulates group responses with an equal-
ity and underconfidence effect.

Note that going from Fig.  4a to Fig.  4b, points are 
shifted along the x-axis because the equality effect 
β = 0.67 changes simulated confidences and can even 
change the simulated decision (points crossing the 50% 
border in the x direction). The extent of these shifts 
depends on the exact constellation of individual confi-
dences. On the other hand, the group confidence effect 
γ = 0.53 only maps the resulting, simulated confidences 
in a nonlinear way to the reported confidences (solid 
curved line). This parameter reflects that groups were 
less confident in their decisions than what naive CWMV 
predicted.

Model comparison of group response simulations
To evaluate our adapted CWMV model, we compared 
the full model to three special case models in which we 
fixed one parameter at a time (first γ = 1 , second β = 0 
and third β = 1 ). For this comparison, we computed 
the Bayesian information criterion (BIC; Schwarz 1978). 
Using the Akaike information criterion (Akaike 1973) 
instead of BIC yielded qualitatively identical results. 
Smaller BIC values indicate a better fit relative to the 
number of parameters in the model. For the full model, 
the total score (sum across groups) was BICfull = − 101.

As a first comparison, we pitch the full model against 
a model that fixes the group confidence effect γ = 1 but 
keeps the equality effect β free. This model assumes that 
groups may only deviate from naive CWMV in terms 
of how they assign weights to the individual votes but 
exhibit no general over- or underconfidence. Here, the 
total score was BICγ=1 = − 59 indicating a worse fit as 
compared to the full model. The Bayes factor resulting 
from the BIC scores of the two models (e.g., see Farrell 
and Lewandowsky 2018,  Chapter  11) clearly supported 
the full model, BFfull/γ=1 > 1000 . This supports the 
notion that group responses are best characterized by an 
overall underconfidence effect.

The second comparison fixes β = 0 but keeps γ 
free. This model is equivalent to an (unweighted) MV 
with group confidence effect. Here, the total score 
was BICβ=0 = − 63 , again supporting the full model, 
BFfull/β=0 > 1000 . This indicates that participants incor-
porate confidence ratings in the group discussion.

For the third comparison, we fix β = 1 : This model 
assumes that real groups weigh individual votes exactly 
according to undistorted CWMV but still allows for an 
overall confidence effect of the group since γ is free. This 
model was on par with the full model, BICβ=1 = − 102 , 
with an inconclusive Bayes factor, BFfull/β=1 = 0.71 . 
This indicates that, according to the BIC criterion, fix-
ing β = 1 did not perform worse (when accounting 

for the additional free parameter) than the full model, 
which keeps β free. On the other hand, when perform-
ing a model fit comparison irrespective of the number of 
parameters (Farrell and Lewandowsky 2018, Chapter 10), 
the full model performs better than that with fixed β = 1 , 
χ2(7) = 16.9 , p = 0.018 . To confirm that incorporat-
ing the equality effect β as a free parameter in our model 
conveys an advantage even when weighing parsimony 
against model fit, future research with increased sample 
sizes is necessary.

Discussion
Including confidence ratings in the theoretically optimal 
way using CWMV increases the simulated group perfor-
mance over MV. Real groups are more accurately repre-
sented by CWMV when individuals provide reliable and 
independent confidence ratings. Even though real groups 
consider confidence ratings similar to CWMV, they tend 
to treat individual responses more equally giving more 
confident individuals less impact on the group decision 
than naive CWMV simulations, which is consistent with 
an equality bias (Bang and Frith 2017; Mahmoodi et  al. 
2015). Additionally, groups tend to underestimate their 
confidences.

In our study, individuals were overconfident in hard 
(difficult) trials and underconfident in easy trials—a 
finding often referred to as the hard-easy effect (Giger-
enzer et al. 1991). Hard trials allow participants to make 
a correct decision about 50% of the time, but reported 
confidences were larger. In contrast, easy trials allow 
for close to 100% confidences but reported confidences 
were strictly lower. This hard-easy effect, or underex-
tremity (Griffin and Brenner 2004), can be explained 
by a regressive tendency (Moore and Healy 2008). That 
is, participants were biased toward their prior belief to 
observe trials with moderate difficulty. But it can also be 
explained by a bias introduced through the response for-
mat: Olsson (2014) argue that a half scale (50–100%), as it 
is often used, biases participants to respond closer to the 
center of the scale.

In contrast, real groups did not tend to be overconfi-
dent for hard trials in our setting but real groups exhib-
ited overall underconfidence in a double sense: First, 
group confidences were lower than ideal responses (see 
Fig.  3b). Second, group confidences were lower than 
determined by CWMV simulations based on individual 
responses (see Fig. 4b).

Interestingly, confidence ratings reflected subjective 
probabilities rather than consistency in our study. For 
example, we presented a stimulus sequence that is suited 
to evoke a low ideal confidence of 54% (see Table 1, Sce-
nario III, Individual B). For this sequence, participants 
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gave the correct decision in 85.7% of the trials and 
reported confidences relatively close to the ideal con-
fidence with an average of 62% (see Fig. 4, second black 
point from left). In other words: Participants consist-
ently determined the correct decision but nevertheless 
reported in their confidence ratings that the strength of 
evidence was quite low as intended.

One limitation that our well-controlled setting cannot 
account for is situations in which individuals consensu-
ally reach incorrect decisions with high confidence (see 
Koriat 2015, 2017; Litvinova et  al. 2019). In such situa-
tions, confidences toward the incorrect decision are 
aggregated and can lead to high group confidences 
toward incorrect decisions. In how far CWMV can ade-
quately reflect real groups in these situations remains to 
be shown because consensually incorrect decisions were 
too rare in our setting to allow inferences, see bottom left 
quadrants in Fig. 4.

Further insight into group processes can be gained by 
fixing the ideal group confidence and varying the con-
stellation of individual confidences. For example, our 
Scenario II determined an ideal group confidence of 75% 
based on one confident individual (76% for biased coin) 
and two almost uninformative individuals (51% for fair 
coin). The same ideal confidence of 75% would come from 
three equally confident members (59% for biased coin). 
CWMV predicts the same ideal confidence, but real 
groups may behave differently in these two cases. From 
our current estimates of the equality bias ( β = 0.67 ), we 
predict that real groups are more confident in the latter 
constellation where each individual contributes an equal 
confidence as compared to a situation where only one 
individual is very confident.

Our controlled setting provided optimal conditions 
for CWMV with independent confidence ratings, but it 
was rather artificial. This allowed us to verify that groups 
are indeed able to perform confidence weighting to some 
extent. However, in real-world tasks, bad calibration of 
confidences may prevent simulated groups to perform 
as well as real groups. For example, Klein and Epley 
(2015) observed that individuals could not report well-
calibrated confidence ratings, but real groups still out-
performed simulations using MV. One possibility is that 
individuals failed to rate their confidence in a compara-
ble way when verbal scales were used instead of numeric 
scales (Windschitl and Wells 1996): Klein and Epley used 
a 9-point Likert scale from “not at all confident” (1) to 
“very confident” (9). Nevertheless, participants might 
have been able to share calibrated confidences in the real 
group discussions. This could have led to a better perfor-
mance of real compared to simulated groups.

Another possible reason for real groups outperforming 
simulated groups is that the assumption of independence 

is violated. These—arguably more realistic—situations 
have been investigated under the name of hidden pro-
files, where a hidden profile determines the distribution 
of information that is either common among or unique 
to individuals (Stasser and Titus 2003; Stasser and Abele 
2020). Distinguishing between evidence that is held by 
all individuals of a group versus evidence that is uniquely 
known by few individuals is a crucial aspect of success-
ful real groups (Mercier 2016). Consider again the exam-
ple of three individuals deciding whether a suspect is 
guilty or not. Say, individuals have in total five pieces of 
evidence: two incriminating, I1 and I2 , and three exoner-
ating, E1 , E2 and E3 . All individuals know all the incrimi-
nating evidence but each individual knows only one 
unique piece of exonerating evidence. That is, the first 
individual knows I1 , I2 , and E1 ; the second knows I1 , I2 , 
and E2 ; and the third knows I1 , I2 , and E3 . For each indi-
vidual there is more incriminating evidence and each 
would decide ’guilty’ with some confidence. Incorrectly 
assuming independence, CWMV would simulate the 
group decision to be guilty as well. However, a real group 
might lay out all the evidence, find in total more exoner-
ating evidence, and decide ‘not guilty.’

There are some approaches to handle such depend-
encies formally (Kaniovski and Zaigraev 2011; Shapley 
and Grofman 1984; Stasser and Titus 1987) each com-
ing with its own set of particular, additional assumptions. 
To sketch the approach that we find most promising: 
CWMV could be applied not to the potentially depend-
ent individual responses but to the independent pieces 
of evidence, with confidences indicating the strength of 
each piece of evidence. Incorporating CWMV in this 
way could improve theoretical predictions: Rather than 
comparing group performance to the best individual (as 
is often done), CWMV-inspired approaches may provide 
a more adequate baseline for group performance even 
when information is distributed in a way that violates the 
independence assumptions for individual responses.

Conclusion
Confidence ratings of individuals play an important 
role in real group decisions and can be used to increase 
simulated group performance. In a controlled setting, 
real groups have proven to aggregate confidences in a 
way that is to some extent consistent with the CWMV 
even though they tend to treat individual responses 
more equal and with lower confidence than when using 
CWMV simulations. Developing group simulation meth-
ods (for example to account for dependencies) and com-
paring simulated group decisions using those methods 
to real group decisions will deepen our understanding of 
real-world group discussion.
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Abbrevations
MV: Majority vote; CWMV: Confidence weighted majority vote.
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