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Abstract

It has widely been accepted that aggregating group-level decisions is superior to individual decisions. As compared
to individuals, groups tend to show a decision advantage in their response accuracy. However, there has been a
lack of research exploring whether group decisions are more efficient than individual decisions with a faster information-
processing speed. To investigate the relationship between accuracy and response time (RT) in group decision-making, we
applied systems’ factorial technology, developed by Townsend and Nozawa (Journal of Mathematical Psychology
39, 321-359, 1995) and regarded as a theory-driven methodology, to study the information-processing properties.

making process.

More specifically, we measured the workload capacity Canp(t), which only considers the correct responses, and
the assessment function of capacity Aanp(t), which considers the speed-accuracy trade-off, to make a strong
inference about the system-level processing efficiency. A two-interval, forced-choice oddball detection task,
where participants had to detect which interval contains an odd target, was conducted in Experiment 1. Then, in
Experiment 2, a yes/no Gabor detection task was adopted, where participants had to detect the presence of a
Gabor patch. Our results replicated previous findings using the accuracy-based measure: Group detection
sensitivity was better than the detection sensitivity of the best individual, especially when the two individuals had
similar detection sensitivities. On the other hand, both workload capacity measures, C4yp(t) and Axnp(t), showed
evidence of supercapacity processing, thus suggesting a collective benefit. The ordered relationship between
accuracy-based and RT-based collective benefit was limited to the Asnp(t) of the correct and fast responses, which may
help uncover the processing mechanism behind collective benefits. Our results suggested that Aanp(t), which combines
both accuracy and RT into inferences, can be regarded as a novel and diagnostic tool for studying the group decision-
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Significance

Previous studies have shown the so-called collective
benefit. That is, performance is more accurate when par-
ticipants work as a group in which they can communi-
cate with each other verbally or non-verbally, and with
an exchange of decision evidence or internal estimate of
confidence. However, it is still unclear whether group
decisions are more efficient than individual decisions
since a tradeoff may exist between speed and accuracy.
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In other words, increasing the number of group mem-
bers may increase the group’s response accuracy, but at
the same time would slow down the processing speed.
The aim of the study was to learn about the relationship
between accuracy and response-time (RT) measures in
group decision-making. To sum up, our results repli-
cated the previous findings that showed the collective
benefit for accuracy: the group’s detection sensitivity was
higher than the best individual’s detection sensitivity only
when group members’ detection sensitivities were similar.
The measures of processing speed, the workload capacity
measures, revealed that group decision-making was of
supercapacity processing. In addition, our results sug-
gested that the assessment function of workload capacity,
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which combines both accuracy and RT into inferences,
can be regarded as a novel and diagnostic tool to study
the group decision-making process. The current study is
not only a replication of the previous studies, but also
highlights the importance of combined accuracy and RT
measures in the inference of the group decision-making
process.

Introduction

An old saying goes, “Two heads are better than one.”
Combining group members’ opinions to make a coher-
ent decision is usually regarded as a better means of
decision-making than having an individual make a deci-
sion alone (Clemen, 1989). Many important real-world
decisions are collective decisions, such as juries render-
ing verdicts or a team of radiologists reading X-rays.
The situation in which group decisions are considered
to be superior to individual decisions is termed “wisdom
of crowds”! (Surowiecki, 2004).

In the literature, the primary focus has been on learn-
ing about the mechanism that underlies group decisions.
Previous studies have investigated the properties of co-
operation between two or more participants in percep-
tual decision tasks (Bahrami, Olsen, Latham, Roepstorff,
Rees, & Frith, 2010; Bahrami, Olsen, Bang, Roepstorff,
Rees, & Frith, 2012a; Sorkin & Dai, 1994; Sorkin, Hays,
& West, 2001; Sorkin, West, & Robinson, 1998) and
found that a group exhibits a decision advantage—a so-
called “collective benefit’—over an individual decision-
maker. There are several proposed possible explanations
for the existence of the collective benefit.

First, it is possible that the collective benefit results
from a reduced workload, as group members strategic-
ally split information among themselves. The fact that
each member can focus attention on a subset of infor-
mation (which means the group does not have to focus
its attention on the entirety of information) could lead
to an increase in collective processing efficiency. How-
ever, group decision accuracy may be limited by individ-
ual ability because the group must rely on the
capabilities of each member. This possibility has been
challenged and ruled out by Barr and Gold (2014). Barr
and Gold (2014) manipulated the group size (one to four
members) and the quantity of information (partial or
full) that each member received. Their results showed
that groups viewing the entirety of information signifi-
cantly outperformed groups whose members viewed lim-
ited portions of information and suggested that
strategically splitting information does not necessarily
lead to a collective benefit.

"The “wisdom of crowds” does not occur only in a context of working
as a group. It can be used to refer to the averaging effect while
working in isolation.
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Second, the collective benefit could be due to the stat-
istical facilitation effect (Green & Swets, 1966; Lorge &
Solomon, 1955; Sorkin & Dai, 1994; Sorkin et al., 2001;
Swets, Shipley, McKey, & Green, 1959). In stochastic
modeling, adding more independent random variables to
a parallel processing system can lead to a faster and
more accurate task completion. The statistical facilita-
tion that is achieved through the redundancy gain, has
been used by engineers to decrease failure rate of their
machines. Analogously, one can demonstrate a similar
effect in human group decision-making, by increasing
the number of independent decision-makers who work
in parallel. The overall group’s achievement will be bet-
ter than that of any individual member working alone.
Interestingly, the collective benefit, that is due to the
statistical facilitation and the redundancy gain, is merely
an outcome of the statistical improvement — that is, the
group benefit is not achieved by the group members’
interaction. Such a statistical facilitation effect is condi-
tioned on the use of the so-called first-termination rule,’
which means that the system would wait for the fastest
and correctly responding unit to complete and would
then use it to make the final decision while ignoring the
unfinished or incorrectly responding units.

Third, the collective benefit could be a result of the
integration of evidence collected by each group member
via social interaction (Bahrami et al., 2010; Lorenz, Rauhut,
Schweitzer, & Helbing, 2011). This explanation is different
from the first two in that it assumes the collective sum of
knowledge occurs not only as a simple sum of individual
knowledge, but as novel knowledge created through a series
of social interactions. As a result, the performance of a
group is better than that of the best observer or exceeds the
expectations of individual members working in isolation
(Collins & Guetzkow, 1964; Davis, 1969, 1973). Consistent
with the coactive model®> (Houpt & Townsend, 2011;
Schwarz, 1989, 1994; Townsend & Nozawa, 1995), the col-
lective benefit may have occurred because the individual
contribution is weighted and integrated into a single infor-
mation channel following a “weighted-and-sum” principle
of information integration.

Recently, an increasing number of studies has chal-
lenged the idea that group decisions would always

’It is commonly assumed that the first-termination rule is adopted in
an OR task, when multiple units are analyzed simultaneously, and in
which a decision is determined when either decision unit reaches the
decision criterion. However, it should be noted that group decision-
making does not necessarily follow the first-termination rule; other
forms of decision rules (e.g., majority rule, consensus) may be adopted
for group decisions.

3The coactive models assume the information from multiple decision
units is summed into a single unit, and that the sum of information
drives the total activation which is then compared to a threshold for
decision-making (e.g., Schwarz, 1989, 1994; Townsend & Nozawa,
1995; Houpt & Townsend, 2011).
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outperform individual decisions. For example, Fific and
Gigerenzer (2014) suggested that adding more decision-
makers does not necessarily enhance the group perform-
ance. The best individual may match the collective
decision accuracy or even outperform the group, espe-
cially when free riders exist. In addition, a single expert,
under certain conditions, can outperform the group
(e.g., Gordon, 1924; Graham, 1996; Winkler & Poses,
1993). The debate over the potential negative effect of
collaboration on decision-making has intensified work
that explores the conditions under which the collective
benefit/cost may arise.

A potential factor that may influence the collective ef-
fect was performance similarity between group mem-
bers. In a two-interval forced-choice oddball detection
task in which participants had to decide which interval
contained an odd target, Bahrami et al. (2010) investi-
gated whether participants can utilize their partner’s
confidence rating to improve group decision sensitivity.*
The results showed that only in a consistent group, in
which the two group members had similar detection
sensitivity, was the group decision superior to individual
decisions. Specifically, the authors used S,,;, and S, to
represent the detection sensitivity of the worse and bet-
ter individual, respectively, and only when S,,;,/S,ux >
0.4 did the group show the collective benefit, i.e., Szy.q/
Smax>1 (Sayaa denotes group detection sensitivity). By
contrast, in an inconsistent group (i. e. , S,,:/Syax < 0.4),
the group decision was worse than the decision made by
its better group member. Bahrami et al. (2010) further
suggested that the results supported the weighted
confidence-sharing model (WCS), which assumes that
individuals can take advantage of the confidence infor-
mation, i.e., an internal estimate of the probability of be-
ing correct; the final decision is made based on the
weighting function of the group members’ confidence.
The WCS model can be considered a variant of the co-
active models.

Another important factor in understanding the collect-
ive is the tradeoff between accuracy and speed in group
decision-making (see Heitz, 2014 for a review). The col-
lective effect can be measured by both response accuracy
and RT. However, when used in the same task, the two
measures can have an inverse relationship. That is, in-
creasing the number of group members may increase
the group’s response accuracy, but, at the same time,
could create longer RTs; for example, as the group size
increases, group members require more time to commu-
nicate with each other to reach a consensus. Thus, it is
reasonable to speculate that collaboration can increase

*The detection sensitivity is defined as the maximum slope of the
psychometric function. With the steeper the slope, the higher the
detection sensitivity.
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response accuracy but slow down the decision RT. The
above-mentioned studies focused mainly on the effect of
collaboration on accuracy measures (e.g., Bahrami et al,,
2010, 2012a, b) while neglecting its effect on the meas-
ure of processing speed.

Two other studies utilized RT measures (e.g., RT dis-
tribution analysis) to assess the collective effect (e.g.,
Brennan & Enns, 2015; Yamani, Neider, Kramer, &
McCarley, 2017). Brennan and Enns (2015) tested the
violation of the race-model inequality to infer the col-
lective benefit. In general, the race model assumes that
two processing units are racing to reach a certain deci-
sion criterion (Miller, 1982). The two units work inde-
pendently, and the faster unit, which reaches the
decision criteria first, will determine the response out-
come. In our domain of interest, the units are defined as
the individual decision-makers. The race-model inequal-
ity assumes that two group members work independ-
ently and in parallel (simultaneously). In a nutshell, a
violation of the race-model inequality would suggest that
the two decision-makers did not work independently of
each other and that at some point, prior to making a
final decision, they interacted with each other. In terms
of modeling processing systems, this situation is defined
by coactive processing. Using a visual enumeration task
in which participants were required to count the number
of targets (0/1/2) presented against the distractors, Bren-
nan and Enns (2015) demonstrated that the observed RT
data violated the race-model inequality, thereby support-
ing the notion that the two decision-makers did not
work independently and collaboration would facilitate
decision RTs.

Using another RT measure, i.e., workload capacity,
Yamani et al. (2017) examined how collaboration affects
individual processing efficiency in terms of the
information-processing speed. Workload capacity is a
measure of the change in processing efficiency (speed) at
the individual subject level when the system’s workload
(i.e., the number of decision-makers) increases, as pro-
posed by the framework of Systems Factorial Technol-
ogy (SFT, Little, Altieri, Fific, & Yang, 2017; Townsend
& Nozawa, 1995). According to SFT, increasing the
number of processing units (i.e., the system’s workload)
can have three different effects on the processing speed
of an individual processing unit. In the case of limited-
capacity processing, the speed of processing per process-
ing unit slows down when more units operate at the
same time. In the case of unlimited-capacity processing,
the speed of processing per processing unit remains un-
changed when more processing units are added. In the
case of supercapacity processing, the speed of processing
per processing unit speeds up by the addition of more
decision units. This could be the result of a facilitatory
interaction between decision units. It is notable that an
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unlimited-capacity system implies that the efficiency of
an individual unit remains unchanged, whereas the sys-
tem overall can be performing better compared with the
individual unit, due to stochastic considerations. In the
context of group decision-making, the limited capacity
indicates some form of inhibition between individual
decision-makers when they work as a group. In the case
of unlimited capacity, the addition of more group mem-
bers does not affect individual efficiency. In the case of
supercapacity, efficiency improves as a result of the
group members’ facilitatory interaction. Yamani et al.
(2017) study adopted the shared-gaze technique which
allows participants to see where their partner is looking
in order to study whether collaboration can benefit scan
in teams. Results showed supercapacity processing when
both group members were required to find and respond
to a target; by contrast, limited capacity was found when
the faster searcher found and responded to the target.
The supercapacity results suggested that, by holding fix-
ation on the target, the faster searcher can cue their
partner to the target location, which, in turn, boosts the
processing speed of the slower searcher. The limited-
capacity results suggested that shared gaze offered no
benefits but slowed down the processing for the faster
searcher.

To summarize, collective benefit/cost can be measured
by either response accuracy or RTs. These two measures
play complementary roles in understanding the mechan-
ism underlying group decisions. However, to our know-
ledge, there is no prior study that combines accuracy
and RT measures to infer the dynamic process of group
decision-making. This raises several related questions.
Are the inferences from the two measures consistent
enough to draw similar conclusions? Is it possible to use
a single performance index to quantify the collective ef-
fect by considering the two measures simultaneously? In
the present study, we integrated, within one study, the
two approaches by applying SFT (Little et al, 2017;
Townsend & Nozawa, 1995). Before we go into the de-
tails about the present study, we first briefly introduce
the theory and methodology of Systems Factorial Tech-
nology (SET).

Systems Factorial Technology

SFT (Little et al., 2017; Townsend & Nozawa, 1995) is a
useful tool for analyzing and diagnosing the dynamic
decision-making process. A wide range of fields in cog-
nitive research have utilized SFT, such as visual search
(Zehetleitner, Krummenacher, & Miiller, 2009), memory
search (Townsend & Fific, 2004; Van Zandt & Townsend,
1993), face perception (Ingvalson & Wenger, 2005; Yang,
Altieri, & Little, 2018), classification (Fific, Nosofsky, &
Townsend, 2008), change detection (Yang, 2011; Yang,
Chang, & Wu, 2013; Yang, Hsu, Huang, & Yeh, 2011),
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cued detection (Yang, Little, & Hsu, 2014; Yang,
Wang, Chang, Yu, & Little, 2019), word processing
(Houpt, Sussman, Townsend, & Newman, 2015;
Houpt, Townsend, & Donkin, 2014), audiovisual pro-
cessing (Altieri & Yang, 2016; Yang et al., 2018; Yang,
Yu, & Chang, 2016), and group decision-making
(Yamani et al.,, 2017). According to SFT, two important
information-processing properties of group decision-
making can be uncovered, such as a group’s organization
during task participation (i.e., how two individuals work
together to achieve a group decision) and workload cap-
acity (i.e., individual decision efficiency varies as a function
of the number of decision-makers).

In this paper, we used the workload capacity measure
to quantify group decision-making efficacy. The work-
load capacity measures can be used to indicate the
amount and type of the potential collective benefit. Here,
we introduced two types of capacity measures. First is
the AND capacity5 (Canp(t)), a standard measure of
workload capacity, developed by Townsend and col-
leagues (e.g., Townsend & Nozawa, 1995), which con-
siders only the RT data of correct responses. The AND
capacity is analyzed by comparing the group processing
efficiency to a baseline predicted from the UCIP model
(i.e., unlimited-capacity, independent, parallel model),
which assumes that all group members work independ-
ently and in parallel. The workload capacity is formal-
ized as a ratio of the cumulative reverse hazard
functions, K(£) = In F(t) where F(¢) =P (RT < £) (Chechile,
2003, 2011; Townsend & Eidels, 2011; Townsend &
Wenger, 2004), and is expressed as:

Ky (t) + Ky(t)

Canp(t) Kn®) (1)
for ¢ >0, where K}, K,, and K, represent the cumulative
reverse hazard function of the two non-collaborative
conditions, in which participants perform the task inde-
pendently, and the collaborative condition, in which par-
ticipants work together with social interaction (here, the
non-verbal communication), respectively. The interpret-
ation of Cynp(f) >1 implies that group performance is
better than the prediction from the UCIP model—that
is, the system engages in supercapacity processing.
When Cynp(f) = 1, it suggests an unlimited-capacity pro-
cessing system, implying that individual decision

®In the present study, we used the AND capacity rather than the OR
capacity to quantify the group decision efficiency. The AND capacity
assesses information-processing efficiency when an exhaustive stopping
rule is adopted (i.e., the maximum-time rule) whereas the OR capacity
assess the efficiency when a self-terminating rule is adopted (i.e., the
minimum-time rule). The reason is that we believe that A group deci-
sion is made by reaching the consensus through non-verbal communi-
cation and the independent-race model following a winner-takes-all
rule is not likely to occur in the current context.
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performance is unchanged when the number of group
members increases. When Canp(f) <1, it suggests a
limited-capacity processing system, implying that social
interaction may, in fact, even slow down individual deci-
sion time.

Second, we introduced a new measure, assessment
function of workload capacity A,np(t), to analyze group
decision efficiency. To our knowledge, A np(f) has not
been used to study the group decision-making process.
Similar to Canp(t), Aanp(f) has the advantage of infer-
ring the dynamic processing efficiency as a function of
RT (Donkin et al., 2014; Townsend & Altieri, 2012). Bet-
ter than Canp(f), Aanp(t) combines both accuracy and
RT data into the analysis, such that we can analyze the
decision efficiency of four response conditions: (a) cor-
rect and fast, (b) correct and slow, (c) incorrect and fast,
and (d) incorrect and slow. The inferences of A,np(Z)
were similar to Cqnp(2); the details of the data analysis
and inferences will be introduced in the “Data analysis”
section. Please see Table 1 for the SFT-related theoret-
ical glossary. More details can also be found in Town-
send and Altieri (2012).

The present study

In the present study, we conducted two psychophysics
experiments by collecting both accuracy and RT data to
test whether collaboration through the exchange of con-
fidence information can promote group decision effi-
ciency. In the first experiment, we extended the study by
Bahrami et al. (2010) by adopting the two-interval
forced-choice oddball detection task. In the second ex-
periment, we used a yes/no Gabor detection task. Both
accuracy-based and time-based measures were com-
puted to infer the collective effect. First, the accuracy-
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based collective effect was computed by comparing the
dyad’s sensitivity with the maximum individual sensitiv-
ity (i.e, Suyaa/Smax). Of particular interest was testing
whether this effect would change as a function of relative
detection sensitivity between the two group members
(i.e., Syin/Smax). Second, the time-based collective effect
was inferred from two workload capacity measures
(Canp(t)) and Aynp(2))) as introduced in the previous
section.

Our first goal of the study is to replicate the effect of
sensitivity similarity on joint decisions. We expect that
only when group members have similar detection sensi-
tivities, the collective benefit would be observed; that is,
group detection sensitivity will be higher than the detec-
tion sensitivity of the best observer. Our second goal is
to evaluate how RT and accuracy measures are consist-
ent enough to draw similar conclusions about the col-
lective effect. We expect to observe significant
correlations between the time-based and accuracy-based
measures of collective effect. Our last goal is to establish
the assessment function of workload capacity as a stand-
ard measure of group decision efficiency. Considering
the speed-accuracy trade-off effect, A np(£), which com-
bines both accuracy and RT into the analysis, can be
regarded as a better index for quantifying the group de-
cision advantage.

Experiment 1

In Experiment 1, a two-interval forced-choice oddball
detection task was adopted. The relative detection sensi-
tivity between the group and the best observer was com-
puted to infer the accuracy-based collective effect.
Additionally, the workload capacity of group decision-
making was assessed as a time-based measure of the

Table 1 Systems Factorial Technology (SFT)-related theoretical glossary

Assessment function

Assessment function of workload capacity combines both accuracy and response time (RT) into analysis.

It can be used to infer the processing efficiency of four response conditions: (a) correct and fast, (b) correct
and slow, (c) fast and incorrect, and (d) incorrect and slow

Coactive models

A parallel architecture which assumes that inputs from parallel channels are combined into a common

accumulator. A decision is made when the total activation reaches the decision criterion

Detection sensitivity

Race-model inequality

A maximum slope of the psychometric function. The steeper the slope, the higher the detection sensitivity

The race models assume that two decision units are racing to reach a decision criterion. If race models hold,

the survivor function for the collaborative condition is bounded below by a combination of survivor functions
from the two non-collaborative individual conditions. Violation of this bound implies that two decision units
may interact with each other with supercapacity processing; that is collective benefit

Statistical facilitation

Stopping rules
exhaustive rules

Systems Factorial Technology

The RT or accuracy gain produced by the standard parallel model

Rules to determine when a system stops processing, special cases of interest are self-termination and

A theory-driven methodology that emphasizes identification of organization of processes through

manipulation of experimental factors, typically under the assumption of factorial selectivity

Unlimited-capacity, independent
parallel model

Workload capacity

An architecture which assumes that each decision unit in a system work in parallel. The efficiency of the
system does not change as the number of decision units increases

A theoretical construct pertaining to influences on processing speed performance when the number of

decision units of a system (i.e,, the number of decision-maker in the present context) is varied
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(@)
Participant A’ ——] Individual condition
Non-collaborative Collaborative
condition condition
Participant B Individual condition Randomly paired
to form a dyad
(b)
Participant A’ —— Individual condition
Collaborative Non-collaborative
condition condition
Participant B Individual condition Ranomly paired
to form a dyad
Fig. 1 A flowchart of the task design. a the non-collaborative condition first. b the collaborative condition first

collective effect. If both accuracy-based and time-based
measures can reflect the collective benefit, we should ex-
pect that the accuracy-based collective effect (i.e., Sgyqq/
Sinax) 18 greater than 1 and that time-based measures re-
veal supercapacity results.

Method

Participants

Fourteen (eight male and six female; age: 21.3 +2.05
years) undergraduate students at National Cheng Kung
University volunteered to participate in this experiment
and were randomly divided into seven pairs. All of the
participants were right-handed. Before the experiment,
participants signed an informed consent form. The eth-
ics approval for the study was obtained from the Human
Research Ethics Committee of National Cheng Kung
University, and the experiment was conducted in ac-
cordance with the approved guidelines and regulations.
The participants were either compensated in the amount
of NTD 140 per hour or received class credit for their
participation.

Equipment

A desktop computer with a 3.20 G-Hz Intel Core i7-
8700 Processor, Intel UHD Graphics 630, and 8 GB of
RAM controlled the display and recorded the manual re-
sponses. Stimuli were presented on a 19-in. CRT

monitor with a refresh rate of 75 Hz and a display reso-
lution of 1024 x 768 pixels. The viewing distance was
kept at 60 cm and a chin-rest was used to prevent any
head movements. The experiment was programmed
using Psychtoolbox  (http://psychtoolbox.org/) from
MATLAB (Mathworks Inc., Natick, MA, USA).

Design, stimuli, and procedure

Figure 1 shows the flowchart of the task design and Fig. 2
shows an illustration of the trial procedure for each con-
dition.® All the participants participated in three cooper-
ation conditions: the individual condition, the non-
collaborative condition, and the collaborative condition.
Participants first performed the individual condition.
Then they were randomly paired to form a dyad.” As a
dyad, each participant faced their screen and was posi-
tioned next to their partner at a distance of 55 cm. They
could only see their partner’s responding hand. There-
fore, we believe that other forms of communication (e.g.,

°It is noted that the current testing procedure is different from that
used by Bahrami et al. (2010). In their study, a joint decision was
required only when the participants made inconsistent individual
decisions. By contrast, in the current setting, all the participants were
required to perform the individual condition, non-collaborative condi-
tion, and collaborative condition, tested in separate blocks.

“All the participants did not know each other; thus, the friendship
cannot account for the group performance.
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g
Confidence Rating
? S
Individual 12 3 4 5
condition
Response Conﬁ.dence
rating
N Non-collaborative
e S S condition ? Correct
+ S + S + S + o _— | Wrong
S S NI 1 2 Correct
Fixation Interval 1 Blank Interval 2 Response Feedback
500~1000 ms 85 ms 1000 ms 85 ms
? Correct
Collaborative I I Wrong
condition 1 P) Correct
Response Feedback
Fig. 2 An illustration of the trial procedure in Experiment 1

body language) are not available. The order of the col-
laborative and non-collaborative conditions was counter-
balanced across dyads (see Fig. 1).

The response mode was slightly different across the
three cooperation conditions. In the individual condi-
tion, participants were required to complete the task
alone and to provide a response by clicking the left or
right button of the mouse to indicate which interval
contained the odd target. After they had made their de-
cision, they were asked to rate their confidence in their
judgment using a Likert-type scale from 1 (“very doubt-
ful”) to 5 (“absolutely sure”). The confidence information
was used for the collaborative condition in the next
stage.

In the non-collaborative condition, two participants
working as a dyad performed the task together but with-
out any communication. One participant delivered a re-
sponse with a mouse click while the other participant
responded with a keyboard press. During each trial, only
one of the participants was required to respond and the
person who was required to respond was dependent on
the color of the question mark, with the color green in-
dicating that the participant with the keyboard should
respond and the color red indicating that the participant
with the mouse should respond. The color (green/red)
was randomly selected with equal probability. See Fig. 2
for an example, because the question mark is colored in
red, the participant with the mouse should respond and
the participant with the keyboard does not need to re-
spond. After a response was made, a feedback display
was shown to indicate the correctness of the present de-
cision (middle) and the correctness of the participants’
individual decision about the same trial tested in the in-
dividual condition (top and bottom colored in red and
green, respectively).

In the collaborative condition, the procedure was the
same as that in the non-collaborative condition except
that each participant’s confidence information was pre-
sented on a horizontal line to indicate the participants’
confidence in the judgment regarding the same trial that
was tested in the individual condition. Participants could
only communicate by exchanging their confidence infor-
mation and no other forms of communication (e.g., ver-
bal communication) were allowable. Specifically, the
confidence information was represented by two colored
marks (i.e., red and green marks representing the confi-
dence rating made by the two participants, respectively).
The farthest-left side represented the fact that the partic-
ipants were very confident that the target was presented
at Interval 1, while the farthest-right side represented
the fact that the participants were very confident that
the target was presented at Interval 2. This display of the
participants’ confidence allowed them to communicate
with each other and non-verbally exchange their confi-
dence ratings.

Each trial started with a fixation cross displayed for a
random duration of between 500 and 1000 ms. After-
ward, two consecutive stimulus displays were presented
for 85 ms with a 1000-ms blank interval in between the
two displays. Each display contained six Gabor patches,
which were placed in an imaginary circle with a radius
of 232.7 pixels (8.0°). All the Gabor patches were placed
equidistant from each other. Each Gabor patch was ver-
tically oriented (standard deviation of the Gaussian enve-
lope: 0.45°; spatial frequency: 1.049 cycle/°). In one of the
two displays, there were an odd target and five distrac-
tors; in the other display, there were six identical distrac-
tors. The contrast of the distractor was 10%. The
contrast of the target was 1.5, 3.5, 7.0, or 15.0% higher
than the distractor (i.e., the contrast level of the target
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was 11.5, 13.5, 17.0, or 25.0%) and was randomly se-
lected from one of the four contrast levels. The back-
ground was colored in gray with a luminance of 36.34
cd/m?. The participant’s task was to make a two-interval
forced-choice (2IFC) to indicate which interval con-
tained the odd target, as accurately and quickly as
possible after the question mark was presented. The
question mark was presented until the participants deliv-
ered a response or 2 s had elapsed.

Each cooperation condition involved two sessions in
order to collect enough data points. In each session, par-
ticipants first performed a practice block of 64 trials and
then 10 blocks of formal trials. Each block consisted of 2
(target was presented at Interval 1 or 2) x4 (contrast
levels of the target) x 8 (trials per combination).

Data analysis

The practice trials were excluded from the analysis. Cor-
rect RTs within a range of the 2.5% quartile and the
97.5% quartile were extracted for further analysis to ex-
clude the outliers. To compute the collective effect, we
compared the data of the collaborative condition (i.e.,
two participants working together with an exchange of
the partner’s confidence) to the data of the non-
collaborative condition (i.e., two participants working in-
dependently without any communication). In doing that,
we were able to conclude that the collective benefit
stems from the non-verbal communication rather than
from the social facilitation effect. It is notable that, in
the following, the term “non-collaborative-individual”
represents the individual performance extracted from
the non-collaborative condition rather than from the in-
dividual condition. The reason why we did not directly
compare the data of the collaborative condition to the
data of the individual condition is that a large processing
difference existed between the two conditions. That is,
in the collaborative and non-collaborative conditions,
participants were required to first process the color of
the question mark such that they would know who was
going to respond in the present trial, whereas there was
no need to process the color of the question mark in the
individual condition. If the processing was less efficient
in the collaborative condition than it was in the individ-
ual condition, we did not know whether the results were
due to collective cost or whether making a group deci-
sion would require an additional process.

First, we conducted a mixed-design analysis of vari-
ance (ANOVA) to test the differences in accuracy and
mean correct RTs, with the social condition (better ob-
server, worse observer, collaboration) serving as a
between-subject factor and with contrast level (11.5,
13.5, 17.0, or 25.0%) serving as a within-subject factor. It
is notable that the data of the worse observer and better
observer was extracted from the data of the non-
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collaborative condition and that the collaboration data
was extracted from the data of the collaborative condi-
tion. We did not incorporate the data of the individual
condition into analysis, as mentioned above; however,
the data would provide necessary information for the
collaborative condition.

The participants’ perceptual sensitivity was derived from
response accuracy. To quantify perceptual sensitivity, the
maximum slope of the psychometric function of contrast
sensitivity was estimated for individuals and dyads, re-
spectively (Bahrami et al., 2010, 2012a, b). We fitted the
data with a cumulative Gaussian function to estimate the
maximum slope of the psychometric function. A larger
slope indicates higher sensitivity. The cumulative Gaussian
function with two parameters, i.e., bias (b) and variance
(6®), was fitted by a procedure of maximum likelihood es-
timation via the MATLAB Palamedes toolbox (http://
www.palamedestoolbox.org/) (Mathworks Inc., Natick,
MA, USA). The psychometric curve, denoted as P(Ac)
where Ac is the contrast difference between the target and
distractor, can be expressed as:

P(Ac) = H <AC b > 2)
o
where H(z) is the cumulative Gaussian function:
2oodt -4
HE= [ e )
- (27)?

Here, P(Ac) corresponds to the probability of respond-
ing that the odd target was presented during the second
interval. By definition, the variance ¢* is related to the
maximum slope of the psychometric curve, denoted as s,
which can be expressed as:

1

(27102)%

(4)

S =

We defined “collective effect” as the ratio of the dyad’s
slope (Sgyqq) to that of the better observer (i.e., the indi-
vidual with a larger slope, S,,,..). A collective effect larger
than 1 indicates that the dyad managed to gain an ad-
vantage over its better individual, suggesting collective
benefit. Values below 1 indicate that collaboration was
counterproductive and that the dyad did worse than its
better individual—namely, collective cost. The effect of
relative detection sensitivity on the collective benefit can
be revealed by plotting the collective effect against the
relative sensitivity between the worse and the better ob-
server (S,,in/Smax)-

Moreover, we adopted SFT to calculate the workload
capacity of group decision-making (Little et al, 2017;
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Townsend & Nozawa, 1995). We used the SFT R pack-
age (Houpt, Blaha, Mclntire, Havig, & Townsend, 2014)
to compute workload capacity Canp(f) and the assess-
ment function of workload capacity A np(f) (please see
the introduction for more details). Notably, A4np(?) in-
corporates both RT and accuracy data into the analysis.
The probabilities of responses can be classified into four
categories: (a) the probability that a correct response is
made by time ¢ (correct and fast decision), (b) the prob-
ability that an incorrect response is made by time ¢ (in-
correct and fast decision), (c) the probability that a
correct response will be made but it has not happened
by time ¢ (correct and slow decision), and (d) the prob-
ability that an incorrect response will be made but it has
not happened by time ¢ (incorrect and slow decision).

The influence of additional decision-makers was mea-
sured for each of the four response types by comparing
the collaborative performance with the predicted UCIP
baseline derived from the non-collaborative condition.
This interpretation is more nuanced than the standard
capacity coefficient. In contrast to the standard capacity
coefficient C4np(t), when interpreting the A np(t) func-
tion, one must consider the type of response being
made. The following examples may help readers under-
stand how we make inferences using A np(t). The inter-
pretation of A ,np(f) for correct and fast responses bears
the closest resemblance to the standard capacity coeffi-
cient. When Aaap(2) =1 for correct and fast responses,
the implication is that the observed responses made be-
fore time ¢ are as probable as expected by the UCIP
baseline model. A correct and fast A np(f) >1 means
that participants make more correct responses by time ¢
than expected and, thus, exhibit a form of supercapacity.
Similarly, correct and fast A np(£) <1 implies that fewer
correct responses are made by time ¢ than expected by
the UCIP model (i.e., capacity is limited). The interpret-
ation differs for the other types of responses. For ex-
ample, for the incorrect and slow responses, A np(f) > 1
indicates that more incorrect responses are made after
time ¢ than is expected by the UCIP model, which im-
plies a form of limited capacity.

Finally, a quantitative comparison was made to ob-
serve the relationship between the accuracy-based meas-
ure and time-based measure. We first employed
functional principal components analysis (fPCA) with
varimax rotation to decompose Canp(t) and A np(E) into
several principal components (Burns, Houpt, Townsend,
& Endres, 2013). The SFT R package was adopted
(Houpt, Blaha, et al., 2014). fPCA is a structural exten-
sion of standard PCA (Ramsay & Silverman, 2005) and
can be used to describe the entire functions using a
small number of scalar values (i.e., the loading of the
principal component) (Burns et al., 2013). The approach
enabled us to describe which part of the function-level
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property is crucial for distinguishing collective effect as a
function of RT. Then, we tested the relationship between
the factor scores and the accuracy-based collective effect
measured by sensitivity such that the relationship be-
tween the accuracy-based measure and the component
functions can be uncovered.

In order to let the readers follow our SFT analysis steps
to replicate our results (e.g., results of Canp(£), Aanp(t),
and fPCA analysis), please see the Supplementary material
(S.1). We upload our script and data into Github. Files can
be downloaded at https://github.com/hanekaze/A-new-
measure-of-group-decision-making-efficiency.

Results

Table 2 presents the mean correct RTs and accuracy for
all the combinations of the social condition and contrast
level.

ANOVA

For RT, the results showed a significant main effect of
contrast level [F (3, 54) = 63.46, p<0.001, 1> = 0.78].
Post hoc comparison showed that the mean RT of the
contrast level of 25.0% was the fastest and that the mean
RT of the contrast level of 17.0% was faster than that of
the contrast level of 13.5% and that of the contrast level
of 11.5% (ps<.01 for all comparisons). The difference
between the contrast levels of 13.5% and 11.5% was not
significant. There was a main effect of social condition
[F (2, 18) =4.005, p = 0.04, 17127 = 0.31]. Post hoc compari-
son showed that the mean RT of the better observer was
faster than that of the worse observer (ps<.05). How-
ever, there were no significant differences between the
performance of the collaboration and the better observer
or worse observer. The two-way interaction did not
reach the significance level.

For accuracy, the results showed that a significant
main effect of contrast level [F (3, 54)=560.53, p<
0.001, 17127 = 0.97]. Post hoc comparison showed that ac-
curacy increased as the contrast level increased and that
the differences between every two contrast levels were
all significant (ps<.01 for all comparisons). Moreover,
there was a significant main effect of social condition [F
(2, 18) =3.936, p = 0.04, 11; = 0.30]. Post hoc comparison
showed that the accuracy of the worse observer was
lower than that of the better observer (ps<.05). How-
ever, there were no observable, significant differences
between collaboration and the better observer or worse
observer. The two-way interaction did not reach the sig-
nificance level.

Detection sensitivity
Figure 3 plots the relationship between the relative sen-
sitivity between the worse observer and the better
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Table 2 Mean correct response time (RT) and accuracy for all the combinations of social condition and contrast level

25.0% 17.0% 13.5% 11.5% Average

RT (seconds)
Worse observer 0.532 (0.056) 0.608 (0.081) 0.692 (0.079) 0.710 (0.097) 0.636 (0.104)
Better observer 0479 (0.067) 0.528 (0.057) 0571 (0.058) 0.600 (0.063) 0.545 (0.074)
Collaboration 0.506 (0.052) 0.565 (0.064) 0.629 (0.068) 0.654 (0.070) 0.589 (0.084)
average 0.506 (0.060) 0.567 (0.073) 0.631 (0.082) 0.655 (0.087)

Accuracy
Worse observer 0.95 (0.04) 1 (0.08) 0.62 (0.07) 0.52 (0.04) 0.72 (0.18)
Better observer 097 (0.02) 0.89 (0.04) 0.68 (0.06) 0.56 (0.04) 0.78 (0.17)
Collaboration 0.97 (0.03) 0.87 (0.07) 0.70 (0.07) 0.54 (0.02) 0.77 (0.17)
average 0.96 (0.03) 0.86 (0.07) 0.67 (0.07) 0.54 (0.03)

Values in parentheses represent standard deviation

observer and the accuracy-based collective effect (i.e.,
Sayadl Smax)- Although we observed a slight trend of posi-
tive correlation, as found in the Bahrami et al. (2010)
study, this positive correlation did not reach the signifi-
cance level (R? = 0.16, slope = 0.58, p =0.37). The non-
significant result may have occurred because of the re-
striction of range—namely, in the present experiment,
the relative detection sensitivities of all dyads were above
0.6.

Capacity coefficient®

Figure 4 shows the plot of the capacity coefficient func-
tion for each dyad. The capacity functions are plotted
according to the level of the accuracy-based collective ef-
fect (i.e., Siyaa/Smax) to reveal the relationship between
the capacity level and the accuracy-based collective ef-
fect. The brightness level represents the level of the
accuracy-based collective effect. Our visual inspection
indicated that all dyads were of supercapacity with all
Canp(t) greater than 1 for all times t. However, we did
not find a robust relationship between the capacity
values and the level of the accuracy-based collective
effect.

Assessment function

Figure 5 shows the A np(f) for all four response types;
the functions were plotted according to the level of the
accuracy-based collective effect. The assessment func-
tions for each response type can be summarized as
follows:

1. For the correct and fast responses, values of
Aanp(t) were consistently greater than 1, suggesting

5We conducted a one-way repeated measures analysis of variance
(ANOVA) to test the effect of contrast level on the collective effect
but the effect did not reach the significance level. Hence, we
aggregated all the contrast levels to estimate the capacity coefficient
function and the assessment function.

that correct collaborative responses were faster and
more frequent than expected—that is, supercapacity
processing.

2. For the correct and slow responses, values of
Aanp(t) were greater than 1 at the faster RTs and
were then less than 1 at the slower RTs. This
indicates that correct and slow responses made
after time ¢ were more probable than expected at
faster RTs but less probable than expected at slower
RTs.

3. For the incorrect and fast responses, the results
showed that most dyads made more incorrect
responses by time t at the faster RT's; however,
incorrect and fast responses were less probable than
expected at the slower RTs.

4. For the incorrect and slow responses, values of
Aanp(t) were less than 1 for all times ¢, indicating
that fewer incorrect and slow responses were

.
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Fig. 3 Plot of the accuracy-based collective effect (Sdyad/Smax) as a
function of relative detection sensitivity (Smin/Smax). The red line
represents the regression line
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observed than the expectation from the UCIP
model.

To sum up, the results of A np(f) indicate that the
collaborative performance was processed more effi-
ciently than the predicted baseline model, suggesting
supercapacity processing. However, similar to the results
of C4np(t), we did not find a strong relationship between
Aanp(t) and the collective effect indicated by relative de-
tection sensitivity. Thus, the current results did not pro-
vide evidence in support of the relationship between
time-based measures and accuracy-based measures.

fPCA and quantitative comparison

We employed fPCA with the varimax rotation to decom-
pose Canp(t) and Aanp(2) into several component func-
tions and plotted the factor score of each component
against the accuracy-based collective effect to investigate
the relationship between the component function and
the accuracy-based collective effect. However, we failed
to find a robust relationship between the component
functions and the accuracy-based collective effect—that
is, all the correlations did not reach the significant level
(ps > .05). Due to the non-significance, we do not present
the results in the main text. Please refer to the Supple-
mentary material (S.2) for detailed descriptions of the
fPCA results.

Discussion

In Experiment 1, we conducted a two-interval forced-
choice oddball detection task as employed in the study
by Bahrami et al. (2010, 2012a, b) but with several modi-
fications on the test procedure. We measured both ac-
curacy and RT, from which we estimated the accuracy-
based and time-based collective effects, respectively. Our
accuracy results were consistent with the Bahrami et al.
(2010) findings. That is, when two individuals had simi-
lar detection sensitivity (S,,;,/Siax > 0.8), we observed a
collective benefit with S,,,4/S,.4, larger than 1. Note that
the sensitivity measure did not reveal a collective benefit
in all dyads. In four of seven dyads, Szy,4/S,.ax Was larger
than 1, while in the other three, the effect was less than
or equal to 1.

In addition, the collective benefit was inferred from
the RT data in three ways. First, at the mean RT level,
we found no significant difference between the mean RT
of the collaboration condition and that of the worse or
better observer, suggesting a lack of collective benefits at
the mean RT level. Second, the observed C,np(f) values
which were greater than 1 for all times t, suggested
supercapacity for all dyads—namely, collective benefits
were consistently observed for all pairs. Third, when RT
and accuracy were combined, the results of Aqnp(Z)
again supported supercapacity processing. In particular,
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the results of A np(£) with respect to correct and fast re-
sponses showed that dyads made correct and faster re-
sponses more frequently than expected, suggesting
supercapacity processing. On the other hand, the correct
and slower responses were more probable than expected
at the faster RTs, also implying supercapacity processing.
For the two types of incorrect responses, the results of
Aanp(t) suggested that dyads were more efficient since
fewer incorrect responses were made.

It is interesting to observe that, despite the various ap-
plied measures that demonstrated the collective effect,
the time-based and accuracy-based measures did not
show a robust correlation between the two. Here, we
came up with two likely explanations for the non-
significant correlational results. First, we consider a
likely case of the range of restriction. Participants in the
present study had a similar detection sensitivity that re-
stricted the full range of possible sensitivities in the gen-
eral population, which could lead to non-significant
sample correlations. To ameliorate a possible restricted
range issue in Experiment 2, we introduced a stimulus
noise; an extra background white noise was added on
top of the visual display of one of the participants, thus
heightening the relative differences in detection sensitiv-
ity between the two participants. Second, we suspect that
there is another reason why the procedure of Experi-
ment 1 was not sensitive enough to measure the time-
based collective benefit. In the current setting, partici-
pants’ RT was recorded from the onset of a question
mark. However, the participants may have already made
their decisions while the two intervals were presented;
therefore, the RT may reflect only the motor execution
time rather than the information accumulation and deci-
sion time. To ameliorate this issue and correctly meas-
ure the decision time in Experiment 2, we replaced the
2IFC oddball detection task with a yes/no Gabor detec-
tion task. With a better estimation of the decision time,
we expect to find a robust relationship between the
time-based and accuracy-based measures.

Experiment 2

In Experiment 2, a yes/no Gabor detection task was con-
ducted to enable a better estimation of the information ac-
cumulation time and decision time. In addition, we
manipulated the transparency of the noise mask that was
superimposed on the target stimulus, to manipulate the
detection difficulty and thereby estimate the psychometric
function. The experiment could be separated into Experi-
ments 2a and 2b depending on whether an additional
background noise was introduced to one of the partici-
pant’s displays. In Experiment 2a, dyads were tested with-
out any additional background noise such that
participants might have had similar detection sensitivity.
In Experiment 2b, one of the participant’s displays was
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covered by additional background noise such that partici-
pants might have had different detection sensitivities. This
manipulation could solve the problem of the restriction of
range raised by Experiment 1 and allowed us to observe
the effect of the relative detection sensitivity on collabora-
tive performance. Following the Bahrami et al. (2010)
study, we expected that relative detection sensitivity would
reduce the collective benefit, which could be observed by
both RT- and accuracy-based measures.

Methods

Participants

Twenty-six (18 male and eight female; age: 21.2 +2.48
years) and 20 (15 male and five female; age: 22.4 + 1.55
years) undergraduate students at National Cheng Kung
University volunteered to participate in Experiments 2a
and 2b, respectively. They were randomly assigned and
paired into 13 and 10 dyads, respectively. All the partici-
pants were right-handed and signed a written informed
consent form prior to the experiment. Upon completion
of the experiment, each participant received either a
total of NTD 140 per hour or class bonus course credits.

Design, stimuli, and procedure

The procedure was similar to that used in Experiment 1,
though with several modifications. Figure 6 shows an il-
lustration of the trial procedure. The task was to detect
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the presence of a target as accurately and quickly as pos-
sible. The stimulus was presented until a participant de-
livered a response or 5 s had elapsed. Unlike in
Experiment 1, RT had been recorded since the test
stimulus was presented. Another difference between Ex-
periments 1 and 2 was that the cue, which informed the
participants as to who was going to respond, was the
color of the frame of the test stimulus.

The size of the test stimulus was 256 (horizontal) x 256
(vertical) pixels and the target stimulus was a vertically
oriented Gabor patch (standard deviation of the Gaussian
envelope: 0.45° spatial frequency: 1.049 cycles/’; contrast:
10%). In half of the trials, the target was presented and the
stimulus was superimposed by a white noise mask with a
different degree of transparency to manipulate the detec-
tion difficulty. The degree of transparency was adjusted by
the value of the alpha channel, i.e., a color component that
represents the degree of transparency (or opacity) of a
color, with a value ranging from 0 (high transparency) to
1 (low transparency). Hence, if the alpha value was high, it
would become difficult to detect the target. Specifically, in
Experiment 2a, both participants received the same level
of noise, with the alpha value being either 0.81, 0.85,
0.865, 0.885, or 0.9. In Experiment 2b, the alpha value was
0.69, 0.77, 0.83, 0.87, or 0.9. The alpha values were slightly
different from those used in Experiment 2a because this
adjustment can create a better estimation of the slope of
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the psychometric function. The critical difference between
Experiments 2a and 2b was that extra background noise
was introduced into one of the participant’s displays with
an alpha value of 0.5. This manipulation would result in
relative detection sensitivity—namely, the participant with
the extra background noise would have more difficulty de-
tecting the target than would the participant without any
extra background noise. Figure 7 shows an example of
how we manipulated the transparency of the noise mask
and the extra background noise in Experiment 2.

Similar to Experiment 1, participants were required to
participate in three cooperation conditions. Each condi-
tion was repetitively tested in two sessions in order to
collect enough data points. In each session, participants
first performed a practice block of 60 trials and then 10
blocks of formal trials. Each block consisted of 2 (pres-
ence or absence of the target) x5 (difficulty levels) x 6
(trials per combination).

Data analysis

The data analysis procedure was similar to that used in
Experiment 1, though with several modifications. For ex-
ample, for the ANOVA and detection sensitivity ana-
lyses, the within-subject factor was the difficulty level,
which was manipulated by the alpha value. For the psy-
chometric function analysis, we estimated the probability
of responses that the target was presented, denoted as
P(-c), where ¢ denotes the alpha value.

Results

Table 3 presents the mean correct RTs and accuracy for
all the combinations of the social conditions and diffi-
culty levels in Experiments 2a and 2b.
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ANOVA

Experiment 2a

For RT, the results showed a main effect of social
condition [F (2, 36) =4.628, p=0.02, 17}2, = 0.20]. Post
hoc comparison showed that the mean RT of a better
observer was faster than that of a worse observer
(ps < .05); however, there was no observable significant
difference between collaboration and the worse or
better observer. Moreover, the results showed a sig-
nificant main effect of difficulty level [F (4, 144)=
154.23, p <0.001, 1712, = 0.81]. Post hoc comparison
showed that the mean RT was slower as the difficulty
level increased and that the differences between every
two difficulty levels were all significant (ps < .01 for all
comparisons). The two-way interaction did not reach
the significance level.

In terms of accuracy, the results showed a significant
main effect of the social condition [F (2, 36) = 27.59, p <
0.001, ;7; = 0.61]. Post hoc comparison showed that the
accuracy of collaboration was higher than that of the
better observer (ps <.05) and that of the worse observer
(ps <.01). Moreover, the accuracy of the better observer
was higher than that of the worse observer (ps<.01).
The results showed a significant main effect of difficulty
level [F (4, 144) = 345.49, p <0.001, 17127 = 0.91]. Post hoc
comparison showed that accuracy declined as the diffi-
culty level increased and that the differences between
every two difficulty levels were all significant (ps < .01 for
all comparisons). The interaction effect was also signifi-
cant [F (8, 144) = 4.635, p <0.001, 17127 = 0.20]. Post hoc
comparison showed that the accuracy of the worse ob-
server was lower than that of the better observer and
collaboration when the alpha value was 0.85, 0.865,
0.885, 0.9 (ps<.01) but the differences were not

High Transparency

Low Transparency

Experiment 2a

Experiment 2b
(extra noise)

Fig. 7 An illustration of stimuli with different levels of noise in Experiment 2
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Table 3 Mean correct response time (RT) and accuracy for all the combinations of social condition and difficulty level (alpha value)

in Experiments 2a and 2b

Experiment 2a 0.81 0.85 0.865 0.885 0.9 Average

RT (seconds)
Worse observer 0.809 (0.097) 0.963 (0.115) 1.049 (0.157) 1.124 (0.159) 1.205 (0.184) 1.030 (0.197)
Better observer 0.753 (0.077) 0.825 (0.081) 0.909 (0.103) 0.978 (0.124) 1.008 (0.159) 0.895 (0.145)
Collaboration 0.782 (0.075) 0.896 (0.089) 0.978 (0.121) 1.054 (0.135) 1.104 (0.165) 0.963 (0.165)
average 0.781 (0.085) 0.895 (0.109) 0.979 (0.138) 1.052 (0.149) 1.106 (0.184)

Accuracy
Worse observer 0.91 (0.06) 0.72 (0.13) 0.61 (0.08) 046 (0.13) 0.36 (0.19) 061 (0.22)
Better observer 0.96 (0.02) 0.85 (0.07) 0.77 (0.07) 061 (0.07) 048 (0.08) 0.73 (0.18)
Collaboration 0.99 (0.02) 0.95 (0.06) 0.87 (0.12) 0.72 (0.14) 057 (0.12) 0.82 (0.18)
average 0.95 (0.05) 0.84 (0.13) 0.75 (0.14) 0.60 (0.16) 047 (0.13)

Experiment 2b 0.69 0.77 083 087 09 average

RT (seconds)
Worse observer 0.900 (0.222) 0.935 (0.193) 1.082 (0.297) 1.170 (0.300) 1.275 (0.463) 1.072 (0.329)
Better observer 0.748 (0.121) 0.836 (0.189) 1.025 (0.259) 1.165 (0.287) 1.271 (0470) 1.009 (0.341)
Collaboration 0.823 (0.137) 0.880 (0.147) 1.049 (0.269) 1.170 (0.290) 1.296 (0451) 1.044 (0.324)
average 0.824 (0.172) 0.884 (0.176) 1.052 (0.267) 1.168 (0.282) 1.281 (0.445)

Accuracy
Worse observer 0.89 (0.12) 0.77 (0.16) 0.60 (0.13) 048 (0.16) 038 (0.18) 0.63 (0.24)
Better observer 0.99 (0.01) 0.97 (0.03) 0.87 (0.171) 061 (0.14) 037 (0.18) 0.76 (0.27)
Collaboration 0.97 (0.03) 0.92 (0.09) 0.84 (0.12) 0.67 (0.17) 045 (0.15) 0.77 (0.22)
average 0.95 (0.08) 0.89 (0.14) 0.77 (0.17) 0.59 (0.17) 040 (0.17)

Values in parentheses represent standard deviation

significant when the alpha value was 0.81 (i.e., the easiest
condition). Moreover, the results showed that the accur-
acy of collaboration was significantly higher than that of
the better observer when the alpha values were 0.885
(ps <.01) and 0.85, 0.865, and 0.9 (ps < .05), suggesting a
collective benefit; however, the difference was not sig-
nificant when the alpha value was 0.81.

Experiment 2b
For RT, the results showed a main effect of difficulty
level [F (4, 108) = 34.780, p < 0.001, 171% = 0.56]. Post hoc

comparison showed that the mean RTs were slower
when the alpha values were 0.83 and 0.87 than when the
alpha values were 0.69 and 0.77 (ps <.01). Moreover, the
mean RT was slower when the alpha value was 0.9 than
when the alpha values were 0.69, 0.77, and 0.83 (ps <.01
for all comparisons). No other effects reached the signifi-
cance level.

In terms of accuracy, the results showed that a main
effect of difficulty level [F (4, 108) =121.59, p < 0.001, ;7}29
= 0.82]. Post hoc comparison showed that accuracy de-
clined as the difficulty level increased and that the differ-
ences between every two difficulty levels were significant

(ps < .01) except for the difference between the two easi-
est difficulty levels (i.e., the alpha values were 0.69 and
0.77). Moreover, there was a significant main effect of
social condition [F (2, 27) =9.324, p <0.001, 172 = 041].
Post hoc comparison showed that the accuracy of the
worse observer was lower than that of the better obser-
ver and collaboration (ps <.01); however, the difference
between collaboration and the better observer was not
significant. The interaction effect was significant [F (8,
108) =2.763, p = 0.008, ;7}27 = 0.17]. Post hoc comparison
showed that the accuracy of the worse observer was
lower than that of the better observer only when the
alpha value was 0.77 or 0.83 (ps <.01). Moreover, the ac-
curacy of the worse observer was lower than that of col-
laboration when the alpha value was 0.77 (ps <.05) and
0.83 and 0.87 (ps <.01). However, there were no observ-
able differences between collaboration and the better
observer.

Detection sensitivity

Figure 8 plots the relationship between the relative de-
tection sensitivity between individuals and the accuracy-
based collective effect (i.e., Szya4/Smax). The results were
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similar to what Bahrami et al. (2010) observed and the
correlation was significantly positive (R* = 0.62, slope =
1.34, p<0.001). Fitted by linear regression, the results
suggested that the cutoff for having a collective benefit
(Sayad! Smax > 1) was about 0.57.

Capacity coefficient

Figure 9 shows the plot of the capacity coefficient func-
tion for each dyad. The capacity functions were plotted
according to the level of the accuracy-based collective ef-
fect to reveal the relationship between the capacity level
and the accuracy-based collective effect. The brightness
level represents the level of the accuracy-based collective
effect. Our visual inspection revealed that most dyads
were of supercapacity for all time ¢ and that few of them
were of limited capacity at the slower RTs. However,
similar to Experiment 1, we did not find a robust rela-
tionship between the capacity functions (Canp()) and
the level of the accuracy-based collective effect (Szy.q/
Smax)'

Assessment function

Figure 10 shows the A np(f) for all four response types.
The functions were plotted according to the level of the
accuracy-based collective effect. The assessment func-
tions for each response type can be summarized as
follows:

1. For the correct and fast response, values of A np(Z)
were consistently greater than 1, suggesting that
correct group responses were faster and more
frequent than expected (i.e., supercapacity
processing). Importantly, our visual inspection
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Fig. 8 Plot of the accuracy-based collective effect (Sdyad/Smax) as a
function of relative detection sensitivity (Smin/Smax). The red line
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Fig. 9 Plot of the capacity coefficient function for each dyad in
Experiment 2. The capacity functions were plotted by the level of
the accuracy-based collective effect represented by the

brightness level
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revealed that Aanp(?) systematically increased as a
function of the accuracy-based collective effect.

2. For the correct and slow responses, Anp (£) values
were above 1 at the faster RTs and reached an
asymptote at the value of 1. This suggests that
correct and slow responses, made after time ¢, were
more probable than expected at the faster RTs.

3. For the incorrect and fast responses, the results
showed that most dyads delivered incorrect
responses by time ¢ more frequently than expected
at the faster RTs; however, incorrect and fast
responses were less probable than expected at the
slower RTs. Moreover, the results suggested that
Aanp(t) values decreased upon an increase in the
accuracy-based collective effect.

4. For the incorrect and slow responses, Aanp () for
most dyads was consistently less than 1, indicating
that fewer incorrect and slow responses were
observed than the expectation from the UCIP
model. Similar to the results of the incorrect and
fast responses, A anp(t) values decreased upon an
increase in the accuracy-based collective effect.

To sum up, the pattern of Anp(f) was similar to that of
Experiment 1, indicating that the group decision-making
was of supercapacity. We found that the dyads with a
higher accuracy-based collective effect tended to have larger
Aanp(t) values for correct and fast responses and smaller
Aanp(t) values for incorrect responses. Thus, the results
converged to suggest the existence of a positive correlation
between time-based and accuracy-based measures.

fPCA and quantitative comparison

When we correlated the factor score of each component
with the accuracy-based collective effect (please refer to
the Supplementary material (S.3) for detailed results), we
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Fig. 10 Plots of the assessment function of workload capacity in Experiment 2. The functions were plotted by the level of accuracy-based
collective effect. a correct and fast, b correct and slow, ¢ incorrect and fast, and d incorrect and slow

found a significant correlation for only the first compo-
nent of Axnp(f) of the correct and fast responses. In
Fig. 11a, the left panel shows the capacity function of
the first component and the mean capacity function.
The right panel shows the contrast function (ie., the
mean capacity function subtracted from the first princi-
pal component function). The first principal component
function accounts for 46.0% of the variance and indi-
cates a general increase in the capacity values at the fas-
ter RTs. In other words, the first component captures
the profile of supercapacity processing. Figure 11b shows
the scatter plot of the loading of the first component
and the accuracy-based collective effect; its correlation
reached the significance level (R* = 0.19, slope = 0.65,
p <0.05).

Discussion

In Experiment 2, we conducted a yes/no Gabor detec-
tion task. Both accuracy and RT were collected to esti-
mate a potential collective benefit. The sensitivity

results were consistent with the Bahrami et al. (2010)
findings. That is, when the two participants had simi-
lar detection sensitivity (i.e., S,.i,/Smax > 0.57), the col-
lective benefit was observed with S;),4/S,,..x greater
than 1. By contrast, when two individuals’ sensitivities
were dissimilar (S,,;,./Sax < 0.57), the collective cost
was observed.

Similar to Experiment 1, we can infer the collective
benefit from the RT data in three ways. First, at the
mean RT level, the results were similar to those of Ex-
periment 1, suggesting that there was no collective bene-
fit. Second, the results of Canp(f) showed supercapacity
with capacity values greater than 1 for all times ¢ for
most dyads; however, for some dyads, the capacity went
from supercapacity to limited capacity as a function of
RT. This implied that collective benefit can be found in
most dyads but that only a few dyads had collective ben-
efits at the faster RTs. Third, when one combined both
RT and accuracy, the results of A,xp(t) again supported
supercapacity processing and showed evidence of the
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ordered relationship between accuracy-based collective
effect and A np(¢). In particular, for correct and fast re-
sponses, the results of A np(f) showed that dyads made
correct and faster responses more frequently than ex-
pected, thereby suggesting supercapacity processing. In
addition, we observed that the dyads with a higher
accuracy-based collective effect showed larger values of
Aanp(t) for the correct and fast responses. On the other
hand, for the correct and slow responses, the values of
Aanp(t) were larger than 1 at the faster RTs, also imply-
ing supercapacity processing. For the two types of incor-
rect responses, the results of Aunp(f) suggested that
dyads were of supercapacity because there were fewer

incorrect responses than the expectation from the UCIP
model.

When we correlated the time-based and accuracy-
based measures, we found a significant positive correl-
ation between accuracy-based collective effect and the
first principal component of A np(t) of the correct and
fast responses. The first principle component indicates
an increase in A4np(t) for correct and fast responses at
the faster RTs, implying that dyads with higher factor
scores had a higher level of supercapacity. Hence, the
correlation shows that dyads with a higher collective ef-
fect in the accuracy-based measure tended to have a lar-
ger supercapacity in the time-based measure.
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General discussion

Summary of the present findings

In the present study, we examined the collective ef-
fect in perceptual decision-making tasks, such as a
two-interval forced-choice oddball detection task (Ex-
periment 1) and a yes/no Gabor detection task (Ex-
periment 2). We followed the Bahrami et al. (2010)
study to estimate the accuracy-based collective effect
through a comparison of the collaborative detection
sensitivity to the sensitivity of the better individual.
We utilized SFT to analyze the decision efficiency by
comparing the performance of the collaborative con-
dition to the capacity baseline, which assumes that
group members work independently in a non-
collaborative fashion. We investigated the relationship
between the accuracy-based and timed-based mea-
sures of the collective effect and proposed that the
assessment function of workload capacity A np(£) can
be regarded as a novel and diagnostic measure for
quantifying group decision-making efficiency.

To address our first goal of replicating the effect of
sensitivity similarity on joint decisions, we first con-
ducted the accuracy analyses. The results of Experiment
1 showed that four of the dyads had S;,,4/S,ax > 1, sug-
gesting collective benefit. The other three dyads had
SayadlSmax < 1, suggesting collective cost. There was a
slight trend of a positive correlation between the
accuracy-based collective effect and the relative detec-
tion sensitivity between observers; however, it did not
reach the significance level. The inspection of the mea-
sured relative differences in the subjects’ detection sensi-
tivities implied the possibility of a restricted range. The
random subject selection had formed dyads of subjects
whose detection sensitivities were, overall, more similar
than dissimilar. The restriction of the range is a reason-
able explanation for the failure to fully replicate the
Bahrami et al. (2010) findings. To amend the issue of
the restriction of range, Experiment 2 increased the rela-
tive differences in detection sensitivity between ob-
servers by introducing an extra background noise to one
of the participants. In Experiment 2, we found that 15
pairs of participants had S;y,4/S,4x 2 1, suggesting a col-
lective benefit, while the other eight pairs had S../
Simax < 1, suggesting a collective cost. It is noted that the
cutoff point for observing the collective benefit is when
the relative detection sensitivity (S,,,;,/S,4x) €quals 0.57.
As expected, the effect of inducing more individual vari-
ability in detection sensitivities led to the replication of
the main findings of Bahrami et al.: a significant correl-
ation between the accuracy-based collective effect and
the relative detection sensitivity was observed. This more
strongly supported findings of Bahrami et al. that the
collective benefit was only observable when the group
members had similar levels of detection sensitivity.
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We further analyzed RT to address the second goal of
testing whether RT and accuracy measures are consist-
ent to draw similar conclusions about the collective ef-
fect. We used both Cnp(t) and Aanp(f) to quantify the
RT-based collective effect. The results of Experiments 1
and 2 were consistent in suggesting that all the pairs had
Canp(t) and Aanp(t) of the correct and fast responses
larger than 1, implying that they were all of supercapa-
city in group decision-making—that is, collaborative
decision-making is always more efficient than non-
collaborative decision-making, although collaboration
can have both a benefit and a cost in terms of detection
sensitivity (i.e., individual differences in group detection
sensitivity). Though we did not observe a robust rela-
tionship between Cuap(f) and the accuracy-based col-
lective effect measured by detection sensitivity (ie.,
SayadlSmax), we found an ordered relationship between
the accuracy-based collective effect (Suyua/Smax) and
Aanp(t) (see Fig. 10). This suggests that both the time-
based and accuracy-based measures can capture the col-
lective benefit.

Our last goal is to establish the assessment function of
workload capacity as a standard measure of group deci-
sion efficiency. It is important to note that while most of
the A np(t) analyses and applications are based on the
position that A,xp(£) provides a point estimate of cap-
acity for a single dyad, A np(?) is a function of response
time and, as seen in Figs. 5 and 10, its shape changes dif-
ferently for correct/incorrect and fast/slow response
times. One of the recent studies employed an advanced
idea to analyze the shape of the A xp(f) function by
using the fPCA analysis (Burns et al, 2013; Houpt,
Blaha, et al., 2014). We also decided to utilize the fPCA
analysis on A np(t) to further investigate whether differ-
ent component functions would provide additional in-
sights into the accuracy measures as well as into the
nature of the A np(f) function. Further analysis of the
data of Experiment 2 via fPCA showed that it is the first
component of A xnp(t), i.e., an increase of A, np(t) values
at the faster RTs, which positively correlated with S;,./
S,nax- That is, the accuracy-based collective benefit may
imply a decision-processing advantage (i.e., supercapa-
city processing and more efficient processing) especially
for the faster RTs. The combined fPCA and A,np(£)
analyses, as a novel and diagnostic tool, offer a poten-
tially promising direction for the study of group decision
efficiency, as well as for diagnosing individual differences
in terms of how efficiently and accurately group mem-
bers work together to make a final decision.

To sum up, the current study was motivated primarily
by a desire to provide more evidence through which to
learn about the underlying processing mechanism of
group decision-making. Our study extended the Bahrami
et al. (2010) psychophysical method by simultaneously
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recording the accuracy and RT when participants made
group decisions. Following a careful examination of the
information accumulation time and decision time in the
yes/no Gabor detection task in Experiment 2, several
major findings and novel contributions can be noted.
First, we replicated Bahrami et al. (2010) main findings,
which showed that collaboration benefits detection sen-
sitivity only when group members have similar detection
sensitivity. By contrast, collaboration hinders detection
sensitivity when individuals’ detection sensitivities are
dissimilar. Second, following the SFT approach, both re-
sults for group decision efficiency, Canp(t) and Aanp(2),
showed that collaborative decision-making is always
processed more efficiently than is non-collaborative
decision-making, with evidence of supercapacity pro-
cessing for all pairs throughout Experiments 1 and 2.
These results implied that participants were able to
utilize their partners’ confidence to boost and improve
their decision-making. Third, we found no strong correl-
ation between the accuracy-based collective effect
and Canp(f), which considers only the processing effi-
ciency of the correct responses. Alternatively, we found
a robust relationship between the accuracy-based col-
lective effect and A4np(£), which considers both RT and
accuracy at the same time. It is notable that the first
component of the Aynp(f) of the correct and fast re-
sponses, which captures the signature of an increase in
capacity at the faster RTs, is significantly correlated with
the accuracy-based collective effect. Based on the con-
verging evidence, we may suggest that the supercapacity
processing of the correct and fast trials is closely related
to the source of the accuracy-based collective effect,
which could imply the sharing of similar mental
mechanisms.

Processing mechanism underlying group decision-making
In the context of group decision-making, supercapacity
processing suggests more efficient processing for collab-
orative decisions in which participants can exchange
their confidence than for non-collaborative decisions in
which participants work independently without any
communication. The supercapacity processing indicates
that group performance is better than the UCIP predic-
tions, which assumes that the group decision-making
system is an unlimited-capacity, independent, and paral-
lel processing system. The evidence of supercapacity can
be used to rule out the statistical facilitation account.
This means that the collective benefit is not likely to be
an artifact of an increase in the number of individual
units.

The results of supercapacity processing may suggest
two possible mechanisms. First, it implies that, in a
group, all members’ processing efforts, or their individu-
ally collected evidence, are accumulated and combined
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through a series of social interactions. This model for
group interaction is equivalent to the cognitive process-
ing model known as coactive processing, which is used
to characterize a combination of processing outcomes of
several mental structures (Houpt & Townsend, 2011;
Schwarz, 1989, 1994; Townsend & Nozawa, 1995). Simi-
larly, as in the coactive processing framework, a collective
benefit could arise as the result of a “weighted-and-sum”
principle of information integration of the individual con-
tributions. Following this analogy, a “coactive” group
member can weigh and integrate their confidence based
on their perceptual observation with their partner’s confi-
dence by considering the partner’s credibility based on the
previous experience acquired from the trial-by-trial feed-
back. The details of such a process of combining opinions
are beyond the scope of the current study; however, it pro-
vides a direction for investigation in future research. Sec-
ond, supercapacity processing may imply information-
sharing between parallel channels (Eidels, Houpt, Altieri,
Pei, & Townsend, 2011; Miller, 1982; Mordkoff & Yantis,
1991; Townsend & Wenger, 2004). We were able to ob-
serve several types of social interactions while participants
worked together on making decisions. In the case of non-
verbal communication, in which a participant could see
their partner showing confidence in one of the responses,
this form of interaction boosted the participant’s accumu-
lation of decision information toward that response. While
the current evidence is still insufficient for making strong
conclusions about various forms of information exchange
between the partners in the tasks, and about whether the
present results are due to the coactivation or facilitatory
interaction between group members, future studies are
encouraged to further explore the difference between the
two possibilities.

It is generally accepted that efficient group decision-
making may have occurred based on the following con-
siderations: (1) What is the form of social interaction?
(i.e., verbal or non-verbal), (2) Is the partner trustworthy
or reliable? (i.e., the presence or lack of feedback), and
(3) What is the decision input from the partner? (i.e., is
the partner’s confidence in the current trial high or
low?). First, previous studies have compared the effect of
collaboration between verbal communication and non-
verbal communication on group detection sensitivity
(e.g., Bahrami et al, 2012a). The results showed that
both forms of communication can enhance group detec-
tion sensitivity through the exchange of decision evi-
dence and decision confidence, respectively. However, in
the current context of perceptual decision-making tasks,
it is difficult to demonstrate the verbal communication
effect on the group decision RT because verbal commu-
nication usually takes longer. According to our data, for
most trials, it takes less than 2 s to complete a perceptual
decision. It seems that such a short time interval is not
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sufficient for members to communicate with each other
verbally. As a result, in our study, we considered only
the non-verbal form of collaboration (i.e., internal confi-
dence estimate). Future works are encouraged to modify
the tasks or increase the tasks’ difficulty, which could
create sufficient time for more verbal communication
between group members and, as such, allow this to be
explored in more detail. Second, it has been shown that
participants can utilize a partner’s confidence to increase
group detection sensitivity only when feedback is pro-
vided (Bahrami et al., 2010; Sorkin et al., 2001). The rea-
son why the response feedback is important in observing
the collective benefit is that a participant can learn
whether their partner is trustworthy or reliable. If a part-
ner is consistently making a correct decision, the partici-
pant would assign a higher weight to their partner’s
confidence. By contrast, if the partner is consistently
making an incorrect decision, the participant would as-
sign a lower weight to their confidence. The feedback
would help participants adjust the weighting process
while integrating the partner’s confidence into the prac-
tice of making a group decision. However, to our know-
ledge, collaborative decision-making efficiency has not
been tested without a presentation of the response feed-
back; therefore, we are still unclear as to whether pre-
senting feedback would, indeed, enhance group decision
efficiency as compared to the no-feedback condition. Fu-
ture studies are encouraged to manipulate the presence/
absence of feedback to test its effect on group decision
efficiency. Third, if a partner is very evidently confident
in their decision, participants may simply follow their
partner’s opinions to make a decision or give very high
weight to the partner’s confidence. Thus, the decision-
making process would become very efficient. On the
other hand, if the participant received a low-confidence
input, they would need to make a decision by integrating
their decision evidence with their partner’s decision con-
fidence, which might slow down the processing for the
faster decision-maker. As a result, the efficient group de-
cision may have occurred because the partner’s high-
confidence input boosted the decision efficiency. Al-
though we have not yet systematically examined how
high/low confidence affects group decision efficiency
(due to a limited number of trials), we are open to this
possibility and leave it for future study. It is also notable
that possibilities (2) and (3) may interactively affect
group decision efficiency. That is, when a second partner
is very reliable and consistent in making a correct deci-
sion, the first partner may simply follow the second part-
ner’s decision to offer a response regardless of whether
the confidence is high or low. On the other hand, if the
partner is not reliable, the first partner may still need to
rely on their perception and integrate it with the second
partner’s decision confidence to make a final decision,
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even in the high-confidence trial. More research with so-
phisticated analyses would be appropriate to investigate
the interaction effects.

Capacity coefficient and assessment function of workload
capacity

It is intriguing to note that, in our study, the accuracy-
based measure showed both the benefit and cost of col-
laboration, whereas the time-based measures (ie.,
Canp(t) and A np(t)) showed only the benefit of collab-
oration. A reasonable question to ask is: why are the two
measures not tightly connected? If one must choose,
which measure should be regarded as being the better
one in terms of diagnosing the collective benefit? In the
introduction, we mentioned a serious challenge to data
interpretation if either measure is considered in isola-
tion: that there may be a time-accuracy tradeoff in mak-
ing a group decision. That is, a group may make a very
fast decision by sacrificing the decision accuracy, or it
may make an accurate group decision by slowing down
its information accumulation process because social
interaction takes time. Therefore, the examination of
only one type of measure cannot clearly reveal whether
collaboration, indeed, presents an advantage. In a sur-
prising turnaround, we could not find strong evidence
for the time-accuracy tradeoff; when we considered
both measures at the same time, the correlation
between the accuracy-based and time-based collective
effects was not strong enough (i.e., there was a correl-
ation only between the accuracy-based collective effect
and A4np(t)). The absence of evidence of a strong cor-
relation may imply that the two measures are related to
different aspects of collective effects. Two possibilities
can be considered. First, the baselines for computation
and inference of the accuracy-based and time-based
collective effects are different. The accuracy-based col-
lective effect is quantified by dividing group detection
sensitivity by the sensitivity of the better observer (i.e.,
SayadlSmax)- On the other hand, the time-based collect-
ive effect is quantified by comparing group decision ef-
ficiency to the UCIP baseline, which is generated from
the two individuals’ decision efficiencies when they
work independently. Therefore, we would argue that, in
the previous condition, the collective benefit is defined
only when the performance exceeds the better individ-
ual, while, in the latter condition, the collective benefit
is defined by the group outperforming the integration
of the two individuals’ decision efficiencies. The differ-
ence in baselines might explain why both benefits and
costs are found in the former condition instead of in
the latter condition. The second possibility concerns
the cooperation rule for group decisions. For the
accuracy-based collective effect, the cooperation rule is
not considered. Therefore, it is unclear whether a group
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decision that outperforms the individual decisions oc-
curred because the group decision follows a “winner-
takes-all” rule by making a choice based on the opinion
of the more confident member or because the group
exhaustively processed the two members’ opinions and
made a decision by integrating decision evidence. For
the time-based measure, we assessed the AND capacity
by assuming that group decisions always take place
after all the decision evidence is exhaustively processed.
That is, both members’ confidence (i.e., the partici-
pant’s own and that of their partner) is always consid-
ered when making the final decision. In comparison,
Brennan and Enns (2015) used the test of the violation
of the race-model inequality; the underlying assump-
tion of the test of the race-model inequality is an OR
cooperation rule. However, we believe that the AND
rule is a better way to characterize how group members
make a coherent decision in the present context of per-
ceptual decision-making. The different assumptions in
the decision rules may also explain why we could not
find a robust relationship between the accuracy-based
and time-based collective effects.

To conclude, we argue that A4np(f) could serve as a
novel and diagnostic measure of group decision effi-
ciency. Aanp(t) retains the property of accuracy but can
also infer the processing efficiency under both correct
and incorrect responses. In addition, A np(f) can pro-
vide information about the dynamic changes in process-
ing efficiency as a function of RT. Also, A np(t) can
select a specific cooperation rule for the analysis of, and
inferences about, group decision efficiency. Therefore,
we strongly recommend that researchers test the collect-
ive effect by using the A np() measure.
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