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Uncertainty promotes information-seeking
actions, but what information?
Ashlynn M. Keller1* , Holly A. Taylor1,2 and Tad T. Brunyé2,3

Abstract

Navigating an unfamiliar city almost certainly brings out uncertainty about getting from place to place. This
uncertainty, in turn, triggers information gathering. While navigational uncertainty is common, little is known about
what type of information people seek when they are uncertain. The primary choices for information types with
environments include landmarks (distal or local), landmark configurations (relation between two or more
landmarks), and a distinct geometry, at least for some environments. Uncertainty could lead individuals to more
likely seek one of these information types. Extant research informs both predictions about and empirical work
exploring this question. This review covers relevant cognitive literature and then suggests empirical approaches to
better understand information-seeking actions triggered by uncertainty. Notably, we propose that examining
continuous navigation data can provide important insights into information seeking. Benefits of continuous data
will be elaborated through one paradigm, spatial reorientation, which intentionally induces uncertainty through
disorientation and cue conflict. While this and other methods have been used previously, data have primarily
reflected only the final choice. Continuous behavior during a task can better reveal the cognition-action loop
contributing to spatial learning and decision making.
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Significance
When people go to a new city, they can feel discomfort
emanating from uncertainty about how to find their way
around. As technology has developed, a response to this
uncertainty includes heavy reliance on navigational aids.
However, using navigational aids is not without prob-
lems. Specifically, research suggests that navigational
aids impair environmental learning. Further, this tech-
nology is not infallible. The combination of these two
issues can limit people’s ability to navigate their environ-
ment. Uncertainty also likely promotes environmental
learning, in part through information gathering about
the environment. A better understanding about what in-
formation people seek when they are spatially uncertain
can inform changes in both environment-learning strat-
egies and navigational aid design. Notably, environment-

learning strategies and navigational aids could focus on
the information people seek and then use when uncer-
tain, potentially reducing one’s information-processing
load. This paper proposes that examining continuous
behavioral data (e.g., position and heading) during navi-
gation can provide insights into what information people
consider when uncertain. We summarize existing uncer-
tainty and navigation research and then offer a first-step
method to assess information gathering during naviga-
tional uncertainty in a simple environment. This infor-
mation could lead to navigational aid improvements that
promote rather than inhibit environmental learning.

Introduction
Imagine moving to a new city. You have just opened an
account at the local bank and now want to purchase
some groceries. It is unlikely that you know the closest
grocery store’s location, assuming it is not directly vis-
ible. Therefore, as you walk out the bank door, you won-
der in which direction you should go. Do you go
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straight? Left? Right? What information do you seek to
decide? Uncertainty, a cognitive state, is common in un-
familiar environments and almost certainly promotes in-
formation seeking, an action. You might look left and
right, pull out a map (now often on a smart device), or
ask a passerby for directions. Notably, spatial information
seeking involves a series of actions, e.g., heading in a par-
ticular direction, looking around, pulling up maps, etc.
Information-seeking actions can be directed to different

types of environmental information. Return to your quest
of finding the nearest grocery store from the bank. When
looking around, you might see only houses to your left,
but businesses and more people to your right. Using this
information (Dalton, Hölscher, & Montello, 2019), you
turn right. At this point, you may also pull up a map
(Fig. 1), and after noting what looks like a rectangular
business center (geometric information) and a building
with a grocery store icon (landmark information), you are
more confident in your navigation decision and mentally
note the business district’s location. As this scenario illus-
trates, different types of information can be used to make
decisions within environments. Environmental learning
involves encoding this information. While navigating, you
become aware of specific landmarks (e.g., bank, park,
parking lot). You may note, on a map or while navigating,
how those landmarks form a path or that in some areas
they are closer together (configural information, including

routes), likely meaning they are closer to the city center.
From a map (Fig. 1) you might register that the business
district forms an elongated rectangle oriented east-west
and that various residential neighborhoods abut the busi-
ness district (geometric information gathered from a survey
perspective). While spatial cognition research has variably
defined the different spatial information types, here we
will primarily focus on landmark, configural, and geomet-
ric information when discussing the information people
seek when uncertain.
These information types often overlap. Individual

landmarks make up configurations, and these configura-
tions may contribute to the overall geometry of the
space. Little is known about how frequently we seek one
or a combination of information types over others when
uncertain and how this impacts our navigational actions
and the development of spatial memory. This review ex-
plores uncertainty’s role in spatial learning, covering ex-
tant behavioral and neural literature to inform
predictions about information seeking. We then suggest
that continuous behavioral measures can provide in-
sights into information seeking during navigation. While
continuous neural measures would likely also be inform-
ative, and we have used them to inform our ideas, this
paper focuses specifically on continuous behavioral mea-
sures. We will discuss the benefits of measuring behav-
ioral continuously and then detail how these continuous

Fig. 1 Example community map. Imagine standing at the bank (yellow oval) and needing to find a grocery store. Landmark information differs in
the visual character of different buildings or other spaces. Here landmark information could be the parking lot, a house, or the shopping center.
Landmark configuration can be seen in the relative density or layout of landmarks. A useful landmark configuration here could be a housing
development next to a parking lot which is across the street from a business center. A grocery store is less likely to be in a housing development
than a shopping center, and a parking lot is indicative of a lot of traffic (which could be near a shopping center). Geometric information relates to
the shape or layout of the entire environment and here can be examined globally as the grid-like layout of the streets on this map or locally with
the rectangular layout of the business center. Although the figure gives only a snapshot of the community, its rectangular form reflects the
overall environment geometry
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behavioral measures could be used with a popular spatial
navigation paradigm.
Information seeking when uncertain likely aims to

weight one choice as more probable. A navigator may
seek to accumulate enough environmental information
to reach a confidence threshold associated with a deci-
sion, such as whether to continue straight, turn around,
or turn right or left (Brown & Heathcote, 2008). The in-
formation sought might involve specific environment
landmarks (landmark information), how these land-
marks relate to one another (configural information),
whether the landmarks or structures together form an
overall pattern (geometric information), or a combination
of these information types. Together, landmark, config-
ural, and geometric information form the foundation of
our spatial memories (Montello, 1998; Siegel & White,
1975). Spatial cognition research reveals that multiple
factors affect attention to and, consequently, processing
of different types of environmental information (e.g.,
Brunyé & Taylor, 2009). These factors may help inform
understanding of how spatial uncertainty affects infor-
mation gathering.

3. Uncertainty
Uncertainty is a mental state experienced when attempt-
ing to decide between two or more competing choices.
Decisions under uncertainty can involve either known or
unknown probabilities. Known probabilities have been
referred to as risk (Bernoulli, 2011) and unknown ones
as ambiguity (Ellsberg, 1961). Uncertainty has been stud-
ied with regard to cognition broadly and navigation
more specifically. As our opening example illustrates,
uncertainty is prevalent when we navigate, particularly
in new environments.
Uncertainty can arise during navigation for several rea-

sons. First, it can arise when one attempts to orient one-
self in a relatively unfamiliar environment. For instance,
when exiting a subway station, gaining an initial orienta-
tion can be challenging and elicit uncertainty (Ishikawa
& Yamazaki, 2009). Second, uncertainty can arise when
one selects initial path segments and plans a route to-
ward a destination. For example, once a navigator has
successfully oriented, he must plan a route by selecting
initial and subsequent path segments from among mul-
tiple possibilities; these options can elicit uncertainty
(Wiener, Lafon, & Berthoz, 2008). Third, uncertainty can
arise during wayfinding when a navigator seeks feedback
about progress along a route. For instance, if a distal
landmark becomes imperceptible, such as being blocked
by a building as one walks, a navigator may become un-
certain about whether she is still on course (Burgess,
Doeller, & Bird, 2009).
When uncertain, we take steps to reduce uncertainty,

one of which likely involves information gathering

(Bruner, 1973; Kuhlthau, 1993). Uncertainty’s impact on
information gathering has been considered within the
contexts of knowledge construction (Bruner, 1973;
Dewey, 1933; Kelly, 1963) and information search
(Chowdhury, Gibb, & Landoni, 2011; Kuhlthau, 1993).
When uncertain about which path leads to your desired
destination, randomly selecting one route without add-
itional input does not seem like a productive strategy.
Gathering more information from the environment
could differentially weight the choices, thereby decreas-
ing uncertainty and increasing navigation efficiency. Ac-
tions such as looking around the environment, searching
for distinguishable landmarks, or pulling out a map are
behaviors that likely reflect information gathering. Fur-
ther, these actions could be used as behavioral uncer-
tainty metrics, i.e., marking points to examine what
information individuals seek. Importantly, having finer-
grained uncertainty metrics and/or metrics prior to out-
comes could reveal what informs these navigation
choices. In turn, responses to uncertainty, whether cog-
nitive or affective, could help inform its role in
navigation.

3.1. Uncertainty: measurement in context
Understanding how uncertainty affects cognitive behav-
ior requires clear uncertainty indicators. Tolman (1948)
used rodents’ pause-and-look behavior as a starting
point for further exploring navigational processing. In a
similar vein, if uncertainty can be clearly identified in
humans, then actions taken in response can be evalu-
ated. Aiming to determine potential behavioral measures
of uncertainty, Brunyé, Haga, Houck, and Taylor (2017)
focused on a common behavior that people exhibit when
seemingly lost: looking around. An individual highly un-
certain about his current location would likely look
around more than a person who is certain. To capture
this behavior, the researchers continuously recorded
heading direction during virtual environment (VE) navi-
gation. The continuous heading data were analyzed in
two ways, using circular variance (variability around the
person) and entropy (the probability of adopting various
headings). While both techniques evaluate looking-
around behavior, heading entropy showed a stronger re-
lationship to path efficiency, a proxy of navigation suc-
cess. Higher entropy (looking in more directions)
coming into intersections, the point in an environment
where a decision needs to be made, related to decreased
path efficiency (Brunyé et al., 2017). This suggests that
looking around could signal navigational uncertainty,
particularly at decision points, and subsequent actions
could reflect responses to uncertainty. Further, quantify-
ing looking around with entropy appears to predict fu-
ture navigation success.
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Entropy, as a general term, is the amount of disorder
or uncertainty about a state or situation (Shannon,
1948). In other words, the more variability in a behavior,
the more uncertainty there may be. While this definition
of entropy originated as an engineering construct, it has
been used to indicate the degree of uncertainty in a range
of behavioral, biological, and psychological contexts, in-
cluding navigation (e.g., Brunyé et al., 2017; Hirsh, Mar, &
Peterson, 2012). As one example, entropy has been used
to measure inattention in driving. Using steering wheel
variation, or steering entropy, higher entropy is related to
more car crashes (Boer, 2000, 2001). The work reveals that
behavioral entropy reflects behavioral variations well and
in so doing is considered a viable quantitative metric for
transient states of inattention. Within biology, entropy is
discussed in terms of internal disorganization or uncer-
tainty that must be reduced to ensure an organism’s sur-
vival (Prigogine & Stengers, 1997).
This description leads nicely into the psychological en-

tropy definition provided by Hirsh et al. (2012), where
entropy is anxiety-provoking uncertainty that must be
managed to prevent potential negative consequences.
Due to the potential stresses of psychological entropy,
Hirsh et al. (2012) proposed a theoretical framework
known as the entropy model of uncertainty (EMU). The
EMU aims to understand the impact entropy/uncer-
tainty has on not only an individual’s neural firing, but
also on behavior. We will describe the EMU in more de-
tail in the subsequent Uncertainty: affect and cognition
subsection. Taken together, this work suggests that task-
relevant behavioral variability relates to task uncertainty.
With navigation, looking around can accurately indicate
navigation uncertainty (Brunyé et al., 2017). We suggest
using behavioral variability beyond simply measuring un-
certainty. Specifically, we propose using increases in be-
havioral variability to mark important time frames to
further explore how uncertainty affects actions and re-
lated cognitive behaviors. For navigation, this could in-
clude using increased looking around (denoting feeling
lost) to then examine what information people further
process. The information sought likely relates to how
spatial mental models develop.
Changes in behavioral variability are likely not limited

to a single behavior. To date, navigation uncertainty has
been examined by considering looking around, opera-
tionalized as changes in heading direction. There are
likely other measures of this transient uncertainty state,
such as changes in walking speed or specific eye move-
ments, as well as neural measures such as pupil diameter
or physiological and neurophysiological responses
(Brunyé & Gardony, 2017; Cavanagh et al., 2011; Thayer,
Åhs, Fredrikson, Sollers III, & Wager, 2012; Urai, Braun,
& Donner, 2017). In fact, the EMU proposes that en-
tropy arises in neural systems when there is conflict

between competing perceptual information and behav-
ioral options (Hirsh et al., 2012). Entropy in overt behav-
ior, such as erratic looking behavior, may reflect the
inherent disorganization of mental processes during un-
certainty and its accompanying anxiety. For example, re-
cent research in the medical domain examines whether
eye movement entropy may prove valuable for monitor-
ing workload levels and uncertainty among surgical
trainees (Di Stasi et al., 2016). Next we examine how un-
certainty has been examined in other cognitive contexts
and how a continuous behavioral measure would inform
the outcomes of those contexts.

3.2. Uncertainty: affect and cognition
Uncertainty is often accompanied by an affective re-
sponse. Continuously measuring affective responses (e.g.,
skin conductance, heart rate, etc.) could be one way to
measure uncertainty throughout a scenario. As proposed
by the EMU, affective responses to uncertainty are
linked to four primary mechanisms and processes (Hirsh
et al., 2012). First, uncertainty states pose an adaptive
challenge that decision-makers are constantly seeking to
manage and minimize. Second, conflicts between envir-
onmental cues and task-related behavior produce transi-
ent uncertainty states. Third, expertise in a domain
helps decision-makers adopt clear goals and decision cri-
teria that then help reduce uncertainty in the face of
conflict. Finally, anxiety is the subjective manifestation
of uncertainty states, associated with measurable neural
(anterior cingulate) and hormonal (noradrenaline) re-
sponses. The EMU offers a framework through which
we can understand uncertainty, examine the behaviors
underlying uncertainty, and therefore behaviorally meas-
ure uncertainty.
Affective responses to stress differ in both valence and

arousal depending on the nature and potential conse-
quences of the uncertainty. High-stakes consequences,
even in the absence of known probabilities, more often
lead to negative affect (e.g., Slovic & Peters, 2006). In
fact, when uncertainty heightens a risk appraisal, it can
change intentions and behavior (Sheeran, Harris, &
Epton, 2014), and capturing this behavior change should
have utility for examining behaviors that follow it. Navi-
gational uncertainty involves ambiguity, more so than
risk, and a common response to ambiguity is aversion
(Slovic & Tversky, 1974). People who have high anxiety
related to small- and large-scale spatial tasks (i.e., spatial
anxiety; Lawton, 1994) feel as though many of their
spatial decisions are ambiguous and show aversion to
(and avoidance of) novel spatial experiences altogether
(Gagnon & Wagner, 2016; Gunderson et al., 2013).
People also differ in their tolerance for uncertainty; indi-
viduals having less tolerance show more negative affect,
such as worrying (Dugas, Gosselin, & Ladouceur, 2001).
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Therefore, when faced with ambiguity during navigation,
individuals may completely avoid the situation causing
the uncertainty or worry as a result of that uncertainty.
Avoiding the uncertainty may result in slowing the speed
of approach or retracing their steps. Additionally, worry
or anxiety that may result from the uncertainty could
lead to measurable physiological responses (e.g., in-
creased heart rate, change in skin conductance, etc.).
Arousal related to an affective response has also been
shown to impact how navigators process or learn an en-
vironment. During learning, when presented with a
stressor (time pressure), individuals learned local land-
marks (only one building present at a time) more accur-
ately than global landmarks (multiple high-rise
skyscrapers visible simultaneously; Credé, Thrash,
Hölscher, & Fabrikant, 2019). This suggests that, when
aroused, people rely more heavily on landmarks than
landmark configurations. Other research has also exam-
ined aversion, which often accompanies arousal, but the
context (how risky or ambiguous a situation is) matters
(FeldmanHall, Glimcher, Baker, & Phelps, 2016; Kállai,
Karádi, & Feldmann, 2009). Relating their results to
navigation, this could mean that when an individual is
highly uncertain about which direction to choose to get
to the store, and is not highly aroused due to threats or
time constraints, she would be more likely to make a
risky choice (e.g., wander around until she finds it). This
could increase behaviors (e.g., wandering around, look-
ing around, seeking a map, etc.) leading up to arriving at
the desired destination. Such behavior would not be
accounted for in typical behavioral measures of naviga-
tion, which often only focus on navigation outcomes.
However, if an individual were highly aroused, he might
be less likely to engage in a risky behavior and instead
seek a map or ask help from a passerby. As such, their
overall behaviors would be different. Map seeking would
increase, but other behaviors, such as distance traveled,
would be reduced (i.e., the person could more directly
navigate to the destination based on the direction infor-
mation he/she acquired). Based on navigation time, it
may seem that the person was less uncertain, but con-
sidering other continuous behavioral measures could re-
flect uncertainty and actions taken to reduce it, such as
accessing a map.
Further, arousal, more so than valence, relates to

memory impairment (Corson & Verrier, 2007) and a
tendency to process categorically (Friedland, Keinan, &
Tytiun, 1999). Important for navigational uncertainty,
Brunyé, Mahoney, Augustyn, and Taylor (2009) found
that arousal while learning an environment led to a
greater configural focus (looking at how information re-
lates and creating a larger picture) at the expense of
landmark processing. Other research, however, shows
that arousal narrows attentional focus (e.g., to

landmarks; Reisberg & Heuer, 1992). Regardless, arousal
related to uncertainty appears to shift cognitive process-
ing by changing the information focus. Task demands
likely impact how arousal shifts attention. Some evi-
dence suggests that arousal during online processing
(e.g., perceptual processing of landmarks) narrows focus
to landmarks, but arousal during offline processing (e.g.,
memory retrieval) leads to a configural or geometric bias
(Brunyé et al., 2009). These findings would predict that
information seeking would focus on bigger picture (con-
figural or geometric) aspects of an environment if relying
on memory, but a smaller picture (landmark) focus
while within the environment. Furthermore, the nature
of the landmarks, whether proximal or distal, also im-
pacts this focus. Distal landmarks inform an organism’s
orientation within an environment, but when proximal
and distal landmarks are in conflict, proximal landmarks
are preferred (Knierim & Hamilton, 2011). Continuously
measuring behavior or arousal during uncertainty could
further pinpoint what is happening at each moment in
time and subsequently what information is sought to re-
duce uncertainty.
Uncertainty likely impacts cognitive processing

beyond that related to an affective response. However,
research has not extensively addressed uncertainty’s role
in cognitive processing (e.g., attention, working mem-
ory, cognitive load, information gathering, etc.). Some
work suggests that uncertainty detrimentally affects cog-
nitive processing, reducing attention and decreasing
encoding. Uncertainty increases cognitive load, often
engaging working memory resources (Coutinho et al.,
2015) and activating a complex network of brain
responses to up-regulate vigilance and information gath-
ering (Brunyé & Gardony, 2017; Heekeren, Marrett, &
Ungerleider, 2008; Payzan-LeNestour & Bossaerts,
2012). The cognitive load reduces our ability to use
those cognitive resources for concurrent tasks while
uncertain and can lead to resource depletion for subse-
quent tasks (Coutinho et al., 2015). In contrast, uncer-
tainty may be beneficial for some cognitive processes.
Uncertainty promotes goal-driven information seeking
(Gottlieb, Oudeyer, Lopes, & Baranes, 2013). It also
appears to promote metacognitive processing; when
ambiguity is explicitly identified, both humans and
monkeys can use this information adaptively (i.e., to
avoid negative consequences; Shields, Smith, & Wash-
burn, 1997). Finally, contextual variables likely play a
role in how uncertainty impacts cognitive processing
and therefore in how we navigate. As mentioned above,
spatial navigation may be a good domain for exploring
uncertainty’s cognitive impact given how frequently un-
certainty arises when navigating a new environment
(e.g., Brunyé et al., 2017; Stankiewicz, Legge, Mansfield,
& Schlicht, 2006).
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3.3. Uncertainty: navigational behavior
Uncertainty has been considered in how environments
are learned and remembered. In robotics, one approach
to modeling environmental learning involves accruing
spatial knowledge into uncertainty or transformation
matrices. Uncertainty/transformation matrices reflect es-
timated relations between location coordinates through
a covariance matrix. Weights within the matrix reflect
the uncertainty of these estimates (Smith & Cheeseman,
1986). As a robot navigates, these uncertainty matrices
develop through experience in the environment; over
time these matrices can be used to form Cartesian-like
maps that can purposefully direct a robot’s movement
(Cassandra, Kaelbling, & Kurien, 1996). Humans, like
these robots, accrue information within an environment
over time, combining the information into a spatial mental
representation of their environment (Zeno, Patel, & Sobh,
2016). Uncertainty is inherent in much of this experience,
emerging from navigation problems or errors (e.g., bump-
ing into things, getting lost, etc.; Arleo & Gerstner, 2000).
Uncertainty then prompts people to update their develop-
ing cognitive map (e.g., Arleo & Gerstner, 2000; Fleischer,
Gally, Edelman, & Krichmar, 2007).
Similar factors related to an environment can impact

both uncertainty and environmental learning success.
Environment size impacts both (Stankiewicz et al.,
2006). As environment size increases, uncertainty in-
creases and navigation success (e.g., path efficiency) de-
creases. This relationship between environment size and
uncertainty may arise for multiple reasons. Larger envi-
ronments generally include more landmarks and con-
comitantly more landmark configurations, thus
increasing the information needing to be encoded. With
more information, it may be both more difficult to men-
tally update one’s mental map and more difficult to
identify changes or missed or misremembered informa-
tion. Continuous behavioral assessment of uncertainty
could help pinpoint what information is being sought, if
it is different between large and small environments, and
what seems to contribute to navigational failure. Con-
sistent with an inability to identify changes or misre-
membering information, uncertainty makes it difficult
for people to update their mental map (Stankiewicz
et al., 2006). Not updating, in turn, hinders future navi-
gational success (Stankiewicz et al., 2006). Larger envi-
ronments may also motivate people to process an
environment strategically and configurally, similar to
chunking (Gobet et al., 2001; McNamara, Hardy, &
Hirtle, 1989). Instead of focusing on specific landmarks,
people process the relationships between landmarks, in-
cluding configurations, emerging geometry, and the
interaction between geometry and landmark configura-
tions. Evidence suggests that people group route seg-
ments into spatial chunks (Hirtle & Jonides, 1985;

Stevens & Coupe, 1978). While grouping can facilitate
learning, it sometimes interferes with memory for spe-
cifics (Roediger III & McDermott, 1995).
Multiple decision-making strategies combine for suc-

cessful navigation (Schmidt, Papale, Redish, & Markus,
2013). Work with animals and humans reveals place and
response strategies, each governed by a different brain
area (Packard & McGaugh, 1996; Raiesdana, 2018). Place
strategies involve flexible responses to environmental
cues; response strategies combine rapid recognition with
well-learned action sequences (Schmidt et al., 2013). Un-
certainty may change navigational strategies and search-
ing behavior. This has been observed in animal
navigation, which is frequently presented as a good ana-
log to human navigation. Typically, desert ants rely on
visual memory (Wystrach, Mangan, & Webb, 2015) and
path integration (Merkle, Knaden, & Wehner, 2006) to
navigate back to their nest after foraging. However, vis-
ual memory and path integration are not without error,
necessitating other approaches when they fail (Merkle &
Wehner, 2010). When navigation errors arise, ants have
high uncertainty about their nest location. At this point
they adapt their behavior to use systematic search
(Merkle et al., 2006) and/or rely on other cues, such as
landmarks and scents (Wolf & Wehner, 2005). Other re-
search has explored Bayesian integration in the context
of ant navigation (i.e., Wystrach et al., 2015). Notably,
the creation of an initial belief (prior) that is then chan-
ged (updated) based on evidence demonstrates that,
when uncertain, ants weight path integration to a greater
degree than other information, such as their visual mem-
ory (e.g., landmarks, landmark configuration, geometry
of the environment, etc.) of their surroundings. The
weight given to their visual memory is modified depend-
ing on their degree of uncertainty (Wystrach et al.,
2015). This kind of result—that uncertainty triggers
greater reliance on specific information, e.g., path inte-
gration for ants—suggests that examining information
seeking under uncertainty can help us to better under-
stand human navigation. Further, the knowledge that
emerges can potentially be applied to developing naviga-
tional aids that help people get to their destination while
still learning their environment and forming a mental
map.
Similarly, rodents shift spatial strategies when uncer-

tain (e.g., in cue conflict situations; Schmidt et al., 2013).
Behaviorally, when these animals reach a decision point
where cues conflict, they exhibit behaviors suggesting
uncertainty, such as pausing and looking at navigation
options, a behavior termed vicarious trial and error or
VTE (Tolman, 1948). Recent work links VTE to hippo-
campal place cell firing, the pattern of which suggests
consideration of navigation options (Redish, 2016).
These findings parallel neural and behavior indicators
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for prediction or future option consideration (Buckner &
Carroll, 2007; Schacter, Addis, & Buckner, 2007). When
considering navigational options, an organism either
needs to have a mental representation of the environ-
ment or needs to gather information to develop one.
Further, as information is gathered and an organism
learns about its environment, there is likely some Bayes-
ian integration underway. When two forms of informa-
tion occur simultaneously, they are probably weighted
equally and therefore influence a decision equally. How-
ever, in situations involving prior experience and uncer-
tainty, an organism relies more heavily on prior
knowledge to determine what to do (Cheng, Shettle-
worth, Huttenlocher, & Rieser, 2007).
These results from desert ants and rodents suggest

that animals change their strategies when faced with un-
certainty. Desert ants, when uncertain, rely more heavily
on path integration than on visual memory of their sur-
roundings. Rodents display VTE, which suggests that
they experience uncertainty and then either use their
mental representation of their environment (visual
memory like the desert ants) or seek information about
their environment. While desert ants rely more on path
integration when uncertain, rodents use Bayesian inte-
gration to determine what to do when faced with uncer-
tainty. Bayesian integration relies more heavily on the
rodents’ prior knowledge over new information. This
work with animals offers insights into how human navi-
gation may work and also motivates a need for continu-
ous behavioral measures to examine human navigation.
To understand what could go wrong when navigators
face uncertainty, we must first understand how our
spatial mental models (i.e., the map we have in our
heads of how a city is laid out) develop and what is in-
corporated into them.

3.4. Uncertainty: summary
Uncertainty has been demonstrated to have both positive
and negative outcomes on human behavior and affect,
both within cognition generally and within navigational
contexts. Within navigation, uncertainty may result in
poorly formed spatial mental models, making subsequent
navigation tasks difficult or potentially dangerous (e.g.,
ending up in a bad neighborhood). While individuals react
differently to uncertainty, there may be common behav-
iors that can be measured to determine the degree of un-
certainty and give an overall assessment of navigational
performance. Continuous behavioral measures would re-
veal when uncertainty is present, how behavior changes
due to uncertainty (e.g., different spatial information is
sought), and how the outcomes change as a result. To
begin to understand how uncertainty could impact the de-
velopment of our spatial mental models, we first need to
know how spatial mental models develop.

4. Spatial mental models
4.1. Spatial mental model development
When uncertain, perhaps about one’s location in the en-
vironment or how to get to a destination, people likely
access what they know about the environment from
memory. By looking around, they could be trying to
match what they see to what they remember and/or
gathering additional information to further develop their
spatial mental model. As such, theories and empirical
data about spatial mental model formation would likely
inform ideas about how uncertainty may influence infor-
mation seeking. The types of spatial information people
incorporate into memory include landmarks, landmark
configurations, and geometric (routes, geometry, and
other more complex configurations) information
(Montello, 1998; Siegel & White, 1975). The timeline by
which these information types are incorporated into
memory remains a point of debate.
Two timelines describing spatial memory development

based on navigation have been proposed. The sequential
timeline suggests that this information is incorporated
into memory serially (Siegel & White, 1975), starting by
learning about individual landmarks and then connect-
ing them into configurations that may eventually include
the space’s geometry, first routes and then broader con-
figurations. In other words, learning moves from land-
mark to geometric information. The simultaneous
timeline suggests that landmark, configuration, and geo-
metric information are learned in parallel (Ishikawa &
Montello, 2006; Montello, 1998). However, cognitive
and affective responses to uncertainty may affect the sa-
lience of and likelihood of incorporating these informa-
tion types. These two timelines have implications for
information seeking when uncertain. Siegel and White’s
(1975) timeline suggests that people would seek land-
mark information, existing landmark knowledge, and
turn-by-turn directions. Based on Montello’s (1998)
timeline, people would seek all three information types.
We know, though, that people gather environmental

information from multiple sources, in addition to what
they can see while navigating. Maps and navigation aids
are the most common navigation information sources.
They involve a primary spatial perspective (egocentric or
allocentric), which has implications for information
seeking. An egocentric perspective, primarily available
when navigating, involves locating environmental infor-
mation relative to one’s own position. From an egocen-
tric perspective, landmarks and local landmark
configuration information is readily available. An allo-
centric perspective, primarily available with maps, in-
volves locating landmark positions relative to each other
from a viewpoint outside (generally above) the environ-
ment. From an allocentric perspective, all three informa-
tion types (landmark, configuration, geometry) are
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readily apparent. Commercial navigational aids some-
times shift between these perspectives. However, without
navigational aids, individuals may be forced to use one
perspective (e.g., egocentric perspective because no map
is available) over the other, even if they would be more
confident or comfortable using information from the
other perspective. As a result, landmark and landmark
configuration information may be more salient over geo-
metric information when uncertainty is present.
Thorndyke and Hays-Roth (1982) showed that spatial

memory differed depending on how it was learned.
Through navigation (egocentric perspective) people bet-
ter remembered locations relative to their current pos-
ition. From maps (allocentric perspective) people better
remembered how landmarks related to other landmarks
(landmark configuration and geometry). If the informa-
tion source impacts what information people encode in
memory, it likely plays a role in what information people
seek when uncertain, dependent on whether one has a
map available. Thus, if a person studied a map, but still
remains uncertain about the path to take, she may seek
information from another perspective (e.g., Dai, 2020).
However, to know what information is guiding naviga-
tion when uncertain, we cannot rely solely on whether
or not someone reaches the destination. Instead, we
need to look continuously at what the person is doing
while trying to get to the destination. This information
can help determine what is guiding that person’s
navigation.

4.2. Using spatial mental models
How people learn about an environment affects their
spatial memory, which in turn has implications for how
they later think about that environment or what they
can mentally do with that information (e.g., Brunyé,
Rapp, & Taylor, 2008; Brunyé & Taylor, 2008; Taylor,
Naylor, & Chechile, 1999; Taylor & Tversky, 1992).
Thorndyke and Hays-Roth (1982) explored differences
in environment knowledge based on two main informa-
tion sources: navigation and maps. Maps, which present
a survey perspective, provide landmark, landmark con-
figuration, and geometric information directly. Through
navigation, which provides a route perspective, landmark
information is readily evident, but landmark configural
and geometric information require time and experience
in the environment. Brunyé et al. (2008) examined the
role of these information types by giving participants ei-
ther survey (e.g., Johns Park is located on the northeast
side of Whited Street.) or route descriptions (e.g., Turn
right directly onto Whited Street. Johns Park is on the
right side of Whited Street.). Participants receiving survey
information took less time to learn and had greater rep-
resentational flexibility, defined by the ability to access
landmark and geometric information to answer

questions, than participants who received route informa-
tion. Brunyé and Taylor (2008) suggest that survey
knowledge is more readily abstracted into spatial mental
models, while route knowledge requires more experience
and information integration before the knowledge can
be abstracted.
The ability to use a spatial mental model, the map

of an environment one forms in one’s mind, adaptably
(e.g., follow a route from a map or draw a map after
navigating) indicates representational flexibility. Repre-
sentational flexibility also predicts how effectively
people use spatial mental models (Brunyé et al., 2008).
The level of abstraction or representational flexibility
of one’s spatial mental model likely interacts with un-
certainty when within an environment. Someone with
a less abstracted spatial mental model would likely still
be building a geometric framework and would first
seek landmark information. Someone with a more ab-
stracted spatial mental model would likely have less
uncertainty, but if faced with uncertainty may seek
configural or geometric information. These ideas mo-
tivate methodologies and hypotheses for continuing re-
search. In a similar way, Bilge and Taylor (2010)
demonstrated that not only are map and navigation
learning better suited to different sized environments,
large and small respectively, but we also mentally up-
date as we navigate. Instead of “here” (i.e., the place
you start on a map: “You are here”) remaining station-
ary, it changes as you move. Further, “here” varies de-
pending on the environment size and could encompass
multiple entities (e.g., the chair in a room or the
house you are in or the city in which the house is lo-
cated; Bilge & Taylor, 2010). This result supports the
need for a continuous measure of uncertainty, as the
“here” identified at the beginning of navigation is un-
likely to be the “here” at the end. Without a way to
continuously identify “here”, information about what
“here” is at each time point in navigation is hidden
from the navigational process.
How people plan to use spatial information, or their

goal, also affects their spatial memory. Taylor et al.
(1999) had people learn an unfamiliar building either
from a map or via navigation with either a route-based
(learn the fastest route) or a configuration-based (learn
how the rooms relate to one another) learning goal. Par-
ticipants incorporated both source-based and goal-
relevant information. For instance, if one wanted to look
at a map to figure out how to get to a friend’s house
(route goal), one would likely remember information
about the route to the house plus geometric and con-
figural information apparent on the map. In terms of
information seeking when uncertain, people would
more likely seek goal-consistent information (Brett &
Vandewalle, 1999).
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4.3. Spatial mental models: summary
How we use spatial information to develop spatial men-
tal models has been widely studied. Spatial information,
as discussed here, can be subdivided into three categor-
ies: landmark, landmark configuration, and geometric.
Yet, when navigational uncertainty occurs, the spatial in-
formation sought varies based on the context of that
situation, which then alters spatial mental model devel-
opment. As individuals try to reduce uncertainty, they
may seek spatial information they deemed reliable in
past spatial mental model development, or they may
look for a different spatial information type. This process
of seeking out specific information to reduce uncertainty
inherently changes the spatial mental model being devel-
oped and the navigational process used to reach the de-
sired destination. By using continuous behavioral
measures, we can examine what is happening moment
to moment, how each information type is being weighed,
and how that information is incorporated into the final
spatial mental model.

5. Continuous behavioral and neural measures
Navigation, here defined as the process of taking a
known path or finding a way through an unknown en-
vironment (i.e., wayfinding), is a continuous process,
meaning we do not instantly know our way around a
new environment or necessarily know the best way to
get between points A and B even in a familiar environ-
ment. We are constantly learning new things about our
environment as we interact with it, but when we meas-
ure navigation success, we generally examine discrete
measures (e.g., time to completion, path efficiency, or
success in reaching a target location). These discrete
measures gloss over many behaviors in which people en-
gage while navigating. Some spatial cognition research
has begun to use continuous measures, some of which
have previously been applied to other cognitive pro-
cesses. This work suggests that continuous measures can
provide more insight into cognition generally and think-
ing about spatial environments specifically. Both behav-
ioral and neural continuous measures have been used.
Commonly used continuous behavioral measures for

exploring cognitive processes include mouse tracking
and eye tracking. Tracking computer mouse position
while someone makes a choice (e.g., one route versus
another) has been used to infer cognitive issues used to
make that choice (Freeman & Ambady, 2010). Wang,
Taylor, and Brunyé (2019, 2020) used mouse tracking to
show how actual spatial location interacted with the lin-
guistic term used to describe spatial location when veri-
fying a spatial description (e.g., “theater to the west of
the restaurant”). Mouse tracking used with this action-
compatibility paradigm revealed that the linguistic term
had a stronger impact on the verification decision when

the environment was not learned as well. This finding
would not have been apparent without the continuous
data. Eye tracking (Hollander et al., 2019) also provides
continuous data. Eye-tracking metrics have been used to
reflect attention to particular information. These include
dwell time and shifts between regions of interest, among
others. Kiefer, Giannopoulos, and Raubal (2014) demon-
strated that successful navigators focus more visual at-
tention on map symbols relevant to their destination
compared to unsuccessful navigators (who may look at
multiple symbols). Using eye tracking and/or virtual
reality (VR) within a spatial reorientation context would
allow researchers to see if the same holds true when
faced with uncertainty, whether fixation or dwell time
are longer for certain environmental components (e.g.,
landmarks, geometry, etc.), suggesting those components
inform individuals’ decision processes when facing un-
certainty. Any of these measures have advantages and
difficulties and should be carefully selected based on
their feasibility and relation to the cognitive construct
and task at hand. In addition to those described above,
navigation-specific behaviors (e.g., heading change, en-
vironment location) can be collected in a continuous
manner (Brunyé et al., 2017). Collecting these measures
is already straightforward in virtual environments.
Neural continuous measures, including electroenceph-

alography (EEG) and functional near-infrared spectros-
copy (fNIRS), have been used to explore a variety of
cognitive processes. Here we focus on a few studies
where these neural measures have been examined in
spatial contexts. EEG has been used to examine neurally
based electrical changes at the scalp before, during, and
after a VR immersion (Kim, Kim, Kim, Ko, & Kim,
2005). This work showed a relationship between VR
immersion and EEG delta and beta wave activity. In the
past, EEG recordings have been too noise prone to allow
locomotion during recordings. However, recent research
by Gramann and colleagues has demonstrated that not
only does mobile brain/body imaging (MoBI) reveal no
differences between standing, slow walking, and fast
walking conditions (Gramann, Gwin, Bigdely-Shamlo,
Ferris, & Makeig, 2010), but using a regression proced-
ure and spatial filtering allows noise from human gait to
be removed from EEG data (Gwin et al., 2011). These
results suggest that EEG could be used, not only in a VR
desktop setting, but also with immersive VR. This would
allow any cognitive differences arising from physical
movement, as opposed to movement through a mouse
and keyboard, to be revealed. EEG data would enable a
direct comparison between the immersive and desktop
VR navigation. fNIRS measures brain activity in the pre-
frontal cortex (PFC; Holtzer et al., 2011). Given where it
measures, it generally reflects executive function-related
processing, particularly cognitive load. fNIRS has been
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shown to reflect changes in a person’s gait during navi-
gation, and gait changes while talking have further been
linked to uncertainty (Spiers & Maguire, 2006, 2007).
Functional magnetic resonance imaging (fMRI) has
begun to examine dynamic continuous behavior in real-
world settings by teasing out neural activity related to
specific events (Spiers & Maguire, 2007). These data re-
veal the roles brain areas play during navigation (Spiers
& Maguire, 2006); however, fMRI has mediocre tem-
poral resolution, so exact structures are hard to pin-
point. While these continuous neural measures reveal
what the brain may be doing over time, discussing them
in the context of available continuous measurements is
important.
In this paper, we primarily focus on how continuous

behavioral measures can provide insights into informa-
tion processing during navigation. As a starting point for
examining what continuous navigation measures can tell
us about information gathering during navigation uncer-
tainty, we describe in detail one oft-used spatial naviga-
tion paradigm: spatial reorientation (e.g., Cheng, 1986;
Sturz & Kelly, 2009, 2013).

5.1. Spatial reorientation paradigm
Spatial reorientation may be a good starting paradigm to
systematically look at the information continuous mea-
sures can reveal. Spatial reorientation is used to study
the role of uncertainty and spatial navigation by focusing
on the information one gathers during navigation and
intentionally induces uncertainty while participants are
learning an environment. The aim is to see what infor-
mation types, landmark or geometric, people use to re-
orient and reach a goal. While the task itself does not
continuously measure behavior, this task in conjunction
with continuous behavioral measures offers a good, eas-
ily controlled environment from which to verify continu-
ous measures of uncertainty and explore the utility of
continuous navigation measures. While we see using this
controlled paradigm as a good starting point, its ele-
ments can be seen in real-world navigation, as we will
discuss throughout this section. Here we first describe
the paradigm and then discuss how continuous naviga-
tion data within the paradigm could be insightful.
The basic task places participants in a rectangular

room that contains four landmarks (e.g., four colored
boxes). A landmark is placed in each corner, and one
corner is designated the goal location. The participants
are told to locate the goal (i.e., find an object hidden in
one corner of the room), but are not given instructions
about what information to use. The goal (indicated in
Fig. 2a by a gray star) is not readily visible; this ensures
that participants will explore and learn about the room.
Thus, the room includes landmark and geometric cues.
The room’s shape (rectangular) serves as a geometric

cue for the goal (e.g., the goal is where the short wall on
the right meets the long wall on the left). The corner ob-
jects serve as landmark cues. During the task, partici-
pants are disoriented in each trial. With humans in a
real-world environment (rectangular room), disorienta-
tion involves blindfolding the participants while spinning
them to face a random direction. Disorienting partici-
pants in this way increases uncertainty (for a review, see
Cheng, Huttenlocher, & Newcombe, 2013). The para-
digm includes learning and test phases. When learning,
participants typically have unlimited time and opportun-
ities, within a trial, to explore the room and find the goal
(e.g., Lee & Spelke, 2008; Lourenco, Addy, Huttenlocher,
& Fabian, 2011; Reichert & Kelly, 2011; Sturz & Kelly,
2009, 2013). Learning continues for a fixed number of
trials or until the participant can reliably find the goal
location after disorientation (cf. Cheng & Newcombe,
2005). During learning the goal location is visible, so
participants merely need to find it. However, during test-
ing there is no visible goal location, so participants must
make a choice about which corner they believe is the
goal location, based on their experience. Like most navi-
gation studies, spatial reorientation generally involves a
discrete measure of performance. We propose using
continuous behavior measurements with this paradigm
to learn more about the information used to make their
final choice.
Analogs to the spatial reorientation paradigm can be

found in the real world. For example, imagine starting a
new job and taking the subway home from work every
day. There is a learning phase during which you learn
that coming out of the Main St. exit results in your find-
ing a Dunkin’ Donuts on the left and a sushi restaurant
on your right. From repeated visits you know to go left
toward the Dunkin’ Donuts and your apartment is just a
block away. However, your knowledge of the environ-
ment is tested when the Main St. exit is closed for con-
struction and you exit through Center St. Here, you
discover another Dunkin’ Donuts and an office building.
What do you do in this situation? Here the landmark in-
formation is misleading (i.e., another Dunkin’ Donuts),
but examining the landmark configuration should reveal
that it is not the same path you normally take. Alterna-
tively, you could rely on the geometry of the subway sta-
tion and its relative position compared to surrounding
roads. How do you decide where to go? What informa-
tion do you use to navigate home? The spatial reorienta-
tion paradigm addresses these exact questions and offers
a controlled means for testing what our continuous be-
havior reveals about the information we seek and the
navigation behaviors we engage in when faced with
uncertainty.
The three test conditions are designed to assess which

information individuals use to code the goal location.
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The Landmark Only (also known as Feature Only) test
changes the room geometry from a rectangle to a
square, removing geometry as a cue (see Fig. 2c). If
participants select the landmark that was associated
with the goal during training, then they have encoded
landmark information. If they have only encoded the
room’s geometry, then they will randomly select a
goal. Research shows that adults (e.g., Kelly & Bischof,
2008; Reichert & Kelly, 2011; Sturz & Kelly, 2009,
2013) and children (e.g., Lee, Sovrano, & Spelke, 2012;
Lee & Spelke, 2008; Lourenco et al., 2011) can readily
use landmark information when geometry is unavail-
able. The Geometry Only condition uses the rectangu-
lar room, but makes landmark information
uninformative. For example, landmarks may be
removed altogether or made perceptually identical
(e.g., colored boxes are now all black; see Fig. 2b). In
the Geometry Only condition, if a participant has
encoded geometry, he would either choose the trained
corner or the corner diagonal from it. These two cor-
ners are geometrically equivalent. With uninformative
landmarks, selecting either corner suggests use of the
available geometric information. Results suggest that
both adults (e.g., Kelly & Bischof, 2008; Reichert &
Kelly, 2011; Sturz & Kelly, 2009, 2013) and children
can use geometric information, implying it is salient
across the lifespan (e.g., Lee et al., 2012; Lee & Spelke,
2008; Lourenco et al., 2011).

The most intriguing test is the Cue Conflict condition.
In the Cue Conflict condition, uncertainty is created by
placing geometric and landmark information at odds
(see Fig. 2d). To do this, landmark information is shifted,
rotating it (clockwise or counterclockwise, direction is
irrelevant) one corner relative to the original rectangular
training room. By doing so, the landmark no longer cor-
responds with the geometry experienced during training.
This cue conflict creates high uncertainty; previously
both landmark and geometric information identified the
goal location, and now the participant must choose be-
tween these information types. This condition can reveal
which information is more likely used. If participants
use geometric information, they would choose one of
the geometrically equivalent corners; if they use the
landmark information, they would select the trained
landmark. Bayesian theory suggests that people use past
experience when facing uncertainty (Weise & Woger,
1993). In the Cue Conflict condition, however, a partici-
pant’s past experiences included both landmark and geo-
metric information, so neither information type can be
reliable (Cheng et al., 2007). Responses then suggest
whether someone relies on landmark or geometric infor-
mation to a greater extent.
The spatial reorientation paradigm has been used with

both humans (across age categories) and other animal
species. Combining these two literatures guides under-
standing of which cues people either integrate into their

Fig. 2 Spatial reorientation room layouts. a Depicts the layout of the training room with the star indicating the goal location. b Depicts the
Geometry Only test condition where there is no landmark information available for participants to utilize. c Depicts the Landmark (formerly
Feature) Only test condition, where geometric information has been removed. d Depicts the Cue Conflict test condition, where the landmark
information is rotated by one corner so that the landmark and geometric information are no longer corresponding to the training room
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mental model or favor during uncertainty. Focusing on
the Cue Conflict condition, the spatial reorientation re-
sults show that different species and the same species at
different ages use different cues (see Table 1). Rats
(Cheng, 1986) and fish (Sovrano et al., 2003) prefer geo-
metric over landmark information. Specifically, these an-
imals incorrectly search a geometrically symmetric
location, even in the presence of predictive landmark
cues (e.g., Cheng, 1986). Based on such findings, the
presence of a geometric module for orientation has been
proposed and debated. The debate arises because other
animals, like pigeons (Kelly et al., 1998), chicks (Vallortigara
et al., 2004), and rhesus monkeys (Gouteux et al., 2001)
prefer landmark information, even without training. Hu-
man adults also preferentially rely on landmark information
(e.g., Kelly & Bischof, 2008; Reichert & Kelly, 2011; Sturz &
Kelly, 2009, 2013). Human children, like rats and fish and
unlike human adults, prefer geometric information (e.g.,
Lee et al., 2012; Lee & Spelke, 2008; Lourenco et al., 2011).
They can use landmark information if it is the only infor-
mation available (e.g., Landmark Only condition; Hermer &
Spelke, 1996). With this variability, it is difficult to conclude
that one information type supersedes the other when a per-
son is either uncertain or needs to reorient. Thus, knowing
more about spatial information seeking is important to
understand how we navigate and update our mental models
of an environment.
The primary behavioral response with the reorienta-

tion task is location selection (i.e., a single, discrete
choice). While it shows which information type “won” in
a participant’s selection, it provides only one data point
per trial. Continuous behavioral measures could reveal
the extent to which a participant considered other infor-
mation. Animal research has begun to extend beyond
choice data to examine neural responses when cues con-
flict. Julian, Keinath, Marchette, and Epstein (2018)
reviewed research surrounding the cognitive and neural
underpinnings of the spatial reorientation paradigm.
Their review links rodent spatially tuned cells to human
neurobiology, suggesting that continuous neural

measures might provide insights into navigation under
uncertainty. Important for the current work, neural re-
sponses are collected on a continuous basis while the
animal completes a task, in this case locating spatially
organized goal locations (Julian et al., 2018). While a
continuous measure of human spatially tuned cells has
not been collected (and is not possible with current
methodologies) during a spatial reorientation task, the
data from rodents suggest that we can gain greater in-
sights on cognitive processes underlying navigation from
continuous measures. We suggest that collecting con-
tinuous behavioral data could provide insights into what
information people consider when uncertain.
As an example, implementing this paradigm in a vir-

tual environment, the continuous measures (through
mouse tracking or physical location) that could be exam-
ined are heading direction (how much are you looking
around versus maintaining a consistent heading?), speed
of travel (are you slowing, speeding up, or maintaining
your pace?), and approach angular difference (what is
the difference between the ideal angle at which you
should approach your target destination versus how you
actually approached?). Speed of walking or travel can be
likened to Tolman’s (1948) research on pausing and
looking behavior during VTE. In a VR environment this
speed of travel could indicate when a participant slows
down, stops, or pauses, which would be indicative of un-
certainty as well as any navigation options being consid-
ered. While she is stopped, we could examine the
heading to see if she is looking around for additional
cues. If the headings are clustered toward geometric or
landmark information, the extent to which she looked
while walking toward the other options suggests that she
is still processing and/or reassessing the options. Finally,
her approach angular difference, a moment-by-moment
comparison between the ideal angle of approach (given
their current location) to the actual angle of approach,
could reveal if she is exploring other areas of the room
first before approaching the goal location. These mea-
sures could translate just as easily to the real-world

Table 1 Spatial reorientation Cue Conflict results across multiple species

Citation Population Landmark (route) Geometric (survey)

Hermer and Spelke (1996);
Learmonth, Newcombe, Sheridan, and Jones (2008);
Lee and Spelke (2008)

Human children aged 18 to 24 months
Human children aged 3, 4, 5, or 6 years
Human children aged 4 years

No
Only in large environments
No

Yes
Yes
Yes

Kelly and Bischof (2008) Human adults Yes No

Gouteux, Thinus-Blanc, and Vauclair (2001) Rhesus monkeys Yes No

Cheng (1986) Rats No Yes

Sovrano, Bisazza, and Vallortigara (2003) Fish No Yes

Kelly et al. (1998) Pigeons Yes No

Vallortigara, Pagni, and Sovrano (2004) Chicks ?? ??
??indicates that the results were inconclusive/mixed
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example mentioned above, with speed of walking, angu-
lar difference, and heading direction indicating how
confident you are when navigating home, whether you
considered the changed landmarks (i.e., no sushi restaur-
ant), or whether you just raced home, ready to relax
after a long day.
A challenge of using continuous measures is in analyz-

ing such both rich and dense datasets. We can draw on
some existing analysis approaches. Mouse-tracking work
provides some data analysis (Freeman & Ambady, 2010).
As in VR, mouse tracking collects continuous x- and y-
coordinates of the computer mouse location while par-
ticipants move it relative to multiple response options.
From these data, a number of informative measures can
be calculated, including spatial attraction/curvature, mo-
tion complexity, velocity, and acceleration. Similarly, by
collecting the x- and y-coordinates of avatar position in
the VR environment, measures of proximity to target lo-
cation options, speed of locomotion (including pauses),
and changes in direction over time can be assessed. Ana-
logs of eye-tracking metrics can also be used, in this case
examining heading data. With eye tracking, metrics of
fixation time, fixation shifts, and fixation sequences pro-
vide insights into information people are attending to
and processing. Similarly, consistent versus changing
heading directions over time can provide insights into
both entering a state of uncertainty and the information
types people consider when navigating.
There are several reasons to use the spatial reorientation

paradigm as a starting point to explore the utility of con-
tinuous data. First, there is a wealth of data, with different
age groups and species using this paradigm. This allows
for comparison and extension of well-replicated findings.
Second, the paradigm purposely induces uncertainty by
giving conflicting cue information during some test condi-
tions. The Cue Conflict conditions would allow us to ver-
ify that heading change serves as an uncertainty signal
(Brunyé et al., 2017). Because uncertainty is purposefully
induced, examining other behavioral measures can poten-
tially give insights into information people consider during
the task. Third, the spatial reorientation has several meth-
odological options for implementation, giving researchers
options. These include using a physical room or virtual
(VR) or augmented reality (AR). Each option has pros and
cons. The same behavioral measures can be collected
through each of the methods, but in different ways. The
physical room allows people to navigate in the most nat-
ural way, by walking around. Movement, position, and
heading data can be collected using cameras. However,
coding camera data is time and labor intensive. VR and
AR generally collect the relevant movement, position, and
heading data automatically, lessening the coding burden.
However, people generally have to be trained on how to
interact with the environment, making it much less

natural. Eye-tracking technology can be used in all of the
methodologies, but some require wearable trackers.

5.2. Continuous behavioral and neural measures:
summary
Examining navigation solely based on whether someone
reaches their final destination (a discrete measure) over-
simplifies the navigation process. When an individual is
uncertain, he exhibits behavior moment to moment
which reduces uncertainty and ideally leads to his target
destination. Continuous behavioral (e.g., mouse tracking,
eye tracking, etc.) and neural (e.g., EEG, fNIRS, etc.)
measures could assess the level of uncertainty at any
given moment as well as what information someone
seeks to reduce that uncertainty. The spatial reorienta-
tion paradigm is a simple, well-controlled environment
through which uncertainty is intentionally induced and
continuous measures can be recorded within a VR envir-
onment. The simplicity of the environment will allow re-
searchers the ability to develop measures of uncertainty
and determine what information is being sought during
uncertainty. This can translate into research in more
complex and real-world environments, which could lead
to fundamental changes in how navigational aids are
developed.
6. Future directions
Navigational uncertainty, a cognitive state, leads to in-

formation seeking, which often involves observable ac-
tions. The information-gathering actions, in turn, lead to
cognitive updating of one’s spatial mental model, which
then guides navigational actions. This continuous inter-
play of cognition and uncertainty allows for environmen-
tal learning and successful traversal within the
environment. While we know that uncertainty drives in-
formation seeking, the information sought remains un-
clear. Knowing this has important implications for
navigational aid design, navigational instructions, and
training methods to familiarize people with a new envir-
onment. In high-stakes situations, such as those involv-
ing emergency first responders, providing the right
information as uncertainty arises could improve out-
comes through reducing uncertainty-induced anxiety
and strengthening associations between perceptual cues
and behavioral affordances (Hirsh et al., 2012).
Continuous behavioral measures should provide a

more fine-grained evaluation of how this cognitive state
drives action. As stated previously, the spatial reorienta-
tion task provides an interesting means for studying
uncertainty’s impact as it purposefully induces uncer-
tainty. Further, this task has a wealth of discrete data
from widely varied populations to which continuous data
can be contextualized. To date, no one has used con-
tinuous measures, such as heading changes, path
changes, or proximity to targets, with the spatial
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reorientation paradigm. Our lab has recently begun such
experiments using desktop VR to evaluate the utility of
continuous measures. We suggest that having behavioral
indicators of uncertainty could mark critical junctures for
examining which aspects of an environment people attend
to as they develop a spatial representation. Heading en-
tropy may provide such an indicator. Further, the continu-
ous behavior itself should be informative. Similar to event-
related paradigms (e.g., event-related potentials [ERPs] or
event-related fMRI paradigms), presentations of a particu-
lar stimulus trigger the examination of and comparison
between neural and behavioral responses. Within the
spatial reorientation task, continuous heading, continuous
location, and/or eye movement data can help identify
whether an individual is attending to landmark, landmark
configuration, or geometry during times of high uncer-
tainty (Cue Conflict condition). It can then be compared
to more certain trials (test in training room).
Continuous heading or path data can be used to reveal

what information people are taking in. The primary be-
havioral measures would relate to movement within the
environment. Taking heading measures, dwelling on a
particular heading, and/or changing between certain
ones should suggest the information under consider-
ation. For example, heading dwell time and heading
changes can reveal the extent to which a participant fo-
cuses on a specific corner with a specific landmark or
considers two different corners, such as the one associ-
ated with the trained landmark and the one associated
with the trained geometry. Likewise, these same mea-
sures can reveal whether someone strongly considers the
room geometry, by alternately dwelling on particular
long and short walls related to the trained geometry.
The same logic can be applied to information related to
landmark configurations. In a similar vein, location dwell
time and movement changes can indicate information
someone is considering. Akin to mouse tracking, move-
ment toward one of the available cues, even if the loca-
tion signaled by that cue is not eventually selected,
would suggest consideration of that cue. Navigational
speed could signal approach and/or avoidance of par-
ticular cues. Dwell time at a location more proximal to a
landmark or geometric information could also suggest
consideration of that information. Using continuous
heading and movement data together will likely best
help to interpret what the measures indicate. For ex-
ample, in the Cue Conflict condition someone may walk
toward the corner associated with room geometry dur-
ing training. Here heading and movement data indicate
consideration of geometry. The person may then stop
partway and alternately look at this corner and the one
now associated with the trained landmark, thereby tak-
ing landmark information into account. Movement may
then shift toward the landmark-indicated corner, but the

person may again stop and look toward the geometry-
indicated corner. The continuous nature of these behav-
ioral measures can inform understanding of dynamic
mental processes that predict, indicate, and potentially
resolve uncertainty during spatial tasks.
We consider the spatial reorientation paradigm as only

a starting point for examining how uncertainty induces
information-seeking actions. The paradigm is obviously
simplistic relative to navigating in real-world environ-
ments. Once continuous measures can be validated in
this and other more simplistic spatial tasks (e.g., the
Morris water maze or radial arm maze; Astur, Tropp,
Sava, Constable, & Markus, 2004; Vorhees & Williams,
2006), they could be explored in realistic virtual environ-
ments where the experimenter has some control over
how uncertainty is induced.
If our current work validates heading entropy as a pre-

dictor of uncertainty and a signal for information seeking,
the measure could be expanded beyond this simple spatial
task to use in larger environments. The same is true for
continuous changes in heading, movement, and location.
Some of our suggested continuous measures would trans-
fer readily to real-world environments. For example, re-
turn to our opening example of finding a grocery store in
your new city. Upon leaving the bank, you can turn left or
right. In deciding, you may turn and look for a bit in one
direction then look in the other direction and then turn
back to the first direction. Say you then decide to turn
right, but then turn back and look in the other direction
again, walk that way for a while, and then change your
mind again. In the end, you find the grocery store along
the road that was a right turn from the bank. However, all
of your actions before finding the grocery store reflect in-
formation you considered along the way.
These results could be taken into account when relative

to the negative impacts of navigational aids, which reduce
uncertainty but also impair spatial memory development
(Gardony, Brunyé, Mahoney, & Taylor, 2013). If the next
generation of navigational aids takes into account what in-
formation people need and provides it when they exhibit
uncertainty, could people both have the security that a
navigational aid provides and also effectively learn the en-
vironment in which they are navigating?

7. Conclusions
Spatial navigation and learning are determined by what in-
formation is both available and encoded from the environ-
ment. Uncertainty dictates what information is examined
and incorporated into our environmental mental models.
We propose measuring continuous behavior, a pioneering
method, to reveal how uncertainty impacts information
sought during navigation. Current technology presents
minimal uncertainty such that humans rely on it to an ex-
treme, which hinders overall environmental learning.
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Measuring uncertainty using continuous behavior could be
the change needed to shift technology back to a more as-
sistive role: to supplement human learning and not replace
it.
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