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Causal illusions in the classroom: how the
distribution of student outcomes can
promote false instructional beliefs
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Abstract

Teachers sometimes believe in the efficacy of instructional practices that have little empirical support. These beliefs
have proven difficult to efface despite strong challenges to their evidentiary basis. Teachers typically develop causal
beliefs about the efficacy of instructional practices by inferring their effect on students’ academic performance.
Here, we evaluate whether causal inferences about instructional practices are susceptible to an outcome density
effect using a contingency learning task. In a series of six experiments, participants were ostensibly presented with
students’ assessment outcomes, some of whom had supposedly received teaching via a novel technique and some
of whom supposedly received ordinary instruction. The distributions of the assessment outcomes was manipulated
to either have frequent positive outcomes (high outcome density condition) or infrequent positive outcomes (low
outcome density condition). For both continuous and categorical assessment outcomes, participants in the high
outcome density condition rated the novel instructional technique as effective, despite the fact that it either had
no effect or had a negative effect on outcomes, while the participants in the low outcome density condition did
not. These results suggest that when base rates of performance are high, participants may be particularly
susceptible to drawing inaccurate inferences about the efficacy of instructional practices.
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Significance statement
The article outlines a series of six experimental studies
that examine whether biases in contingency learning
affect the judgements participants make about the effi-
cacy of a teaching technique. The manuscript shows an
outcome density effect in judgements of novel teaching
methods’ efficacy, whereby participants who are exposed
to frequent positive student outcomes in a contingency
learning task erroneously conclude that the teaching
technique is effective. The study has implications for un-
derstanding why inaccurate beliefs are prevalent among
educators and why such beliefs do not necessarily self-
correct over time.

A number of widespread beliefs about instructional
practice have been criticised as lacking a scientific basis
(e.g. Dekker, Lee, Howard-Jones, & Jolles, 2012;
Howard-Jones, 2014; Kirschner, 2017; Kirschner, Sweller,
& Clark, 2006). For example, 93% of teachers still sub-
scribe to the (now widely debunked) idea of student
learning styles (Dekker et al., 2012). Like urban myths,
many of these beliefs have persisted for a long time,
often decades after a scientific consensus around their
inaccuracy was reached (Kirschner, 2017). Inaccurate in-
structional beliefs are often adopted to the exclusion of
more evidence-based practices, which has a significant
negative effect on academic outcomes (Bruyckere,
Kirschner, & Hulshof, 2015). While, such practices are
often spread culturally, being passed from teacher to
teacher, they are also often reinforced by inaccurate
media stories, social media, and a lack of scientific
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education (Pasquinelli, 2012). Teacher misconceptions
are remarkably robust across countries and pseudoscien-
tific practices are increasing in schools worldwide (Fer-
rero, Garaizar, & Vadillo, 2016; OECD, 2002). Little is
known, however, about the psychological mechanisms
that reinforce inaccurate beliefs about instructional prac-
tice. Previous studies into contingency learning—how in-
dividuals learn about the statistical relationship between
a behaviour and an outcome—have suggested that in-
accurate beliefs about the causal effect of a behaviour
can often form when the expected outcome occurs fre-
quently, irrespective of the actual contingency between
behaviour and the outcome – a so-called outcome dens-
ity effect (Blanco, Matute, & Vadillo, 2013; Chow, Cola-
giuri, & Livesey, 2019). In the current study, we examine
the outcome density effect in the context of teacher be-
liefs, by evaluating whether the distribution of students’
outcomes on an academic assessment (e.g. a class test)
influences participants’ false beliefs about the efficacy of
instructional practices.

Contingency learning
Like most beliefs that people hold, teachers’ beliefs are
often causal in nature, that is, they are motivated by per-
ceived cause and effect relationships (e.g. If I use teach-
ing practice x my students’ performance will improve).
Teachers acquire these beliefs by accumulating evidence
about the cause-effect relationship through direct experi-
ence with the putative cause (often referred to as the
cue); e.g. the use of a novel teaching practice, and the
desired outcome, e.g. improvement in grades. If the cue
is influential in changing the outcome, then the prob-
ability of the outcome occurring should differ as a func-
tion of whether the cue was present or absent. The
process of extracting causal information in this way is
often referred to as contingency learning (Jenkins &
Ward, 1965). This difference in the probability of events
is more formally captured in Allan’s delta p (Δp) index
(Allan, 1980):

Δp ¼ p OjCð Þ - p Oj � Cð Þ ð1Þ

Δp = contingency
p(O|C) = probability of the outcome given the cue
p(O|~C) = probability of the outcome given no cue
According to Eq. 1, a positive Δp indicates a positive

contingency between cue and outcome, such that the
probability of the outcome occurring is greater when the
cue is present than when it is absent (i.e. the novel
teaching practice is effective at improving students’
grades). In contrast, a negative Δp value indicates that
the novel teaching practice is producing worse outcomes
than if students were not given the novel teaching prac-
tice at all. The ability to extract causal information

through experience is a necessary tool for navigating the
world; people are motivated to produce behaviours that
lead to a desirable outcome and avoid behaviours that
produce undesirable ones. In fact, people are generally
good at identifying positive and negative contingencies
between events (e.g. Shanks & Dickinson, 1988); how-
ever, when there is no genuine relationship between the
two events, that is Δp = 0, people tend to overestimate
the causal relationship and develop a false causal belief.
This phenomenon is often referred to as the illusion of
causality or illusory causation (for a review, see Matute
et al., 2015). The illusion of causality has previously been
associated with the development and maintenance of
pseudomedicine beliefs (Matute, Yarritu, & Vadillo,
2011), as well as judgements of guilt in a criminal setting
(Lassiter, Geers, Munhall, Ploutz-Snyder, & Breitenbe-
cher, 2002). We argue that this cognitive bias also pre-
sents a problem to educators, as it might result in
teachers endorsing teaching practices that are not effect-
ive in improving students’ academic performance. We,
of course, do not suggest that all false beliefs that
teachers hold are the result of observational contingency
learning in the classroom or that contingency learning is
the only mechanism that reinforces such beliefs; e.g. it
would be difficult to see how some false beliefs, such as
the belief that we only use 10% of our brains (endorsed
by nearly 50% of teachers; Dekker et al., 2012), are per-
petuated through contingency learning in the classroom.
However, many beliefs that teachers hold are about the
efficacy of their own practices which presumably are
based on causal inferences about the impact of their
teaching practices, which may be driven by contingency
learning.

Outcome densities and causal inference
The ability to correctly estimate the contingency be-
tween two events relies on an accurate memory of the
outcome occurring in the presence and absence of the
cue. Experimental research on illusory causation effects
has explored the frequency of cue and outcome events
as potential factors that inflate false causal beliefs, where
manipulations that increase cue and outcome coinci-
dences are particularly effective in biasing strong false
beliefs (e.g. Wasserman, 1990). One pertinent example
of this is the outcome density effect (Blanco & Matute,
2015; Chow et al., 2019). The outcome density effect is
the tendency for people to overestimate the causal rela-
tionship between a cue and an outcome when the base
rate of the outcome occurring is high relative to when
the base rate is low, even when the outcome is inde-
pendent of the cue. The outcome density effect has been
reliably produced using binary outcome events (Blanco
& Matute, 2015), when the outcome event is variable
(non-discrete) and ambiguous in relation to the
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participant’s putative causal belief (Chow et al., 2019),
when the cue-outcome events are presented one trial a
day across a 24-day time scale (Willett & Rottman,
2019), and when the genuine contingency is negative
(Vallée-Tourangeau, Murphy, & Baker, 2005; Wasser-
man, Elek, Chatlosh, & Baker, 1993). In a classroom set-
ting, the outcome density effect may play a role in
biasing teachers’ ability to accurately determine the ef-
fectiveness of their teaching practices if the student co-
hort is high-achieving and, therefore, likely to perform
well academically regardless of the teaching practice
used. Some researchers have also proposed that the de-
velopment of strong false beliefs are able to interfere
with subsequent acquisition of real causal relationships
(Yarritu, Matute, & Luque, 2015), suggesting that these
beliefs may be persistent and difficult to correct.
Although we will not be manipulating the frequency of

the cue in this series of experiments, it is important to
note that a high frequency of cue-present trials (e.g.
implementing the teaching practice regularly) also result
in heightened illusory causation relative to when the cue
is presented infrequently. This is referred to as the cue
density bias (Allan & Jenkins, 1983; Matute et al., 2011).
In theory, these event densities may present a cycle of il-
lusory belief that is difficult to break: teachers develop
strong false belief in the efficacy of an ineffectual teach-
ing practice when they have a high-performing cohort
(i.e. the outcome density effect), and this results in the
persistence of the teaching practice that further
strengthens the belief in its efficacy (i.e. the cue density
effect), although neither the outcome or cue density ef-
fect have been shown in educationally relevant situations
previously. Therefore, it is pertinent that we examine il-
lusory causation and the outcome density effect, in par-
ticular, in an educational context to determine the
extent to which students’ academic outcomes influence
people’s belief in a novel teaching practice that is object-
ively ineffective (Experiments 1–3, 5, and 6) and even
detrimental to student performance (Experiment 4).

Outcome densities in educational assessments
Classroom-based assessments are often used by teachers
to gauge students’ achievement and learning. Teachers
use these assessments to gauge whether their instruction
and teaching methods are working, and often adjust
their practices according to their students’ results on as-
sessments (Pellegrino, Chudowsky, & Glaser, 2001).
Teachers typically infer the effectiveness of their practice
by considering the contingency between their practice
and the aggregate level of performance due to the com-
putational complexity and memory demands of basing
their inferences on student-level data (Black & Wiliam,
2018; Fiedler, Freytag, & Meiser, 2009). For example,
Fiedler, Freytag, and Unkelbach (2007) found that

teachers gathering observations to infer correlations be-
tween student beliefs in a simulated classroom environ-
ment were biased by contingencies at the aggregate (i.e.
classroom) level. This raises the question of whether the
distribution of outcomes of a teacher’s class can influ-
ence their ability to make accurate causal inferences
about the efficacy of their practices.
In practical terms, classroom assessments are typically

designed so that performance is relatively high. This is
typically done out of a desire to allow all students to
‘show what they know’ as well as to promote and protect
students’ self-efficacy (e.g. Kang, Thompson, & Wind-
schitl, 2014; McCabe, 2003). It is, therefore, worth not-
ing that the distribution of most classrooms assessments
will, in practice, have a high base rate with frequent
positive outcomes. The real-world context of classroom
assessments thus appear to be analogous to a typical
high outcome density condition used in contingency
learning experiments, a condition where causal illusions
are significantly more likely (Matute et al., 2015). If
teachers use classroom assessments to guide and evalu-
ate their practice then designing classroom assessments
such that a vast majority of students perform well may,
in fact, be biasing teachers to believe in the efficacy of
ineffectual practices as well as limiting the utility of
classroom assessments as a source of feedback for
teachers.

Current study
The current study examines whether the distribution of
students’ academic outcomes affects the inferences that
an observer makes about the efficacy of a novel instruc-
tional technique. Adapting the typical contingency learn-
ing paradigm for an educational context and examining
both categorical and continuous outcomes, we aim to
examine whether frequent positive student outcomes
promote false beliefs. In Experiment 1, we first examine
whether an outcome density effect is observed in the
context of participants’ instructional beliefs when stu-
dents’ test performance is presented as a discrete out-
come (high vs. low performance). A discrete outcome
format is typically used within the outcome density litera-
ture (Chow et al., 2019). In Experiments 2 and 3, we ex-
plore whether outcome density affects participants’
instructional beliefs when test performance is presented as
a continuous outcome, using either a skewed (Experiment
2) or normal (Experiment 3) distribution of outcomes. In
Experiment 4 we examine whether inaccurate beliefs
about the efficacy of a novel instructional technique per-
sist when there is a negative contingency between the use
of the novel teaching technique and student outcomes. In
Experiment 5, we examine the outcome density effect
when student outcomes are presented concurrently as
they might in a classroom environment, and, finally in
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Experiment 6 we replicate the basic outcome density find-
ing in a sample of teachers.

Experiment 1
Participants
Participants were recruited using Amazon’s Mechanical
Turk (Mturk). Participation was restricted to partici-
pants from the US who had at least a 95% approval rate
on the site. Participants were paid 80 cents for participa-
tion in the study. A power analysis suggested that a
minimum sample size of 78 participants was required to
detect an effect size of .65 with 80% power. We recruited
a total of 80 (48% female) participants to account for the
possibility that data would need to be discarded. Forty-
one participants were randomly allocated by computer
to the high outcome density (High-OD) condition and
39 participants were allocated the low outcome density
(Low-OD) condition. The average age of the participants
was 37.08 (standard deviation (SD) = 9.53).

Material and procedure
Before commencing the experiment, participants were
told to imagine that they were a school teacher trialling
a new instructional method called ‘Kalavatic teaching’.
Participants were told that each student in their class
had either been taught with this novel method or an ‘or-
dinary teaching’ method, and it was their goal to deter-
mine whether the new teaching method was effective at
improving performance in an examination. Participants
were told that this novel method of teaching was
hypothesised to improve memory and academic per-
formance in students.
Participants then performed a contingency learning

task that consisted of a training and test phase. Each trial

during the training phase represented one student in the
class. For each trial, participants observed whether Kala-
vatic teaching (i.e. cue-present) or ordinary teaching (i.e.
cue-absent) was administered to that particular student.
Participants were then asked to predict the student’s
performance in the examination. Finally, after making
their prediction, the participant was shown an outcome
that was ostensibly the student’s actual performance in
the examination (see Fig. 1). There were 30 trials in the
training phase. This number of trials was selected be-
cause it maps onto typical class sizes in the US. Cue
presence/absence was randomly determined for each
trial and each participant such that the cue was present
on 50% of trials in the training phase.
For Experiment 1, the outcome (and prediction) was

binary with students either having ‘high’ or ‘low’ per-
formance in the examination. Cue presence and absence
was distinguished by presenting the teaching method
used in large blue font on each trial, either Kalavatic
teaching on cue-present trials or ordinary teaching on
cue-absent trials. The prediction was accompanied by
the instruction ‘What level of test performance do you
expect?’. Participants indicated their prediction by click-
ing a button with their mouse (either ‘high’ or ‘low’).
After making their prediction, the outcome was dis-
played in the format ‘Actual Performance – high [low]’
in green font. Each trial was participant paced, such that
they clicked ‘Next’ when they were ready to progress to
the next trial.
During the test phase, participants were asked to make

a causal rating by judging how effective Kalavatic teach-
ing was compared to ordinary teaching on a scale ran-
ging from − 100 (‘Effectively IMPAIRS academic
performance’) to 100 (‘Effectively IMPROVES academic

Fig. 1 Example training trial from Experiment 1
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performance’). The midpoint (zero) was labelled with
the anchor (‘Completely ineffective’). The question asked
‘On a scale from − 100 to 100%, rate how effective you
think the teaching technique was compared to doing or-
dinary teaching, if at all’. At the top of the page there
was a heading: ‘Kalavatic teaching vs. ordinary teaching’
(see Fig. 2). The following note was also provided below
the rating to participants while they made their
judgement:

‘Note that intermediate negative values indicate the
teaching technique actually makes academic per-
formance worse whereas intermediate positive values
indicate that the teaching technique was effective in
improving academic performance’.

Design
Participants were randomly allocated to either a high
outcome density condition or a low outcome density
condition, the difference being the ratio of outcomes.
For the High-OD condition 20/30 of students had ‘high’
performance in the examination (10/30 ‘low’), while for
the Low-OD condition 10/30 had ‘high’ performance on
the examination (20/30 ‘low’). The outcome for each
trial (high/low) was presented in a random intermixed
fashion from the specified distributions. In both condi-
tions there was no contingency between the presentation
of the cue (Kalavatic teaching vs. ordinary teaching) and
the outcome (high vs. low; Δp = 0).

General analytical approach
In each experiment we compare the high and low out-
come density conditions on each dependent variables
separately. Comparisons are made using both Bayes

Factors and Frequentist statistics. Where reported, the
BF10 is the likelihood of the alternative model compared
to the null model given the data, where the null model
specifies no difference between groups. For the between-
within-subjects analyses of variance (ANOVAs), we re-
port the Bayes Factor Inclusion/Exclusion (BFinc/BFexcl)
across matched models (Rouder, Morey, Verhagen,
Swagman, & Wagenmakers, 2017), which indicates the
evidence that a model including the interaction term is a
better fit for the data compared to an equivalent model
without an interaction term.

Results and discussion
Training data
We begin by examining participants’ predictions made
throughout training. Of primary interest is whether out-
come density condition interacts with cue presence. A 2
(Kalavatic teaching vs. ordinary teaching) X 2 (high vs.
low outcome density) between-within-subject ANOVA
was performed, with the proportion of ‘high’ predictions
used as the dependent variable. As shown in Fig. 3a, par-
ticipants made substantially more ‘high’ predictions of
the student’s performance when they were taught with
Kalavatic teaching (M = .63, SD = .26) compared with
when they were taught with ordinary teaching (M = .47,
SD = .27), F = 15.77, p < .001, ηp

2 = .17, BF10 > 100. Fur-
thermore, participants made more ‘high’ predictions on
average when they were in the high outcome density
group (M = .69, SD = .22) compared to the low outcome
density group (M = .41, SD = .25), F = 79.82, p < .001,
ηp

2 = .51, BF10 > 100. Crucially, however, the interaction
between cue presence and outcome density condition
was not significant, F = 0.15, p = .70, ηp

2 = .002, BFinc =
.248. These results suggests that outcome density did
not affect participants predictions of the effect of

Fig. 2 Example test trial from Experiments 1–6
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Kalavatic teaching relative to ordinary teaching in train-
ing. This finding is consistent with previous research
and may suggest important differences between the pro-
cesses involved in making predictions in training com-
pared to a making causal judgements (Blanco & Matute,
2015; Chow et al., 2019). This finding will be discussed
in greater detail in the general discussion.

Efficacy ratings
Next, we examined whether there was an outcome dens-
ity effect with respect to participants’ causal ratings. As
shown in Fig. 3b, participants in the high outcome dens-
ity condition (M = 21.02, SD = 53.03) made significantly
higher efficacy ratings compared to participants in the
low outcome density condition (M = − 8.13, SD =53.75, t
(78) = 2.44, p = .017, d = .55, BF10 = 2.95). The efficacy
ratings for participants in the high outcome density
group were significantly higher than zero, t (40) = 2.54,
p = .015, d = .40, BF10 = 2.84, while the efficacy ratings
for the low outcome density group were not, t (38) = .94,
p = .351, d = − .15, BF10 = .26.
The results of Experiment 1 suggest that the frequency

of assessment outcomes affects the causal efficacy ratings
made by participants with respect to a novel instructional
technique. This finding replicates the classic outcome
density effect that has typically been observed in causal or
efficacy ratings in other learning contexts. The result pro-
vides an in-principle demonstration that similar contin-
gency learning biases may affect judgements of
educational effectiveness in the classroom. Participants
observing frequent positive outcomes (high performance)

appear to be more susceptible to incorrectly inferring that
the novel teaching treatment is effective.

Experiment 2
While Experiment 1 established an outcome density ef-
fect on causal beliefs about instructional techniques
using the discrete paradigm typical of contingency learn-
ing studies, such discrete outcomes are less frequent in
the classroom. Most classroom-based assessments and
exams are marked on a continuous scale (although some
categorisation is also typical, e.g. A+). We therefore now
turn in Experiment 2 to examining whether teaching be-
liefs are affected by the frequency of assessment out-
comes when such outcomes are presented using a
continuous scale.
The outcome density effect has recently been applied

to continuous outcomes by Chow et al. (2019). They
found that in a health context, continuous outcomes still
produced illusory causation and outcome density effects.
They used two types of distribution to test this. In Ex-
periment 1, they used a bimodal distribution combining
two normal distributions, one centred on high outcome
values, one centred on low outcome values, varying the
proportion of trials sampled from each distribution to
create High-OD and Low-OD conditions. In Experiment
2, they used unimodal distributions that were either
centred on a low value and positively skewed or centred
on a high value and negatively skewed. Here in Experi-
ment 2 we similarly utilise skewed unimodal distribu-
tions, before using symmetrical normal distributions in
Experiment 3.

Fig. 3 Results from Experiment 1 for a training predictions as a function of outcome density condition, cue presence, and trial as well as
b efficacy ratings as a function of outcome density condition. Error bars represent +1 standard error of the mean
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Method
Participants
Participants were recruited in the same fashion as Ex-
periment 1. 80 (45% female) participants were recruited
and randomly allocated to condition by computer (n =
44 High-OD, n = 36 Low-OD). The average age of the
participants was 39.1 (SD = 10.66).

Materials and procedure
The procedure used in Experiment 2 was similar to that
used in Experiment 1, except that the outcomes (the stu-
dents’ examination performance) were continuous. Pre-
dictions during training were made along a visual
analogue scale ranging from 0 to 100% (see Fig. 4). After
participants made their prediction, the outcome was dis-
played on screen using the same visual scale.
Additionally, during the test phase in Experiment 2,

after making the causal rating, participants were asked
to predict the average performance of students who were
taught with Kalavatic teaching and the average perform-
ance of students taught with ordinary teaching. This
measure was included to determine whether average
predictions made at test would still show reliable illusory
causation effect—that is, participants predict greater per-
formance for students given Kalavatic teaching than
those given ordinary teaching despite overall base rate of
performance being identical for cue-present and cue-
absent trials—and whether differences in prediction are
greater for High-OD relative to Low-OD participants,
indicative of an outcome density effect. Based on find-
ings from Chow et al. (2019), outcome density effects

are most reliably produced in causal judgements, with
little evidence of the effect in prediction judgements (see
also Vadillo, Miller, & Matute, 2005 on the dissociation
between causal and prediction judgements). Thus, we
did not anticipate an interaction between cue type and
outcome condition (indicative of an outcome density ef-
fect) on average prediction ratings, however, we ex-
pected participants to show reliable illusory causation by
predicting greater performance with Kalavatic teaching
than ordinary teaching.

Design
Outcomes were randomly sampled for each participant
from a distribution described below and presented in
Fig. 5a. We opted to utilise the same proportion of trials
from the high/low distributions as Chow et al. (2019).
For participants in the High-OD condition 80% of out-
comes were stipulated to be from a distribution with a
mean of 80%, a SD of 5%, and a range of 50–100%. The
remaining 20% of trials were sampled randomly from
values ranging from 0 to 50%. For participants in the
Low-OD condition, 80% of outcomes were sampled
from a distribution with a mean of 20%, a SD of 5%, and
a range of 0–50%. The remaining 20% of trials were
sampled randomly from values ranging from 50 to 100%.

Results and discussion
Training data
Again, a 2 (Kalavatic teaching vs. ordinary teaching) X 2
(high vs. low outcome density) between-within-subject
ANOVA was performed. Depicted in Fig. 6a, the results

Fig. 4 Example trial from Experiments 2–4 and Experiment 6
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suggested that participants did not make significantly
different predictions when the cue was present, that is,
Kalavatic teaching was administered (M = 51.99, SD =
21.22) compared to when it was absent (M = 50.76, SD =
20.23; F = 1.04, p = .310, ηp

2 = .01, BF10 = .29). The High-
OD condition (M = 66.48, SD = 13.42) made significantly
higher predictions than the Low-OD density
condition (M = 32.9, SD = 10.38), F = 181.28, p < .001,
ηp

2 = .70, BF10 > 100. Most importantly, outcome
density condition did not interact with the presence
of the cue F = .39, p = .53, ηp

2 = .005, BFinc = .27. As

with Experiment 1, this suggests that there was no
outcome density effect on the predictions made dur-
ing training.

Aggregate predictions
Finally, we examined whether outcome condition af-
fected participants’ predictions of the average perform-
ance of students who were taught with Kalavatic or
ordinary teaching. A 2 (Kalavatic teaching vs. ordinary
teaching) X 2 (high vs. low outcome density) within-
between-subjects ANOVA was run. The results

Fig. 5 Example outcome distributions used in a Experiment 2, b Experiments 3, 5, and 6 and c Experiment 4. Distributions for the high outcome
density condition are the left panels, while distributions for the low outcome density condition are the right panels

Fig. 6 Results from Experiment 2 for a training predictions as a function of outcome density condition, cue presence, and trial as well as b
predictions of students’ average performance as a function of outcome density condition and c efficacy ratings as a function of outcome density
condition. Error bars represent + 1 standard error of the mean
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suggested that there was no difference in predictions at
test between the high (M = 34.19, SD = 28.85) and low
(M = 25.01, SD = 20.23) outcome conditions, F = 3.14,
p = .08, ηp

2 = .04, BF10 = 1.08, nor was there any differ-
ence in test predictions between Kalavatic teaching
(M = 30.26, SD = 26.34) and ordinary teaching (M =
29.86, SD = 25.16), F = .02, p = .89, ηp

2 < .001, BF10 = .18.
Finally, the interaction between cue type and outcome
density condition was not significant, F = .08, p = .78,
ηp

2 = .001, BFinc = .24 (see Fig. 6b).

Efficacy ratings
As shown in Fig. 6c, participants in the High-OD condi-
tion (M = 26.11, SD = 40.39) made significantly greater
efficacy ratings than participants in the Low-OD condi-
tion (M = 7.03, SD = 31.76), t (78) = 2.31, p = .024, d =
.52,BF10 = 2.27). Participants in the High-OD condition
made efficacy rating significantly higher than zero, t
(43) = 4.29, p < .001, d = .65, BF10 = 237.69, whereas par-
ticipants in the Low-OD condition did not, t (35) = 1.33,
p = .193, d = .17 BF10 = .40. These findings suggest that
illusory causation and outcome density effects are most
prevalent in efficacy ratings and not when participants
are asked to make a predictive judgement.
In addition, because the methodology in Experiments

2–6 requires random sampling from a distribution, the
precise contingency that participants observe may differ
slightly by chance. To account for this we re-ran all
models in Experiments 2–6 with the observed contin-
gency (measured as the mean difference between cue-
present/-absent trials observed outcomes) as a covariate.
None of the results changes substantively.

Experiment 3
The results of Experiment 2 largely replicate those of
Experiment 1 in suggesting that the frequency of assess-
ment outcomes affects efficacy ratings of instructional
practices. Again, participants who observed frequent
positive outcomes (high student performance) incor-
rectly rated the novel instructional technique as effective.
Importantly these results suggest that even when assess-
ment outcomes are conveyed on a continuous scale, par-
ticipants are prone to an outcome density effect.
The distributions in Experiment 2 were effectively

skewed, such that almost all participants performed well
in the High-OD group or poorly in the Low-OD group.
Participants could, therefore, essentially partition these
outcomes categorically into one of two outcomes, des-
pite the added variability of a continuous outcome.
While the skewed distributions map closely onto trad-
itional outcome density paradigms and the continuous
outcome distributions used in Chow et al. (2019), it re-
mains to be seen whether outcome density effects can
be readily observed with normally distributed outcomes.

This is important because assessment results are gener-
ally normally distributed and, to our knowledge, the out-
come density effect has never been shown using
normally distributed outcomes. In Experiment 3 we
therefore replicated Experiment 2, but this time used
two normally distributed outcome distributions where
participants would be less able to classify students’ per-
formance into discrete categories.

Method
Participants
Eighty participants (56% female) were recruited in the
same fashion as in the previous experiments (Mage =

38.42, SD = 11.83). Forty participants were randomly al-
located to the High-OD condition and 40 participants to
the Low-OD condition.

Procedure and design
The same procedure and design as in Experiment 2 was
used, except that the distribution of assessment out-
comes differed (see Fig. 5b). For the High-OD condition,
all of the outcomes that participants observed were ran-
domly drawn from a normal distribution with a mean of
80 and a SD of 5. Whereas for the Low-OD condition,
all of the outcomes were drawn from a normal distribu-
tion with a mean of 50 and a SD of 5. Test ratings
remained unchanged.

Results and discussion
Training data
A 2 (Kalavatic teaching vs. ordinary teaching) X 2 (high
vs. low outcome density) ANOVA indicated that partici-
pants did not make significantly different predictions
when the cue was present (M = 61.95, SD = 15.97) com-
pared to when it was absent (M = 61.87, SD = 15.96; F =
.03, p = .86, ηp

2 < .001, BF10 = .18) (see Fig. 7a). The
High-OD condition (M = 74.48, SD = 9.49) made signifi-
cantly higher predictions than the Low-OD condition
(M = 49.34, SD = 9.98), F = 138.25, p < .001, ηp

2 = .64,
BF10 > 100. Consistent with the previous results, out-
come density condition did not interact with the pres-
ence of the cue F = .01, p = .92, ηp

2 < .001, BFinc = .22.

Aggregate predictions
A 2 (Kalavatic teaching vs. ordinary teaching) X 2 (high
vs. low outcome density) within-between-subjects
ANOVA was run to examine whether there were group
differences in the predictions of average performance at
test. Results indicated that High-OD (M = 76.46, SD =
9.52) condition made significantly higher predictions of
average performance compared to the Low-OD (M =
49.96, SD = 13.77) condition, F = 140.40, p < .001, ηp

2 =
.64, BF10 > 100 (see Fig. 7b). More importantly, there was
again no significant difference in predictions of average
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performance between Kalavatic teaching (M = 63.89,
SD = 17.82) and ordinary teaching (M = 62.54, SD =
17.82), F = .90, p = .35, ηp

2 = .01, BF10 = .25, i.e. no illu-
sory causation effect. Finally, the interaction between
cue type and outcome density condition was not signifi-
cant, F = 1.83, p = .18, ηp

2 = .02, BFinc = .53.

Efficacy ratings
Participants in the High-OD (M = 28.38, SD = 31.67)
condition made significantly greater efficacy ratings than
participants in the Low-OD (M = 6.38, SD = 27.9) density
condition, t (78) = 3.30, p = .001, d = .74, BF10 = 21.84)
(see Fig. 7c). Again, the High-OD group made efficacy
ratings significantly higher than zero, t (39) = 5.67,
p < .001, d = .90, BF10 > 100, whereas the Low-OD group
did not, t (39) = 1.45, p = .156, d = .20, BF10 = .45.
The results of Experiment 3, in particular the efficacy

ratings, confirm that participants who observe frequent
high-performing students are more likely to infer that a
novel instructional technique being trialled is effective.
These findings suggest that an outcome density effect
can be observed even when a symmetrical normal distri-
bution is used. This is particularly noteworthy because if
participants were to categorise their students’ perform-
ance into discrete relative categories (e.g. higher than
average, lower than average), then the frequencies of
these events would be identical in the Low-OD and
High-OD conditions. Instead, the outcomes are only dis-
proportionately high in the High-OD condition relative
to their framing on the scale provided, nothing else. To

our knowledge all other demonstrations of the outcome
density effect use frequency differences between out-
comes that are high and low relative to the range of out-
comes that are actually experienced; for instance, the
outcome takes one of two values (present/absent or
high/low), one of which is more frequent than the other.
These findings suggest that a causal illusion can arise
even when participants do not observe biased frequen-
cies of outcomes that are relatively high and relatively
low, suggesting that the framing of the scale—and per-
haps pre-existing beliefs about what constitutes a ‘good’
or ‘bad’ score on an assessment—are used to evaluate
whether an outcome is favourable.

Experiment 4
While all of the experiments thus far have shown that
efficacy ratings are affected by the distribution of assess-
ment outcomes, they have all been under conditions
where there is no effect of the cue on the outcome (Δp =
0). In Experiment 4 we extend these findings by examin-
ing whether an outcome density effect leads to false be-
liefs about the efficacy of an instructional technique
when it has a negative effect on student outcomes (Δp =
− .2). Outcome density effects have previously been
shown when the effect of the cue on the outcome is
negative (Vallée-Tourangeau et al., 2005; Wasserman
et al., 1993). In this instance, a rational observer should
be judging that the novel practice is effectively produ-
cing worse performance compared to regular instruction.
If the base rate of high achievement observed in under

Fig. 7 Results from Experiment 3 for a training predictions as a function of outcome density condition, cue presence, and trial as well as b
predictions of students’ average performance as a function of outcome density condition and c efficacy ratings as a function of outcome density
condition. Error bars represent + 1 standard error of the mean
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High-OD conditions is sufficient to still produce signifi-
cant positive ratings of the novel practice, then this is
particularly concerning.

Method
Participants
Eighty participants (60% female; Mage = 42.32, SD =
12.22) were recruited in the same fashion as in the previ-
ous experiments (n = 41 High-OD; n = 39 Low-OD).

Procedure and design
The same design as the previous experiments was used
except for the distributions and contingency. In order to
calculate a contingency utilising Δp, we sampled from
two distributions (a high-magnitude and a low-
magnitude distribution) for each condition, but at differ-
ent rates. The high-magnitude distribution had a mean
of 80 and the low-magnitude distribution had a mean of
20 (both SD = 5). For the High-OD condition, 70% of
outcomes were randomly sampled from the high-
magnitude distribution and 30% of outcomes were sam-
pled from the low-magnitude distribution averaged over
cue presence (see Table 1 for a breakdown by cue pres-
ence). For participants in the Low-OD condition, 70% of
outcomes were randomly sampled from the low-
magnitude distribution while 30% of outcomes were
sampled from the high-magnitude distribution averaged
over cue presence. Distributions are presented in Fig. 5c.
As shown in Table 1, a negative contingency between

the cue (Kalavatic teaching) and the outcome was set.
Δp was calculated using the ratio of outcomes drawn
from the high-magnitude relative to the low-magnitude
distribution and was equal to − .20.

Results and discussion
Training data
Participants make significantly lower predictions when
the cue was present (M = 43.61, SD = 18.36) compared to
when it was absent (M = 52.64, SD = 17.82; F = 29.65,
p < .001, ηp

2 = .28, BF10 > 100), suggesting a sensitivity to
the negative contingency between cue-present trials and
student performance (see Fig. 8a). The High-OD condi-
tion (M = 57.18, SD = 18.29) made significantly higher
predictions than the low outcome (M = 38.61, SD =
13.55) density condition, F = 36.55, p < .001, ηp

2 = .32,

BF10 > 100. However, outcome density condition did not
interact with the presence of the cue F = .03, p = .87,
ηp

2 < .001, BFinc = .23.

Aggregate predictions
As with Experiment 3, the results indicated that High-
OD (M = 61.28, SD = 15.71) condition made significantly
higher predictions of average performance compared
to the Low-OD (M = 41.37, SD = 21.08) condition, F =
58.16, p < .001, ηp

2 = .43, BF10 > 100. Furthermore,
participants made lower predictions of average per-
formance for Kalavatic teaching (M = 44.26, SD =
20.85) compared to ordinary teaching (M = 58.89,
SD = 18.54), F = 27.31, p < .001, ηp

2 = .26, BF10 > 100.
Finally, the interaction between cue type and outcome
density condition was not significant, F = .01, p = .92,
ηp

2 < .001, BFinc = .22 (see Fig. 8b).

Efficacy ratings
Participants in the High-OD (M = 12.83, SD = 39.72)
condition made significantly greater efficacy ratings than
participants in the Low-OD (M = − 16.54, SD = 46.11)
condition, t (78) = 3.06, p = .003, d = .68, BF10 = 11.82)
(see Fig. 8c). Participants in the High-OD condition
made efficacy ratings significantly higher than zero, t
(40) = 2.07, p = .045, d = .32, BF10 = 2.07, while partici-
pants in the Low-OD condition made ratings signifi-
cantly lower than zero, t (38) = 2.24, p = .031, d = − .42,
BF10 = − .30. This suggests that the negative contingency
between cue and outcome was sufficiently large enough
to be detected by participants in the low outcome dens-
ity condition; however, despite this, participants in the
high outcome condition still believed that the novel
teaching technique was beneficial.

Experiment 5
The previous studies have shown that participants’ be-
liefs about the efficacy of a novel teaching technique are
susceptible to an outcome density effect across a range
of distributions and contingencies. These experiments
have, however, all presented student outcomes sequen-
tially. While many assessment outcomes will be observed
by teachers in this fashion; e.g. grading essays or mark-
ing exams one after another, student outcomes will also
sometimes be received concurrently. A teacher may, for

Table 1 Outcome contingencies used in Experiment 4

High-OD Low-OD

High-magnitude Low-magnitude High-magnitude Low-magnitude

Novel teaching 0.3 0.2 0.1 0.4

Ordinary teaching 0.4 0.1 0.2 0.3

Note: The low-magnitude distribution had a mean of 20, the high-magnitude distribution had a mean of 80 (both SD = 5). Cells represent the number of trial from
each sample and whether the cue was present (Δp = 0)
OD outcome density
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example, try out a new teaching technique and then
walk around the class observing how her students are
performing on a task. In order to examine whether out-
come density effects can similarly occur under such
plausible classroom scenarios, Experiment 5 presents the
outcomes to participants in groups of nine students,
with only three trials per cue.

Method
Participants
Eighty participants (M = 37.84, SD = 11.34) were re-
cruited in the same fashion as the previous experiments
(41% female). Thirty-nine participants were randomly al-
located to the High-OD condition and 41 were allocated
to the Low-OD condition. The data from 10 participants
was excluded from the analysis because they showed
signs of random responding (all completed the study in
under 60 s).

Procedure and design
The distributions from Experiment 3 were utilised (as
symmetrical distributions were deemed to be the most
educationally realistic), with outcomes in the High-OD
having a mean of 80 (SD = 5) and the outcomes in the
Low-OD condition having a mean of 50 (SD = 5). Out-
comes were presented for nine students at a time in
three rows of three using a classroom backdrop (see
Fig. 9). The teaching strategy (Kalavatic teaching, ordin-
ary teaching) was shown on the ‘blackboard’ indicating
cue presence/absence. Participants were shown six trials

(three cue and three no cue) in a randomised order, for
a total of 27 outcomes for each cue. Participants made
no predictions during training, instead they simply
pressed ‘Next’ to proceed to the next trial. At the con-
clusion of the six training trials participants made aggre-
gate predictions and an efficacy rating in the same
manner as the previous experiments.

Results and discussion
Aggregate predictions
Participants in the High-OD condition (M = 68.56, SD =
25.82) made significantly higher aggregate predictions
compared to participants in the Low-OD condition,
M = 52.67, SD = 17.95; F = 11.90, p = .001, ηp

2 = .15,
BF10 = 32.49, averaged across cue presence. There was
no significant difference between aggregate predic-
tions for Kalavatic teaching (M = 57.69, SD = 25.35)
compared to ordinary teaching M = 61.73, SD = 20.62;
F = 2.62, p = .110, ηp

2 = .04, BF10 = .59, nor was the
interaction between outcome density condition and
cue presence significant, F = .03, p = .858, ηp

2 < .001,
BFinc = .24 (see Fig. 10a).

Efficacy ratings
Participants in the High-OD condition (M = 27.19, SD =
30.47) again made significantly higher efficacy ratings
than the Low-OD condition: t (68) = 2.79, p = .007, d =
.67, BF10 = 6.25 (see Fig. 10b).

Fig. 8 Results from Experiment 4 for a training predictions as a function of outcome density condition, cue presence, and trial as well as
b predictions of students’ average performance as a function of outcome density condition and c efficacy ratings as a function of outcome
density condition. Error bars represent + 1 standard error of the mean
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Experiment 6
While the previous experiments have consistently
shown an outcome density effect using educationally
relevant material, each has been performed on a com-
munity sample. This raises the question of whether
teachers are equally susceptible to the outcome dens-
ity effect. While there is no strong theoretical reason
to suppose that teachers will vary substantially from
the general population in this regard, teachers may
have strong prior beliefs about the likely efficacy of
novel teaching techniques or may be better able to
assess the efficacy of teaching techniques due to the
necessity of such inferences in their profession. In Ex-
periment 6, we replicate Experiment 3 with a sample
of teachers.

Method
Participants
Eighty participants (68% female; Mage = 40.65, SD =
11.16) were recruited using Prolific (prolific.co), which
was used instead of Mturk due to the availability of
teachers on the platform. Participants were all current
teachers (primary 40%, secondary 34%, or tertiary
26.25%). To facilitate recruitment of teachers we re-
cruited internationally with a majority of the sample
from the UK (76%), US (4%), and Europe (12.5%). All
participants reported being fluent in English. The aver-
age number of years teaching experience was 12.66
(SD = 8.97, range = < 1 to 34 years). Forty teachers were
randomly assigned to the High-OD condition and 40
teachers were assigned to the Low-OD condition.

Fig. 9 An example of a no-cue trial from Experiment 5 showing the simulated classroom outcomes
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Procedure and design
The same design as the previous experiments with the
distributions identical to those used in Experiment 3,
that is, normally distributed with means of 80 (High-
OD) and 50 (Low-OD), and a SD of 5. Δp was again set
to zero. Additional demographic variables regarding
teaching were collected prior to beginning the experi-
ment, including grade level taught and years spent
teaching. Furthermore, we asked an additional back-
ground variable ‘How often do you experiment with
novel teaching strategies in your classroom?’ Participants
responded on a 7-point Likert-scale ranging from ‘Al-
most always’ to ‘Never’. In addition to the typical aggre-
gate predictions and efficacy ratings collected at test, we
asked an additional classroom intention rating where
teachers were to rate ‘Based on the evidence you have
observed in this study, how likely are you to use Kalava-
tic teaching in your classroom, if at all?’ on a 100-point
scale ranging from ‘0% – would never use Kalavatic
teaching in my classroom’ to ‘100% – would definitely
use Kalavatic teaching in my classroom’.

Results and discussion
Training data
Participants make significantly higher predictions when
the cue was present (M = 65.8, SD = 13.43) compared to
when it was absent (M = 64.54, SD = 12.64; F = 6.53, p =
.013, ηp

2 = .01, BF10 = 2.67) (see Fig. 11a). Similarly, there
was a significant difference in training predictions be-
tween the High-OD condition (M = 77.36, SD = 4.64)
and the low outcome density condition (M = 52.98, SD =
4.27; F = 813.47, p < .001, ηp

2 = .91, BF10 > 100. The

interaction between outcome density condition and the
presence of the cue was marginally non-significant, F =
3.77, p = .056, ηp

2 = .05, BFinc = 1.11.

Aggregate predictions
As with the previous experiments, the results indicated
that High-OD (M = 76.49, SD = 10.04) condition made
significantly higher predictions of average performance
compared to the Low-OD (M = 50.68, SD = 4.95) condi-
tion, F = 368.58, p < .001, ηp

2 = .83, BF10 > 100. There
was no significant difference in predictions of average
performance for Kalavatic teaching (M = 63.80, SD =
16.08) compared to ordinary teaching (M = 63.36, SD =
14.28), F = 0.14, p = .708, ηp

2 = .002, BF10 = .15, averaged
across conditions. Finally, the interaction between cue
type and outcome density condition was not significant,
F = .19, p = .662, ηp

2 = .002, BFinc = .15 (see Fig. 11b).

Efficacy and classroom intention ratings
Participants in the High-OD (M = 29.075, SD = 31.69)
condition made significantly greater efficacy ratings than
participants in the Low-OD (M = 15.33, SD = 25.10) con-
dition, t (78) = 2.15, p = .034, d = .48, BF10 = 1.68) (see
Fig. 11c). Participants in the High-OD condition made
efficacy ratings significantly higher than zero, t (39) =
5.80, p < .001, d = .92, BF10 = 5.80 as did participants in
the Low-OD condition, t (29) = 3.86, p = < .001, d = .61,
BF10 = 3.86. This last result is contrary to Experiment 3,
suggesting that while outcome density remains a signifi-
cant factor in determining efficacy ratings in teachers,
teachers in the low outcome condition may be a-priori
more prone to making positive efficacy ratings for a

Fig. 10 Results from Experiment 5 for a predictions of students’ average performance as a function of outcome density condition and b efficacy
ratings as a function of outcome density condition. Error bars represent + 1 standard error of the mean
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novel teaching technique than participants drawn from
the general population.
In addition, there was a marginally non-significant

effect of outcome density on intention to use Kalava-
tic teaching in the classroom, t (78) = 1.9, p = .059,
d = .42, BF10 = 1.12, with the High-OD condition (M =
51.0, SD = 26.33) more likely to indicate they would
use Kalavatic teaching compared to the Low-OD con-
dition (M = 40.43, SD = 22.99) (see Fig. 11d). There
was a significant positive correlation between efficacy
ratings and intention to use Kalavatic teaching in the
classroom, r = .69, p < .001.

Exploratory analyses
We also performed a number of exploratory analyses.
First, we examined whether teaching experience moder-
ated the outcome density effect by examining the inter-
action between teaching experience and condition, using
each of the ratings from the test phase. Similarly, we
performed the same models using the frequency with
which teachers indicated that they experiment with
novel teaching strategies in their classroom as a moder-
ator. The results are presented in Tables 2 and 3. Finally,
we also examined whether the outcome density effect
differed as a function of teacher-grade level (primary vs.
secondary vs. tertiary), using tertiary teachers as the ref-
erence category. None of the exploratory analyses sug-
gested that the outcome density effect was significantly
moderated.

General discussion
In a series of six experiments we examined the outcome
density effect in relation to causal illusions about in-
structional practices. We hypothesised that the fre-
quency of positive outcomes plays a role in promoting
inaccurate beliefs about the efficacy of ineffectual in-
structional practices. Across all six experiments we
showed that outcome density affects participants’ causal
ratings such that when simulated student performance
was high, participant observers were more likely to be-
lieve that a novel teaching technique was effective, des-
pite the fact that it was either ineffective or detrimental
to performance. Using a typical contingency learning
paradigm, in Experiment 1 we showed that outcome
density affects causal beliefs about instructional practices
when the outcome is categorical. Like the vast majority
of outcome density experiments, we showed that when the
salient category (i.e. high performance) was more frequent,
causal illusions were more likely. In Experiments 2 and 3
we examined the outcome density effect in a more
educationally plausible scenario – when the outcome (i.e.
students’ performance) was continuous. Both experiments
indicated that when the distribution of students’ perform-
ance favoured frequent positive outcomes, participants
were more likely to infer that a novel teaching technique
was effective at promoting students’ academic performance.
In Experiment 4 we showed that even when we controlled
the contingency between the use of a novel teaching tech-
nique and students’ performance to be negative, partici-
pants who observed frequent positive outcomes continued

Fig. 11 Results from Experiment 6 for a training predictions as a function of outcome density condition, cue presence, and trial as well as b
predictions of students’ average performance as a function of outcome density condition and c efficacy ratings as a function of outcome density
condition. Error bars represent + 1 standard error of the mean
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to rate the teaching technique as effective. In Experiment 5,
we demonstrated that outcome density effects similarly
occur when student outcomes were presented concurrently,
and, finally, in Experiment 6 we replicated the outcome
density effect in a sample of teachers.
Inaccurate beliefs about the effectiveness of instruc-

tional techniques are widespread among educators (Dek-
ker et al., 2012). Little is known, however, about the
psychological mechanisms that develop and maintain
these beliefs. Here, we have examined the role that con-
tingency learning may play in maintaining false beliefs in
teachers. While humans are generally good at tracking
contingencies between events and outcomes (Shanks &
Dickinson, 1988; Wasserman, 1990), there is clear evi-
dence that there are robust biases that undermine these
inferences (e.g. Don & Livesey, 2017; Hannah & Bene-
teau, 2009; Matute, Blanco, & Díaz-Lago, 2019). The

current study replicates the outcome density effect in a
new domain and suggests that outcome frequency may
be an important factor in determining teachers’ instruc-
tional beliefs. The fact that when positive outcomes are
frequent, participants’ causal inferences can vary mark-
edly from reality, e.g. believing that an instructional
practice is improving students’ performance when it is,
in fact, impairing performance, has substantial implica-
tions for how teachers use classroom assessments and
evaluate their students’ outcomes.
Importantly, the distributions used in the high out-

come density conditions, where causal illusions tended
to occur, closely mirror the distributions of typical class-
room assessments used by practicing teachers. The qual-
ity of teachers’ judgements and decision-making about
the efficacy of their practice will be determined by the
extent to which the learning environment can provide

Table 3 Results of the exploratory regressions performed using teacher background variables from Experiment 6 with intention
rating as the criterion variable

Predictors Beta CI p Beta CI p Beta CI p

Intercept < .001 .225 < .001

Low-OD vs. High-OD − .33 − .72–.05 .091 − .15 − 1.15–.84 .76 − .02 − .44–.41 .942

Years teaching 0 − .28–.28 .99

OD X years teaching .17 − .25–.58 .429

Novel .25 − .06–.56 .122

OD X novel − .06 − 1.07–.96 .914

Primary vs. tertiary .39 .01–.77 .047

Secondary vs. tertiary .22 − .16–.61 .258

OD X primary vs. tertiary − .24 − .66–.19 .277

OD X secondary vs. tertiary − .15 − .58–.28 .503

R2/R2 adjusted .058/.021 .101/.066 .098/.037

OD outcome density, CI = 95% confidence intervals

Table 2 Results of the exploratory regressions performed using teacher background variables from Experiment 6 with efficacy rating
as the criterion variable

Predictors Beta CI p Beta CI p Beta CI p

Intercept < .001 .855 .078

Low-OD vs. High-OD − .34 − .72–.04 .085 .01 − .99–1.00 .99 − .12 − .54–.29 .562

Years teaching − .16 − .44–.12 .267

OD X years teaching .12 − .29–.53 .554

Novel .25 − .06–.57 .122

OD X novel –.25
− 1.27–.76

.628

Primary vs. tertiary .42 .05–.79 .03

Secondary vs. tertiary. .13 − .25–.51 .496

OD X primary vs. Tertiary. − .2 − .62–.22 .349

OD X secondary vs. tertiary. 0 − .42–.42 .992

R2/R2 adjusted .072/.035 .096/.061 .131/.072

OD outcome density, CI = 95% confidence intervals
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access to informative feedback. This is particularly im-
portant because very often teachers are encouraged to
frequently use classroom assessments to evaluate and
improve their practice (Black & Wiliam, 1998). Indeed,
assessments have been proposed to create ‘a moment of
contingency’ (p. 285) where teachers are able to use the
assessment as evidence and adapt their instruction ac-
cordingly (Wiliam, 2006). These propositions assume
that teachers are able to accurately infer the contingency
between their practice and their students’ performance
on the assessment. However, if teacher’s inferences are
biased by the frequency of an outcome then classroom-
based assessments may have less utility as a tool for
teachers to evaluate and improve their practice than pro-
posed. Importantly, the results of these experiments
make a clear, if not counter-intuitive, prediction that, all
else being equal, teachers with high-performing students
are going to be more susceptible to causal illusions and
more likely to endorse ineffectual instructional practices.
Further research is needed to examine this prediction in
real-world educational contexts.
It is also worth noting that within educational re-

search, teacher reports of efficacy are still often used as
an indicator of an intervention’s efficacy, and sometimes
the sole indicator of the intervention’s efficacy (e.g.
Beauchemin, Hutchins, & Patterson, 2008; Berg, Bergen-
dahl, Lundberg, & Tibell, 2003; Lage, Platt, & Treglia,
2000; Martens, Peterson, Witt, & Cirone, 1986). The
current results suggest that it is difficult for researchers
to rely on such reports to evaluate efficacy as they are
influenced by the base rate of student performance
(along with other biases such as demand characteristics).
It has been suggested that there is a weak link between
practice in schools and teacher education world-wide.
Teacher students are provided with theory by their
teacher educators which is not sufficiently integrated
into classroom experiences, leading to the long-standing
mismatch between theory and practice (Lillejord &
Børte, 2016; Zeichner, 2010).
Detecting causal relationships within the classroom is

a difficult task. Teachers are faced with discerning the
relationship between a large number of outcomes, across
both students and time, with a multitude of putative
causes. This is in addition to various other complexities
such as moderation, mediation, and autocorrelation.
Within such a complex environment, individuals are
likely to perceive meaningful patterns where there is
only random noise (Gilovich, 1991). While, in some situ-
ations, this tendency may be less costly to the individual
than failing to detect a pattern in the environment, it
might also produce behaviours that are simply redun-
dant (Blanco, 2017). In addition, as shown in Experiment
4 it may cause participants to fail to detect that a new
practice is actually worsening performance, which may

come at a considerable cost to students’ achievement. It
should also be acknowledged that most previous re-
search on how teachers learn, has focussed upon how
practice can be better linked to theory, and not the other
way around (Korthagen, 2017).
One explanation for this bias in contingency learning

is that the tracking of cue-outcome contingencies is
resource-intensive and requires the learner to attend to,
and calculate on-line, the independent relationships be-
tween the cue and the outcome, and the outcome with-
out the cue present (De Houwer, 2009; Mitchell, De
Houwer, & Lovibond, 2009). To overcome this high cog-
nitive demand, people rely on heuristics to estimate con-
tingencies between events which can result in
overestimating the frequency of salient events (Fiedler
et al., 2009). In this case, evidence suggests that people
often pay substantially more attention to instances
where the cue and expected outcome co-occur (i.e. con-
firmatory trials; Crocker, 1982; Jenkins & Ward, 1965),
which may, in turn, create inaccurate intuitions when
the frequency of such confirmatory trials is high. This
bias to attend to confirmatory trials appears to also be
present when trial information is summarised, as in Ex-
periment 5. Although one may argue that the presenta-
tion format is still sequential in nature—participants
only ever saw one cue type on each screen—the cogni-
tive resources required to track and compute average
student performance for Kalavatic teaching and ordinary
teaching online is greatly reduced in this format. Never-
theless we still find participants showing the tendency to
overestimate the efficacy of Kalavatic teaching when the
base rate of student performance is high than when it is
low, even when student performance was equivalent
under ordinary teaching methods.
In all six experiments, the clear outcome density ef-

fects observed in ratings of the efficacy of the novel edu-
cational practice were not reflected in cue-specific
predictions made during training, nor judgements of
mean outcome in the presence and absence of the novel
training made during testing. In some instances, partici-
pants gave higher predictions in the presence of the cue
than in its absence (consistent with an illusory causation
effect) but the strength of this difference was equivalent
in Low-OD and High-OD conditions. This is not an un-
common finding in research on the outcome density ef-
fect, which is typically observed more clearly on causal
and efficacy ratings than on other measures. In other in-
stances, particularly when the outcome presented is con-
tinuous and there is no meaningful contingency between
cue and outcome, there was little evidence of any illu-
sory causation in these predictions. It is worth noting
that the aggregate predictions closely resemble the rat-
ings during training, to which participants receive exten-
sive feedback. The lack of outcome density effect on
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these ratings may reflect that through the training
process participants have learnt to accurately make pre-
dictions about the expected outcome. Indeed, it is inter-
esting that despite often making these aggregate
predictions accurately, participants then make inaccurate
efficacy ratings.
Some researchers have argued that this disassociation

between prediction ratings and causal ratings indicates the
involvement of a different system or psychological process
when participants are making predictions rather than
causal judgements (Allan, Siegel, & Tangen, 2005; Blanco
& Matute, 2015; Waldmann, 2001). However, given that
this is a single dissociation where the effect is reliable on
one measure and inconsistent on the other, it may simply
come down to the sensitivity of each individual measure
to subtle biases (De Houwer, Vandorpe, & Beckers, 2007;
Vadillo et al., 2005; Vadillo, Musca, Blanco, & Matute,
2011). Ultimately, the extent to which aggregate predic-
tions or causal ratings predict actual classroom behaviour
is an empirical question requiring further investigation.
In any case, it is important to note that the type of

measure on which outcome density effects have most reli-
ably been observed in other contexts also generated out-
come density effects in this educational context. An
important assumption in causal learning research is that
causal and efficacy ratings reflect beliefs about treatments,
interventions, or practices that have real consequences for
people’s choices. That is, we choose whether or not to
purchase a treatment or engage in an activity because we
believe that doing so will cause a desirable outcome. It re-
mains to be seen whether illusory causation in this context
translates to real-world implications for teachers’ decisions
to adopt new educational practice. With this in mind, it is
noteworthy just how influential some educational
practices have been despite their poor evidence base
and apparent lack of any causal effectiveness in the
classroom (Bruyckere et al., 2015; Kirschner et al.,
2006).
The conditions that give rise to the outcome density ef-

fect are likely to be encountered in everyday life and, in-
deed, may be desirable in some instances. For instance,
the outcome density effect occurs in medical learning sce-
narios when patients frequently spontaneously recover.
For this reason, researchers have highlighted the relevance
of the effect to the popularity of complementary and alter-
native medical treatments for mild ailments that are likely
to spontaneously remit without treatment (e.g. Echinacea
use for the common cold). This has led some to comment
that we can do nothing to change the outcome density ef-
fect (Matute et al., 2015). In education, we obviously want
students to perform as well as possible, presenting the
same challenge in reducing outcome density effects. How-
ever, these findings suggest that if a teacher has a large
number of high-performing students, they may have

difficulty identifying optimal teaching methods that will
help those not performing well.
Some general solutions to biases in contingency learn-

ing have been proposed. For instance, Vadillo, Matute,
and Blanco (2013) showed that if there are reliable alter-
native causes for an outcome then individuals are less
prone to the outcome density effect. It might, therefore,
be worthwhile to stress to teachers that when consider-
ing their students’ performance on assessments they
need to bear in mind factors other than their teaching
that will affect the outcomes (e.g. natural ability, matur-
ation, the difficulty of the assessment, etc.). Another po-
tential avenue for correcting biased causal judgements is
to provide explicit base rate expectancies regarding stu-
dent performance, particularly when the student cohort
is high achieving and, therefore, academic performance
is negatively skewed (i.e. most students will perform
well). In a study by Blanco and Matute (2019, Experi-
ment 1), participants were either pre-trained to expect a
high outcome base rate or not pre-trained in a zero-
contingency learning task; they found that participants
who were exposed to a high base rate in pre-training
showed reduced illusory causation in causal judgements
compared to control participants, despite witnessing an
identical high base rate zero-contingency cue-outcome
relationship. In a subsequent study, they showed the re-
verse effect, where participants who were pre-trained on
a low outcome base rate showed an inflated illusory
causation effect relative to control participants (Blanco
& Matute, 2019, Experiment 2). These findings suggest
that causal illusions can be influenced by prior expectan-
cies about the base rate of outcome occurrence. Al-
though not measured in the current set of experiments,
it would be interesting to see if teachers’ prior expecta-
tions about student performance influenced their sus-
ceptibility to cognitive biases such as the outcome
density effect. However, it is also worth mentioning that
teachers’ misconceptions are often resistant to interven-
tions designed to correct them. In one study, Ferrero,
Hardwicke, Konstantinidis, and Vadillo (in press) pro-
vided educators with texts to refute their misconcep-
tions. While the intervention affected short-term beliefs,
it had no effect in the long-term (after 30 days) and dis-
concertingly increased the extent to which teachers indi-
cated that they were willing to implement educational
practices based on the misinformation.
Outcome density effects as they relate to educational

assessment may offer additional opportunities for inter-
vention. For example, a relatively simple solution in
practical terms might be to set more difficult classroom
assessments, thereby artificially reducing the frequency
of high-achieving students. However, such an interven-
tion would need to be evaluated against the risk of po-
tentially negative side effects (e.g. negative impacts on
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student self-efficacy). Another potential focus for inter-
vention could be on how such results are communicated
to teachers and potentially utilising ranks or standar-
dised scores rather than grades or percentage-correct-
type feedback. While the present study cannot speak to
the efficacy of such interventions, these appear to be
plausible and worthwhile avenues for further research.
While the current study has shown the outcome

density affects causal ratings about educational prac-
tices in an experimental paradigm, further research is
needed to examine how well such findings generalise
to the classroom. In particular, the current study did
not utilise real teachers as participants. While we
have no reason to suspect that teachers are likely to
be particularly susceptible or immune to the contin-
gency learning mechanisms responsible for this bias,
teachers may have particularly strong prior beliefs
and expectations that may affect how causal illusions
play out in the classroom (Mutter, Strain, & Plumlee,
2007; Yarritu & Matute, 2015). Furthermore, teachers
have access to not only trial-by-trial observation in
the case of educational assessments, they have add-
itional information such as means and distributions.
This information may allow teachers to make more
accurate inferences, particularly if teachers receive
training in the scientific method. However, in some
circumstances it may make the effect worse because
teachers may confound aggregate level correlations
with student-level ones (Fiedler et al., 2007). The
findings of Experiment 5 suggest that presenting out-
comes concurrently as might often occur as a teacher
monitors a class’ performance, did not change the
underlying pattern of results such that high outcomes
promoted causal illusions. While there are many con-
ceivable ways that assessment information can be ag-
gregated in an educational context, these findings
suggest that receiving information about multiple out-
comes does not necessarily eliminate the outcome
density effect.
The current study has shown that the outcome density

effect can be applied to causal inferences about the effi-
cacy of teachers’ instructional practices. In six experi-
ments we have shown that, when students frequently
perform well, participants tend to infer that a novel
teaching method is working despite the fact that it either
has no effect or a negative effect. This suggests that
teachers may have difficulty using classroom assessments
to evaluate the efficacy of their practice. This is espe-
cially true because most classroom assessments are de-
signed so that a majority of students perform well,
providing a context where the outcome density effect is
particularly likely. While further research is needed to
examine how such phenomena play out in the class-
room, the current study provides a plausible mechanism

for understanding why teachers often believe in the effi-
cacy of practices that have little scientific support.
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