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Abstract

Our intuitive understanding of physical dynamics is crucial in daily life. When we fill a coffee cup, stack items in a
refrigerator, or navigate around a slippery patch of ice, we draw on our intuitions about how physical interactions
will unfold. What mental machinery underlies our ability to form such inferences? Numerous aspects of cognition
must contribute - for example, spatial thinking, temporal prediction, and working memory, to name a few. Is
intuitive physics merely the sum of its parts - a collection of these and other related abilities that we apply to
physical scenarios as we would to other tasks? Or does physical reasoning rest on something extra - a devoted set
of mental resources that takes information from other cognitive systems as inputs? Here, we take a key step in
addressing this question by relating individual differences on a physical prediction task to performance on spatial
tasks, which may be most likely to account for intuitive physics abilities given the fundamentally spatial nature of
physical interactions. To what degree can physical prediction performance be disentangled from spatial thinking?

We tested 100 online participants in an “Unstable Towers” task and measures of spatial cognition and working
memory. We found a positive relationship between intuitive physics and spatial skills, but there were substantial,
reliable individual differences in physical prediction ability that could not be accounted for by spatial measures or
working memory. Our findings point toward the separability of intuitive physics from spatial cognition.

Keywords: Intuitive physics, Individual differences, Mental rotation, Paper folding, Working memory

Significance statement

To effectively interact with the world, we must draw on
our intuitions about how objects will behave when we
act on them and when they interact with each other.
This mental framework for understanding and predict-
ing physical dynamics - termed intuitive physics - allows
us to fluidly engage with a world where things roll,
swing, bounce, balance, slosh, slide, and collide. Despite
the critical importance of our intuitive physics abilities,
their underlying mental processes are not well-
understood. Our work here tests the relationship
between intuitive physics and spatial cognition. To what
degree are the mental resources for understanding and
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predicting physical dynamics shared with those that
allow us to apprehend the geometry of a place and 3D
structure of objects? Here, we found a positive relation-
ship between intuitive physics and spatial cognition in
our tasks, but the two were separable - variation in
peoples’ physical prediction abilities could not be fully
explained by their spatial skills. Our results point toward
the possibility that we possess some specialized mental
resources for understanding and predicting physical
behavior - a physics engine in the mind. Better under-
standing this mental physics engine will help us address
the needs of those who have difficulty with physical
prediction (for example, those with apraxia or Williams
syndrome), help us build machines that can more fluidly
interact with their environments and with humans, and
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further our basic understanding of the architecture of
the mind.

Introduction

Our ability to interpret and predict the physical dynam-
ics of a scene is crucial in everyday life. To pick up a cof-
fee cup with the correct force, stack a pile of dishes so
that it will not fall, or grab a rebound after it bounces off
of the rim, we must anticipate how objects will behave
when they interact with each other and with our own
bodies. Our experience performing such tasks is not one
of crunching the equations of Newtonian dynamics. Ra-
ther, we have an intuitive sense of how objects will be-
have - we “see” that the dishes are unstable or that the
basketball will bounce to the right. While a body of early
work revealed some systematic errors in humans’ phys-
ical judgements (Caramazza, McCloskey, & Green, 1981;
Gilden & Proffitt, 1989; Kaiser, Jonides, & Alexander,
1986; McCloskey, 1983), more recent work has focused
on our competencies - humans can often form accurate
and nuanced physical predictions under the kinds of
conditions that we encounter in daily life (Battaglia,
Hamrick, & Tenenbaum, 2013; Sanborn, Mansinghka, &
Griffiths, 2013).

What mental resources do we rely on to predict the
physical dynamics of everyday scenes? One possibility is
that we draw in an ad hoc fashion on a collection of re-
lated abilities such as spatial reasoning, working mem-
ory, and temporal prediction. Physical inference
necessarily involves these aspects of cognition because
physical interactions play out over space and time, often
involving multiple objects interacting on fast timescales.
For example, predicting how two objects will bounce
when they collide requires tracking their positions and
orientations over time and determining how the surfaces
of their 3-dimensional structure will come into contact.
It is possible that our physical intuitions arise purely
from a collection of other mental systems working in
concert - physical prediction may be just another kind of
everyday challenge that we solve with the broad set of
cognitive abilities at our disposal.

An alternative possibility is that our physical infer-
ences rely on a specialized set of mental resources that
are devoted to interpreting and predicting the physical
interactions in a scene - a physics engine in the mind
(Battaglia et al., 2013; Fischer, 2020; Kubricht, Holyoak,
& Lu, 2017; Ullman, Spelke, Battaglia, & Tenenbaum,
2017). In this view, other facets of cognition such as
spatial reasoning and working memory would serve as
inputs to a mental physics engine that makes use of such
information to predict physical dynamics under Newton-
ian principles. Under this proposal, while many inputs
from other cognitive systems make indispensable contri-
butions to our physical intuitions, they are not the whole
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story. How separable is intuitive physics from these
other cognitive domains? To date, there has been little
work to test the relationship between physical cognition
and other closely related abilities. Studies of individuals
with autism and Williams syndrome have shown that in-
tuitive physics is dissociable from social cognition
(Baron-Cohen, Wheelwright, Spong, Scahill, & Lawson,
2001; Kamps et al., 2017), which relies on its own
domain-specific system (Saxe & Baron-Cohen, 2006),
but studies of the relationship between intuitive physics
and more closely related domains such as spatial think-
ing and working memory are lacking.

Here, we test the relationship between physical predic-
tion abilities and performance on measures of spatial
cognition and working memory using an individual dif-
ferences approach. We focus on spatial cognition be-
cause (1) intuitive physics is fundamentally spatial, with
our physical prediction abilities hinging on the need to
track the 3-D structure and orientations of objects as
they move and rotate, (2) physical prediction and spatial
manipulation engage highly similar sets of brain regions
(Fischer, Mikhael, Tenenbaum, & Kanwisher, 2016;
Richter et al., 2000; Vingerhoets, De Lange, Vandemaele,
Deblaere, & Achten, 2002), and (3) joint impairments in
intuitive physics and spatial cognition have been ob-
served in a clinical population (Kamps et al., 2017). We
aimed to characterize individual differences in physical
prediction abilities and test whether they could be
accounted for by individual differences in spatial reason-
ing, while testing working memory as a comparison con-
dition. Our reasoning is that if the mental resources that
support physical prediction are at least somewhat inde-
pendent of these other abilities, then people will vary in
their physical prediction abilities in a way that cannot be
fully accounted for by the other two.

To capture individual differences in physical predic-
tion abilities, we refined a task that has recently been
employed in a host of studies, the Unstable Towers task
(Battaglia et al, 2013; Fischer et al., 2016; Hamrick,
Battaglia, Griffiths, & Tenenbaum, 2016). In this task,
participants see a tower of blocks that is about to topple
and must decide how it will fall, reporting aspects of the
outcome such as the direction or spread of the final rest-
ing state of the blocks. It is important to note that the Un-
stable Towers task captures only one facet of the vast and
varied space of physical inferences that we make in every-
day life. A host of other tasks have recently been used to
explore other aspects of intuitive physics, such as predict-
ing the trajectories of projectiles and bouncing balls (K. A.
Smith, Battaglia, & Vul, 2018; K. A. Smith & Vul, 2013,
2013), inferring the relative masses of objects from obser-
vations of collisions (Flynn, 1994; Gilden & Proffitt, 1994;
Sanborn et al,, 2013), predicting the behaviors of liquids
(Bates, Battaglia, Yildirim, & Tenenbaum, 2015; Schwartz
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& Black, 1999), judging causality through counterfactual
reasoning (Gerstenberg, Goodman, Lagnado, & Tenen-
baum, 2015; Gerstenberg, Peterson, Goodman, Lagnado,
& Tenenbaum, 2017), and many others. The demands of
the unstable towers task and the mechanisms for solving
it may differ from other intuitive physics tasks (see “Dis-
cussion”), but here we have chosen to use it as a starting
point for our investigation of the relationship between in-
tuitive physics and other aspects of cognition both because
stability judgements are common and crucial in daily life
and because the task has factored prominently into recent
work on the mental and neural mechanisms of intuitive
physics. Still, we acknowledge that this study is just the be-
ginning of a program of work that will be required to
understand how intuitive physics relates to other cognitive
domains.

A central challenge in the endeavor of comparing
physical prediction abilities with other cognitive abilities
across individuals was establishing a task that could reli-
ably capture individual differences in physical prediction
abilities. While spatial cognition and working memory
tasks are in wide use and have been refined to measure
individual differences (Conway, Kane, & Engle, 2003;
Hegarty & Waller, 2005; Just & Carpenter, 1992; Yilmaz,
2017) and train transferrable skills (Uttal et al., 2013;
Wright, Thompson, Ganis, Newcombe, & Kosslyn,
2008), no such measures yet exist to capture individual
differences in physical prediction abilities in adults. One
test with physical diagrams has been described in the lit-
erature on autism spectrum disorders to characterize
variations in physical problem solving (Baron-Cohen
et al.,, 2001), but the problems on this test may tap into
different abilities than we are interested in here. People
can display striking misconceptions in such physical
diagramming tasks (Caramazza et al, 1981; McCloskey,
Caramazza, & Green, 1980), even when their physical
predictions in more naturalistic tasks that mirror the
kinds of scenarios they encounter in everyday life are ac-
curate and nuanced (Flynn, 1994; Kaiser et al., 1986; K.
Smith, Battaglia, & Vul, 2013). Performance of physical
diagramming tasks highlights a critical puzzle about the
nature of our physical cognition, but may not necessarily
capture the breadth of our physical judgement capabil-
ities under everyday circumstances. Expanding literature
on this topic has shown that people can make accurate
and detailed physical predictions when tested with tasks
that more closely reflect the automatic, implicit physical
judgements that people make in daily life (Battaglia
et al., 2013; Ullman et al., 2017). Thus, our work in this
study began with the task of adapting a more naturalistic
task (the unstable towers task) to reliably capture indi-
vidual differences in physical prediction abilities. We
then leveraged this measure of individual differences to
examine the relationship between performance on the
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towers task and other tasks that measure spatial reasoning
and working memory. By determining how much of the
variation in our towers task was captured by the other
tasks, we established an initial assessment of the separability
of physical prediction abilities from these other domains.

Methods

Participants

All participants were recruited on Amazon’s Mechanical
Turk. Participants were required to be 18-35years of
age and complete the study from within the USA. For
this study, we chose to limit our participant pool to
younger adults because the effects of aging on intuitive
physics abilities are not well-characterized. For other
tasks that we consider here, such as mental rotation,
there are documented effects of aging (Berg, Hertzog, &
Hunt, 1982). Because our key questions here did not
specifically concern effects of age, we chose to limit this
potential source of variability by restricting the age range
of our participants. The order of the five tasks was ran-
domized for each participant, and participants were re-
quired to complete one task at a time. Based on piloting
of the unstable towers task, we determined that 100 par-
ticipants would be sufficient to provide power of 0.95
with an alpha of .001 in our correlation analyses (we
used a conservative alpha level to account for the fact
that we planned to compute multiple tests of correlation
and correct for multiple comparisons). In total, 129
Mechanical Turk workers completed the tasks, but 27 of
them were excluded before the analyses for the following
reasons: 17 participants did not demonstrate an under-
standing of one or more of the tasks (determined by
blank responses for an entire task or through comments
left at the end of the task that reflected a misunderstand-
ing), 5 participants had malfunctions with the data-
saving file, 2 participants were not in the USA, and 3
participants attempted to complete multiple tasks at the
same time. Two participants were excluded from ana-
lysis for falling below 5 standard deviations on the work-
ing memory tasks’ symmetry judgements and lexical
decisions (these secondary tasks were not used for the
main analysis, but provided a means of assessing
whether participants faithfully performed the working
memory tasks). This left a total of 100 participants for
analysis. Participants were paid US$8 to complete the
study and provided anonymous informed consent in
accordance with Johns Hopkins University Institutional
Review Board (IRB) protocols.

Unstable towers task

Design

We developed a modified version of the unstable towers
task (Battaglia et al., 2013; Fischer et al., 2016; Hamrick
et al, 2016) in which subjects must predict how an
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unstable tower of blocks will tumble. On every trial, par-
ticipants viewed an unstable tower in a 360° panoramic
video that lasted for 6 s at 30 frames per second (Fig. 1a).
The towers were centered on a platform that was split in
the middle by color (either gray or white). Participants
had to judge on which side the majority of the blocks
would come to rest after the tower had fallen. Partici-
pants first saw a practice trial that showed a full video of
a tower falling so that they could develop a sense of the
materials and mass used for the blocks. They then
viewed 48 tower videos and made judgements about
how the blocks would fall without receiving feedback.
After viewing each video, participants made their re-
sponses by clicking buttons under the two sides of the
platform labeled “gray” or “white”. Participants were re-
quired to make a response in order to advance to the
next trial. We varied the number of blocks used to con-
struct the towers: there could be 11, 13, 15, 17, 19, or 21
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blocks within a tower; we constructed 8 towers with
each number of blocks, with 4 falling to the gray side
and 4 falling to the white side. We presented the towers
in a random order to each participant. The last frame of
each video remained on the screen until the participant
advanced to the next trial.

Stimuli

All towers were constructed and rendered using Blender
3-D modeling software (http://www.blender.org), and
physical outcomes were assessed using simulations run
in Blender’s built-in Bullet physics engine. It is import-
ant to note that these non-probabilistic simulations do
not always capture human judgments well (Battaglia
et al, 2013). There are cases where human judgments
differ from the results of a single deterministic simula-
tion in ways that probabilistic models would also differ
from non-probabilistic ones. It would not make sense to
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Fig. 1 Reliable individual differences in the Unstable Towers task. a Left, examples of unstable tower stimuli used in the task. Right, each tower
was displayed in a 65 video at 30 frames per second that circled the tower in 360°. After viewing each video, participants reported which side of
the platform the majority of blocks would land on - gray or white. b Performance on the towers task was reliable across independent sets of
stimuli. We split the set of towers into two halves (see “Methods”) and computed performance in the two stimulus sets (each plotted point is one
participant). Performance across the split halves was significantly correlated (r (98) =0.50, p <.001) and spanned the range from near chance to
near perfect, indicating that our version of the towers task is a reliable and sensitive measure of individual differences. ¢ The difficulty of assessing
each tower was reliable across independent sets of observers. We split the participants into two groups and computed performance for each
tower stimulus within each group (plotted points are individual towers). Accuracy was highly significantly correlated across split halves (r
(98)=.79, p <.001) and spanned a broad range of difficulty
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label observers’ judgements in these cases as errors when
they in fact reflect reasonable assessments under un-
certainty, and here we took steps to avoid such cases.
During piloting, we identified towers for which human
observers agreed with the Blender simulation outcomes
the majority of the time (>55%). We limited our final
stimulus set to those towers where there was general
agreement between pilot observers and simulation out-
comes. Ground truth in this case thus refers to an out-
come that both the Blender simulation and observers’
intuitions generally agreed on. In the main experiment,
to evaluate participants’ prediction accuracy, we com-
pared their responses with these outcomes that our
piloting established to be generally consistent between
the simulation outcomes and pilot subjects’ judgments.

We used Blender to create the towers stimuli for sev-
eral important reasons. First, it allowed us to construct
towers that were unstable and ready to fall, but did not
require any supporting structure to be part of the visual
scene (taking a snapshot of an unstable tower in the real
world would be challenging). Second, Blender allowed
perfect control over variables such as scene lighting,
gravity, object mass, and the friction of surfaces. Third,
Blender allowed for rapid prototyping and reconfigur-
ation of the arrangement of blocks in the scene. Produ-
cing a set of scenes that were challenging but possible to
predict required several iterations of reconfiguring
towers and piloting to remove those that were too easy
or too difficult. All data shown in this study are inde-
pendent of the data used for piloting, collected after the
final set of towers had been established.

Spatial tasks

Paper Folding Test

We used the Paper Folding Test developed by Ekstrom,
Dermen, and Harman, (1976) as a test of spatial mental
manipulation. In this task, participants were asked to im-
agine a square piece of paper being folded and hole-
punched through all of the folded layers (Fig. 2a). For
each question, the first series of images depicted how a
square piece of paper was folded and then a hole was
punched. A second series of images showed possible
locations of the holes when the paper was unfolded back
to its original state. An example of a correctly answered
question was shown in the task instructions before start-
ing. There were 20 questions in total, all available to par-
ticipants at the same time in order to most closely
match the conditions of the original pencil and paper
version of the test. Participants were required to select
one of the five options for each question. There was no
time limit for completing the task. Accuracy was deter-
mined by dividing the total number of correct choices
by the total number of questions.
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Mental Rotations Test

As a second measure of spatial mental manipulation
abilities, we used the Mental Rotations Test (Peters
et al, 1995; Shepard & Metzler, 1971; Vandenberg &
Kuse, 1978). The test consisted of 24 questions in which
a target stimulus of connected blocks was shown, along
with four options reflecting possible rotated states of the
same block object (Fig. 2b). Two of the options were ro-
tated versions of the target stimulus, whereas the other
two other options depicted structurally different objects.
Participants were instructed to select the two rotated
versions of each target object. Examples of correctly
answered questions were shown in the task instructions
before starting. All 24 questions were shown on the
screen at the same time in accordance with the original
pencil and paper test, and participants were required to
select two options for each question. There was no time
limit for completing the task. Accuracy was determined
by dividing the total number of correct choices by 48, as
there were two correct answers for each question. Note
that our scoring scheme differs from how the test is
sometimes scored by awarding 1 point for each fully cor-
rect item. Our approach provided a more continuous
measure of performance for the sake of testing correl-
ation with other tasks - selecting one correct option still
earned the participant partial credit.

Working memory tasks

Spatial working memory

Our test of spatial working memory was based on com-
monly used complex span tasks (e.g., Blacker, Negoita,
Ewen, & Courtney, 2017; Chein & Morrison, 2010). We
required participants to perform two tasks in alternation
(Fig. 2c). First, they saw a 3 x 4 grid with a single black
square filled in for 1500 ms. Participants were instructed
to remember the position of this black square as they
would be asked to recall it later. After a 750 ms delay,
participants were then presented with a shape and asked
to determine whether it was perfectly symmetrical if it
were split vertically down the middle, providing a
response by clicking one of two buttons labeled
“Symmetrical” and “NOT Symmetrical”. This process
was repeated a total of 3-8 times, and at the end of the
stimulus sequence, a black response grid appeared.
Participants used their mouse to select the positions of
the filled-in squares that they remembered from the
sequence. Selected grid locations were highlighted in
yellow and participants were able to select and unselect
positions as many times as they wanted. When they were
finished selecting positions in the grid, participants
pressed a “Submit” button and started a new sequence
of remembered locations and symmetry judgements.
Participants completed four trials of each sequence
length. Order of the position selection was not
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Fig. 2 Spatial reasoning and working memory tests. a Example item from the Paper Folding Test (Ekstrom, Dermen, & Harman, 1976). The three
items on the left indicate how a square piece of paper is folded and hole-punched. Participants must determine where the holes would be
located if the paper was unfolded back to its original form. b Example question from the Mental Rotation Test (Peters et al.,, 1995; Shepard &
Metzler, 1971; Vandenberg & Kuse, 1978). Participants must determine which two items on the right are rotated versions of the item on the left.

were required to remember a series of filled in grid positions while performing a secondary symmetry judgement (see “Methods"). The symmetry
judgement required participants to determine whether the shape was perfectly symmetrical when split vertically down the middle. The number
of grid positions that participants were required to hold in memory varied between three and eight on different trials. At the end of each trial,
memory task. Participants were required to remember a series of letters while performing a secondary lexical decision task (see “Methods”). In the

to hold in memory varied between three and eight on different trials. At the end of each trial, participants reported the remembered series of

performance was computed for each independent half (each data point represents the performance of one participant). All split-half correlations

Split Half 1 Accuracy

get item. ¢ General layout of the spatial working memory task. Participants

a blank grid (far right panel). d General layout of the verbal working
r fake English word. The number of letters that participants were required

r each task. The trials from each task were split into two sets and

emphasized nor analyzed. The grid locations were ran-
domly generated for each participant. All of the shapes
were generated in Matlab prior to conducting the study.
Participants saw a total of 132 shapes in a randomized
order, half symmetrical and half non-symmetrical. Re-
sponses on the grid position memory task were only

considered correct if all of the correct grid positions
were selected and no incorrect positions were selected.

Verbal working memory
Our verbal working memory task was similar in design
to the spatial working memory task, and based on
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commonly used verbal complex span tasks (e.g., Chein
& Morrison, 2010). At the start of the task, participants
were presented with a series of capital letters in the mid-
dle of the screen for 1000 ms each, and asked to remem-
ber the full sequence of letters (Fig. 2d). After seeing
each letter, participants performed a secondary task: they
saw either a word or non-word and had to determine
whether the presented item was a word recognized by
the English language dictionary, or a non-word gener-
ated using the English Lexicon Project generator (Balota
et al., 2007). They indicated their choice by clicking a
button labeled “NON-WORD” or “WORD”. After 3-8
capital letters were shown, the response page was shown,
which consisted of a 3 x4 grid filled with capital letters
that included the target remembered letters and random
non-target letters in the remaining squares. The location
of the letters in the grid was randomized. Participants
were instructed to select all of the letters they remem-
bered from the sequence before pressing a “Submit” but-
ton. As with the spatial working memory task, the order
of participants’ responses was not emphasized nor ana-
lyzed. Responses on the letter memory portion of the
task were only counted as correct if the participant se-
lected all of the correct letters from the sequence and no
incorrect ones.

Note that chance performance differed among the five
tasks described above: random guessing would be ex-
pected to yield 50% correct in the towers and mental ro-
tation tasks, 20% correct in the paper folding task, and
close to nothing correct in the working memory tasks
(0.024%). These differences in chance level did not hin-
der our ability to compare across tasks, but they did
yield numerically different accuracy ranges for the differ-
ent tasks (see Fig. 2e). Importantly, accuracy on all of
the tasks spanned the range between chance and perfect
performance and did not cluster near floor or ceiling,
providing the desired dynamic range in performance for
leveraging individual differences to assess the relation-
ships among the tasks.

Analyses

Randomized split-half analyses were performed for all of
the tasks to characterize the reliability of the measures
within our sample. To do so, the trials for each task were
randomly split into halves, maintaining an equal number of
each trial type in each half of the data. We then computed
accuracy on each independent half of the data and com-
puted the correlation of the split halves across participants.
All r values in the study reflect Pearson correlations.

We performed all significance testing with non-
parametric permutation analyses (Ernst, 2004). To do so,
we computed the true effect size (for example, the r
value for a split-half correlation) and then generated a
permuted null distribution that captured the range of
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effect sizes expected by chance. To generate the per-
muted null distribution, on each of 10,000 iterations, we
randomly shuffled the labels of the data (e.g., shuffled
the correspondence between a participant’s data in split
1 and split 2 of the data) and recomputed the correl-
ation. The 10,000 resulting r values characterize the
range of correlations expected by chance, since the true
correspondence between halves was destroyed by the
shuffling procedure. We then computed the two-tailed
significance as the proportion of the permuted null dis-
tribution that was larger in absolute value than the true
measure effect.

To evaluate whether performance on the spatial and
working memory measures could fully account for indi-
vidual differences in performance on the towers task, we
tested for reliable remaining variance in the towers task
performance after regressing out the spatial and working
memory measures. To do so, we performed a split-half
analysis in which we first split the trials from the towers
task as described above. We then fit separate multiple
regression models to each split half of the data. There
were two regressors in each model: a combined spatial
reasoning variable (the average of performance on the
two spatial tasks) and a combined working memory vari-
able (average performance from the two working mem-
ory tasks). We used these combined measures after
failing to find evidence that the two spatial measures
captured distinct variance in towers task performance,
and likewise with the two working memory measures
(see Results). We obtained the residuals from each re-
gression model and computed the correlation between
the residuals from the two split halves of the data. Sig-
nificant correlation in the residuals would indicate the
presence of systematic variation in the Unstable Towers
task after accounting for participants’ spatial reasoning
and working memory abilities.

Results

We first set out to construct a task that could reliably
measure individual differences in physical prediction
abilities. We used the well-established Unstable Towers
task as a starting point (Battaglia et al, 2013; Fischer
et al., 2016; Hamrick et al., 2016), and created a new set
of unstable tower stimuli using the Blender software
(http://www.blender.org; see “Methods”). We began with
a larger set of candidate stimuli and conducted online
piloting to identify a set of towers for which perform-
ance was distributed approximately uniformly across the
range between chance and perfect performance. We
took this approach in order to include towers that
spanned the full range of difficulty and would be max-
imally sensitive to individual differences in performance.
Our final stimulus set contained 48 tower stimuli (see
Fig. 1a for examples). Data reported for this study were
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collected from a new, independent set of participants
from the piloting process.

The central aim of this study was to test the degree to
which physical prediction abilities covary with measures
of spatial cognition and working memory across individ-
uals. To this end, we tested 100 online participants on
the Unstable Towers task along with four other tasks
depicted in Fig. 2: the Paper Folding Test (Ekstrom
et al, 1976) and Mental Rotation Test (Peters et al.,
1995; Shepard & Metzler, 1971; Vandenberg & Kuse,
1978) as measures of spatial manipulation abilities, and
spatial working memory and verbal working memory
tasks based on commonly used complex span tasks
(Blacker, Negoita, Ewen, & Courtney, 2017; Chein &
Morrison, 2010). Each participant completed the five
tasks in a random order and was required to work on
only one task at a time (see “Methods”).

We first characterized the reliability of the Unstable
Towers task using a split-half analysis. We split the
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stimuli into two sets and computed participants’ per-
formance on each independent half of the stimuli. There
was significant positive correlation in participants’ per-
formance on the two halves of the stimulus set (Fig. 1b;
r (98) =.50, p <.001) - a participant’s performance on
one half of the stimuli served as a good predictor of per-
formance on the second, independent half. Note that be-
cause the stimulus set was divided in half to compute
this correlation, it represents a lower bound on the reli-
ability of the towers measure when computing correl-
ation with the remaining four tasks - using the full
dataset will yield a less noisy measure of participants’
physical prediction abilities. We also characterized the
distribution of performance across individual towers
stimuli and measured how reliably easy or difficult a
tower was using a split-half analysis (Fig. 1c). Mean accur-
acy across all towers was 79% correct (SD =9.2%), and the
correlation in performance on the towers in two independ-
ent halves of the participant pool was .79 (r (46)=.79,

-

towers task was greater than its correlation with either spatial measure

mr=.20 m H{T|VIN

Fig. 3 Relationships in participants’ performance among all tasks. Each color-coded circle represents one task. From the top counter-clockwise:
Unstable Towers Task, Paper Folding Test, Mental Rotation Test, verbal working memory task, spatial working memory task. The width of each
connecting line is scaled to represent the strength of the correlation between individual differences on each pair of tasks. All r values are from
Pearson correlation tests in 100 participants. All correlations were statistically significant at an alpha level of .05 except for the comparisons of the
Unstable Towers task to the verbal and spatial working memory tasks, for which the p values were both greater than 0.3. While performance on
the Unstable Towers task was significantly correlated with performance on each of the spatial cognition measures, the split-half reliability of the

split half

’correlation

r=.50
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p <.001), indicating that the difficulty of each sti-
mulus was reliable across independent groups of
participants.

We then turned our attention to evaluating the rela-
tionship between performance on the Unstable Towers
task and the remaining four spatial and working memory
tasks. Figure 2e shows split-half reliability for each of the
spatial and working memory measures. There was
strong, significant correlation across independent halves
of all of the test items (all p values <.001), indicating
good reliability of the measures. Figure 3 shows the cor-
relations between individual differences in performance
among all five tasks in the study, using the full data set
from each task. We identified significant positive correl-
ation between performance on the Unstable Towers task
and the Paper Folding Test (r (98) =0.29, p =.0021) and
Mental Rotations Test (r (98) =0.26, p =.0098). On the
other hand, to our surprise, we found no significant
correlation between performance on the towers task and
either measure of working memory (spatial working
memory: r (98) = - 0.038, p > .5; verbal working memory:
r (98) = -0.10, p =.32). The lack of correlation was not
due to low reliability of the working memory tests as in-
dicated above, and the working memory tests correlated
significantly with each other (r (98) =0.62, p <.001) and
with the measures of spatial cognition (the largest p
value was .040). We explore possible reasons for the lack
of correlation between the towers task and the working
memory tasks in “Discussion”.

The data above indicate that performance on each of
the spatial tasks served as a significant predictor of phys-
ical inference abilities in the towers task, and the two
spatial measures were correlated with the towers task to
roughly the same degree. We next evaluated whether the
two spatial tasks captured shared or partially distinct
variance in towers performance. We conducted a model
comparison procedure in which we compared the fit of a
model with only the Paper Folding Task as a predictor
with that of a second model including both the Paper
Folding Task and the Mental Rotation Task as distinct
predictors. The second model captured more variance
but also included an additional free parameter, and the
model comparison tested which model was more likely
the correct one using the Akaike information criterion
(AIC) (Akaike, 1998). The model comparison favored
the simpler one-parameter model (AIC, oqe1 = — 481.07,
AIC ode2 = —480.03; model 1 was 1.7 times more likely
to be the correct model according to the information
ratio), and there was no significant additional variance
captured by adding the second parameter to the model
(F (98,97) =1.10, p =.30). We conducted the same test
for the two working memory measures and found that a
model predicting towers task performance from the ver-
bal working memory alone (AIC=-473.03) was 2.9
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times more likely to be the correct model than one that
included both working memory measures as separate pa-
rameters (AIC = -470.87), and no significant additional
variance was explained by adding the second parameter
(F (98,97)=0.01, p =.91). Thus, moving forward, we
used combined measures (computed by averaging across
tasks) to capture spatial abilities in a single predictor
and working memory performance in another single pre-
dictor. As expected, the combined measure of spatial
abilities significantly predicted performance on the
towers task (r (98) =0.31, p =.0019) while the working
memory measure did not (r (98) = - 0.075, p = .45).

In our final analysis, we sought to test whether per-
formance on the spatial and working memory measures
could fully account for individual differences in perform-
ance on the towers task. To do so, we separately fit lin-
ear regression models to independent split halves of the
towers data with the combined spatial and working
memory measures as regressors in each model (see
“Methods”). We then took the residuals from these
models (reflecting unexplained variance in each split
half) and asked whether there was reliable variation
across individuals (Fig. 4). We identified strong and sig-
nificant split-half correlation in the residuals (r (98) =
0.46, p <.001), demonstrating that there were systematic,
reliable variations in physical prediction performance
that could not be explained by spatial abilities or work-
ing memory. These results demonstrate the separability
of performance on the Unstable Towers task from mea-
sures of both spatial cognition and working memory.
While the spatial measures were significant predictors of
physical inference abilities, the facets of intuitive physics
captured by the towers task are not simply an extension
of spatial manipulation abilities.

Discussion
This study assessed the separability of physical predic-
tion abilities from spatial reasoning and working mem-
ory. After developing a set of Unstable Towers stimuli
that could reliably capture individual differences in phys-
ical prediction performance, we tested the relationship
between this intuitive physics task and four other well-
established measures of spatial reasoning and working
memory. While our results show that spatial abilities are
a significant predictor of performance on the towers
task, we found reliable individual differences in physical
inference abilities that could not be accounted for by
either spatial abilities or working memory. These results
point to the separability of intuitive physics from spatial
cognition - our physical intuitions are not merely an
extension of our spatial thinking.

At the outset of this study, there was good reason to
suspect that intuitive physics and spatial cognition would



Mitko and Fischer Cognitive Research: Principles and Implications

(2020) 5:24

Page 10 of 13

0.25

r=.46

0.15

0.05

-0.05

Residuals Split Half 2

-0.15

-0.25

-0.35 -0.25

memory capacity

-0.15
Residuals Split Half 1

Fig. 4 Reliable variance in the Unstable Towers task after regressing out the contribution of spatial abilities and working memory. We ran a linear
regression to find the degree to which a combination of the spatial and working memory measures could account for individual differences in
performance on the towers task (see “Methods"). We then found the residual (unexplained) variance in the towers task and plotted independent
split halves of the data (each data point represents one participant). We identified robust positive correlation in this split-half analysis (r (98) = 048,
p <.001), indicating that reliable individual differences in physical prediction cannot be fully accounted for by spatial abilities or working
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by closely related. During development, for example, the
emergence of spatial thinking and physical concepts is
intertwined. The looking behaviors of infants at 7
months old indicate that they are able to represent how
the geometric properties of an object, such as the length
and width, influence how it will physically interact with
other objects in a scene (Baillargeon, 1987). Further, in-
fants of the same age can recognize how the physical
properties of an object (i.e. soft/malleable vs hard) relate
to spatial changes when interacting with other objects.
In adults, a study on individual differences in spatial
abilities and mechanical reasoning found that partici-
pants high in spatial ability made significantly fewer er-
rors on predicting how a pulley system would operate
(Hegarty & Sims, 1994), and recent work on people with
Williams syndrome who display characteristic spatial
processing deficits showed that they also have marked
difficulty in performing the Unstable Towers task
(Kamps et al,, 2017). Additionally, a recent study that
identified the brain regions engaged during physical
inference (Fischer et al., 2016) revealed a set of regions
that is highly similar to those engaged during spatial ma-
nipulation tasks (Richter et al., 2000; Vingerhoets et al.,
2002). Thus, the positive relationship between intuitive
physics and spatial cognition was expected, but the de-
gree to which the two were separable at all had not been
established.

We also expected that performance on the working
memory tasks would be a good predictor of physical pre-
diction abilities. Tracking the numerous objects involved
in physical interactions must tax working memory, and
physical prediction and working memory tasks engage
highly overlapping sets of brain regions (Fischer et al.,
2016). To our surprise, we found no relationship
between the working memory measures and physical
prediction performance in our current tasks, despite the
fact that each measure showed strong and significant
internal reliability. Why were intuitive physics and work-
ing memory unrelated in our data? One possibility is
that the Unstable Towers task may be an example of a
kind of prediction that we perform without explicitly
tracking individual objects within the scene. We may
perform the prediction in a more holistic fashion, asses-
sing ensemble statistics (Alvarez, 2011; Haberman &
Whitney, 2012) that are predictive of the final outcome
state. The number of blocks in the towers we presented
here (11-21 blocks) is far greater than the number of
items that we can track individually, yet observers still
generally perform well at the task. Participants may also
only attend to a critical subset of the blocks that are key
in determining the behavior of the tower as a whole. It
may be the case, then, that the Unstable Towers task
places low demands on working memory, accounting for
the lack of a relationship in our data. Importantly, even
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if this is the case, it still points to the separability of in-
tuitive physics from working memory - we can solve
physical prediction problems without placing a high de-
mand on working memory. In future work, it will be im-
portant to extend this present approach to other
intuitive physics tasks that are more likely to tax work-
ing memory.

What is the source of variability in physical prediction
abilities across individuals? At least two (non-mutually
exclusive) possibilities merit consideration. First, there
may be differences across individuals in the precision
and capacity of the mental physics engine itself. To form
their predictions, people must represent physical infor-
mation about the objects and surfaces in the environ-
ment (e.g., friction, mass, and deformability) and they
must have stored knowledge about physical constants
and principles such as the gravitational constant
(Indovina et al.,, 2005; Zago & Lacquaniti, 2005). Even if
everyone employs roughly the same algorithms to carry
out their physical inferences, individual differences in
the precision with which the above properties are repre-
sented would manifest as differences in prediction accur-
acy. The precision and scope of the inference processes
themselves could also differ across individuals. Imagin-
ing for a moment that people do use some form of men-
tal simulation to generate their physical predictions,
there may be individual differences in the speed and
temporal resolution with which simulations can be car-
ried out, the spatial precision of simulations, or even the
number of simulations that can be carried out before
reaching a decision, all of which could lead to variations
in error rates across individuals. A second possibility is
that people differ qualitatively with regard to their strat-
egies for forming predictions. In the Unstable Towers
task used here, individuals may differ in the portions of
the towers they focus on (e.g., blocks at the top or the
bottom of each tower) or any shortcuts they use to make
their judgements (e.g., relying on the tower’s center of
mass as an indicator of how it will fall). This second case
may be expected to give rise to more qualitative differ-
ences in observers’ predictions than the first, a distinc-
tion that may prove useful for future work that aims to
adjudicate among these and other possibilities. In any
case, day-to-day experience may play an important role.
Some individuals rely particularly heavily on their phys-
ical inferences in daily life (e.g., athletes or automobile
mechanics), and the constant demands on their physical
inference abilities may lead to more finely tuned mental
physics engines.

As noted in “Introduction”, it is important to acknow-
ledge that the Unstable Towers task used here is just a
single task within the broader landscape of intuitive
physics, and basic stability judgements like this one may
be more automatic and less simulation-based than
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others where a larger number of variables are at play
(Firestone & Scholl, 2017). This task may well reflect a
case where we use the mental physics engine to train a
fast, bottom-up network to determine how the towers
will fall, circumventing the need for full-blown simula-
tion in each new case (Wu, Yildirim, Lim, Freeman, &
Tenenbaum, 2015). Thus, this study is a starting point in
a broader endeavor to examine the relationship between
a range of intuitive physics tasks and a range of cognitive
abilities that are likely related (e.g., spatial and featural
attention, temporal prediction, and many others). Still,
the present findings are sufficient to establish that the
aspects of intuitive physics captured by this task cannot
be fully accounted for by spatial abilities or working
memory.

Amidst our findings here on what intuitive physics is
not (i.e., simply a recruitment of spatial cognition and/or
working memory), it is worth putting forward a theoret-
ical description of what we believe the mental physics
engine is. In our conception, the mental physics engine
comprises a collection of cognitive processes that apply
a simplified set of physical laws to a multimodal repre-
sentation of the world. The products of these processes
are at least fourfold: (1) a physical scene description that
includes information about how objects rest on or sup-
port each other, whether objects and surfaces that are in
contact are attached or free moving, and what the latent
physical properties (e.g., mass, hardness, and friction)
are for the constituents of the scene; (2) probabilistic
predictions of how the physical dynamics in a scene will
play out over time. No matter what algorithms underlie
physical prediction (e.g., mental simulation, rule-based
reasoning, or some combination thereof), the outcomes
are likely probabilistic - e.g., we see that a rolling pen
will most likely fall from the table but may stop just
short; (3) inferences about what past physical conditions
gave rise to the current ones. A key function of the men-
tal physics engine is to infer possible causes from ob-
served effects; for example, that a trail on a sandy beach
was formed by a rolling ball (Gerstenberg, Siegel, &
Tenenbaum, 2018) (for related work on shape percep-
tion, see Chen & Scholl, 2016; Leyton, 1989; Sprote,
Schmidt, & Fleming, 2016); and (4) estimates of how our
own actions and the actions of others will influence the
world. Perhaps the most crucial function of the mental
physics engine is to allow us to plan and select among
possible actions by evaluating the outcome that each ac-
tion would likely lead to. These four kinds of informa-
tion computed by the mental physics engine do not
necessarily arise from distinct processes - rather, they
are likely computed jointly and in a mutually informative
manner. To achieve such a general and flexible set of in-
ferences that are useful across the vast array of physical
scenarios that we encounter in daily life, a physical
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simulation engine is an attractive model (Battaglia et al.,
2013; Ullman et al., 2017). The aforementioned compu-
tations would be achieved by storing physical variables
about the objects and surfaces in a scene and stepping
forward in time through successive states of the world,
applying simplified physical laws to determine the out-
comes of events such as collisions. It remains possible
that an entirely different mechanism is at play, e.g. the
application of large collection of rules and heuristics
(Davis & Marcus, 2016; Ludwin-Peery, Bramley, Davis,
& Gureckis, 2019). However, given the flexibility of our
physical reasoning in the face of the novel scenarios we
encounter on a daily basis, we favor an account in which
we rely primarily on mental simulation but supplement
our simulations with heuristics in cases where simula-
tion is intractable or unnecessary (e.g., evaluating
whether water will escape a sealed container), and in
cases where specific forms of physical prediction are
overlearned (e.g., a player catching a baseball). In any
case, the mental architecture underlying intuitive physics
should be malleable, with the capacity to be elaborated
and fine-tuned through experience, both perceptual and
motor. Indeed, there is evidence that motor experience
can enhance the understanding of physical concepts,
both during development (Rakison & Krogh, 2012) and
in adulthood (Kontra, Lyons, Fischer, & Beilock, 2015).
Our findings here show that an individual’s intuitive
physics abilities (as measured by the Unstable Towers
task) cannot be fully explained by his or her spatial skills
alone, but does that necessarily mean that the two sys-
tems are distinct in the mind? Since most physical pre-
dictions involve some form of spatial manipulation in
order to understand how objects will move and reorient
over time, one might argue that spatial thinking is sub-
sumed by the mind’s physics engine, and spatial tasks
constructed by experimenters simply tap into one com-
ponent of a more general simulation engine. Our data
are consistent with this possibility - the separability be-
tween intuitive physics and spatial cognition that we
identified may arise from other facets of the mental
physics engine that are untapped by purely spatial tasks
(e.g., the incorporation of physical properties such as
gravity, mass, and friction and application of physical
laws handing behaviors such as colliding, sliding, and
falling). The distinction is a subtle but important one for
future work to resolve - is spatial cognition a “pipe” that
feeds into the mental physics engine, or part of the phys-
ics engine itself? Still, this lingering question does not
undermine our central claim: intuitive physics is more
than just spatial cognition, whether they are carried out
by shared or distinct mental machinery. It is worth not-
ing that some spatial computations, e.g. those that give
rise to the perceived positions and sizes of objects,
emerge early in the cortical visual processing stream
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(Fischer, Spotswood, & Whitney, 2011; Maus, Fischer, &
Whitney, 2013; Murray, Boyaci, & Kersten, 2006) in re-
gions that are not specifically engaged during physical
prediction (Fischer et al., 2016). Still, as mentioned
above, spatial tasks like those employed here do engage
highly similar sets of brain regions to those involved in
intuitive physics (Richter et al., 2000; Vingerhoets et al.,
2002), so the question of distinct mental machinery re-
mains unresolved from the standpoint of brain imaging
research as well.

In summary, we found that individual observers dis-
play reliable variability in their physical prediction abil-
ities that cannot be accounted for by their spatial
abilities or working memory capacity. We developed a
new set of physical prediction stimuli to characterize
such variability, and demonstrated that it has strong in-
ternal reliability to capture individual differences. Our
findings point to the possibility that we may possess
some specialized, domain-specific mental resources that
support our physical intuitions and allow us to interact
fluidly with our everyday environments.
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