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Gesture during math instruction specifically
benefits learners with high visuospatial
working memory capacity
Mary Aldugom1* , Kimberly Fenn2 and Susan Wagner Cook1

Abstract

Background: Characteristics of both teachers and learners influence mathematical learning. For example, when
teachers use hand gestures to support instruction, students learn more than others who learn the same concept
with only speech, and students with higher working memory capacity (WMC) learn more rapidly than those with
lower WMC. One hypothesis for the effect of gesture on math learning is that gestures provide a signal to learners
that can reduce demand on working memory resources during learning. However, it is not known what sort of
working memory resources support learning with gesture. Gestures are motoric; they co-occur with verbal language
and they are perceived visually.

Methods: In two studies, we investigated the relationship between mathematical learning with or without gesture
and individual variation in verbal, visuospatial, and kinesthetic WMC. Students observed a videotaped lesson in a
novel mathematical system that either included instruction with both speech and gesture (Study 1) or instruction
with only speech (Study 2). After instruction, students solved novel problems in the instructed system and transfer
problems in a related system. Finally, students completed verbal, visuospatial, and kinesthetic working memory
assessments.

Results: There was a positive relationship between visuospatial WMC and math learning when gesture was present,
but no relationship between visuospatial WMC and math learning when gesture was absent. Rather, when gesture
was absent, there was a relationship between verbal WMC and math learning.

Conclusion: Providing gesture during instruction appears to change the cognitive resources recruited when
learning a novel math task.
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Significance statement
This work is a collaborative effort to better understand
the individual difference factors that predict mathemat-
ical learning with gesture. One of the laboratories has
expertise in gesture and mathematical learning and the
other studies individual differences in learning. This
work was supported by a collaborative grant from the
National Science Foundation, which is interested in

uncovering the factors that contribute to successful
STEM learning and education. It is well-established that
when learners observe gesture, learning is enhanced
(Cook, Duffy, & Fenn, 2013; Cook, Friedman, Duggan,
Cui, & Popescu, 2016); however, the mechanisms under-
lying this effect remain largely unexplored. We used our
combined expertise to better understand how variation
in working memory capacities across learners might sup-
port mathematical learning, with a focus on visuospatial
working memory capacity (WMC). Understanding how
gesture works at the individual level can improve our
theories of gesture processing and is also important for
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capitalizing on gesture to enhance mathematical educa-
tion. Our findings reveal a link between visuospatial
working memory and mathematical learning with ges-
ture at instruction, and knowledge of this link could be
used to enrich mathematical learning in the real world.

Background
Many children fail to achieve proficiency in math. In the
United States, only 40% of students in grade four, 34%
of students in grade eight, and 25% of students in grade
12 were above proficient in mathematics at both public
and private schools in 2017 (National Assessment of
Educational Progress: National Center for Education Sta-
tistics (NCES), 2017). Several factors likely contribute to
students’ difficulties in acquiring expected levels of math
proficiency; here we focus on two factors that have pre-
viously been shown to influence math learning: instruc-
tion that includes hand gesture and visuospatial, verbal,
and kinesthetic WMC in the learners.

Working memory and math learning
Working memory processes are known to support math
learning (e.g. Alloway & Alloway, 2010). Baddeley devel-
oped a modality-specific model of working memory,
with two modality specific subsystems, a phonological
loop, which stores linguistic information, and a visuo-
spatial sketchpad, which stores visual and spatial infor-
mation (Baddeley & Hitch, 1974; Baddeley, 2003;
although see Engle, 2002 and Cowan, 1999 for alterna-
tive accounts of working memory).
Modality-specific working memory capacities are related

to math learning. The capacity of verbal working memory
predicts various types of mathematical success, across
time and across development (Alloway & Alloway, 2010;
Gathercole, Pickering, Knight, & Stegmann, 2004; Noël,
Seron, & Trovarelli, 2004; Passolunghi, Vercelloni, &
Schadee, 2007). For example, children’s verbal working
memory skills at age five are correlated with their aca-
demic achievement in mathematics 6 years later (Alloway
& Alloway, 2010). Visuospatial working memory also pre-
dicts mathematical success (Kyttälä, 2008; van der Ven,
van der Maas, Straatemeier, & Jansen, 2013). Further,
some studies have measured both verbal and visuospatial
WMC and find that both predict success in mathematics
(Jarvis & Gathercole, 2003; Swanson & Beebe-Frankenberger,
2004), although this pattern is not always seen (St. Clair-
Thompson & Gathercole, 2006).
Spatial ability is also a significant predictor of mathem-

atical ability in both children and adults (Cheng & Mix,
2014; Lubinski, 2010; Wai, Lubinski, & Benbow, 2009).
Measures of spatial ability most often encompass spatial
visualization and spatial reasoning, and it is possible that
visuospatial working memory and spatial abilities overlap

as cognitive constructs (Miyake, Friedman, Rettinger,
Shah, & Hegarty, 2001).

Gesture and math learning
Although WMC is considered to be a fixed capacity,
characteristics of instruction can influence how working
memory resources are used during learning (Paas, Renkl,
& Sweller, 2004). According to cognitive load theory, in-
struction that increases the capacity of learners to hold
relevant information in working memory should increase
learning (Sweller, 2010). One hypothesis is that multi-
modal instruction facilitates learning by allowing
learners to efficiently use available working memory re-
sources (Mayer, 2005; Mayer & Moreno, 2003; Mousavi,
Low, & Sweller, 1995).
Indeed, multimodal instruction that includes visual hand

gestures along with auditory speech has been shown to
improve mathematical learning. Gestures are hand move-
ments that spontaneously accompany speech, that are re-
lated to speech both semantically and temporally, and that
do not serve any other known function. There are several
different types of hand gestures that emerge across devel-
opment and that are tightly coupled with language (see
Capone & McGregor, 2004 for a review). Here we focus
mostly on deictic gestures, which index specific objects or
items in the environment and are often used to direct at-
tention to the item being referenced (Bangerter & Lou-
werse, 2005). For example, in the current study, a math
instructor simultaneously points at and audibly names
each element of a mathematical equation as she explains a
procedure for solving the problem. These sorts of gestures
are frequent in math instruction (Alibali et al., 2014;
Flevares & Perry, 2001).
Observing gesture during instruction enhances math

learning, for adults as well as for children (e.g. Cook
et al., 2013; Cook et al., 2016; Hendrix, Fenn, & Cook,
2018; Ping & Goldin-Meadow, 2008; Valenzeno, Alibali,
& Klatzky, 2003). Furthermore, the beneficial effect of
the observation of gesture on performance is pro-
nounced for more challenging problem-solving tasks
(Hou & So, 2017).
The mechanism by which gesture increases learning is

not known. From the perspective of cognitive load the-
ory, there are two possibilities for how multimodal in-
struction might reduce demand on working memory.
One possibility is that multimodal instruction, because it
involves separate systems for each modality, allows
learners to capitalize on working memory resources that
would otherwise not be recruited. On this account, ges-
ture might provide a mechanism for involving visuo-
spatial and kinesthetic working memory in learning (Wu
& Coulson, 2007, 2011) that would otherwise be sub-
served only by verbal working memory. An alternative is
that multimodal instruction might improve the efficiency
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with which information is encoded without necessarily
recruiting additional resources. Gestures allow instruc-
tors to direct attention to the features of the problem.
By providing a tool for signaling relevant information
during instruction (Mayer, 2002), gestures may enhance
encoding of relevant information into working memory.
These two accounts make different predictions about

which learners should benefit most from instruction that
includes gesture. If gestures recruit additional resources,
perhaps visuospatial resources, then gesture should sup-
port learners with greater visuospatial WMC by allowing
these learners to capitalize on their greater resources.
Alternatively, if gestures facilitate encoding, gesture
should enhance learning for learners with lower relevant
WMC, by allowing these learners to make better use of
their limited resources.
Understanding the working memory resources that

support learning from gesture has implications for iden-
tifying the mechanisms underlying gesture processing
more generally. Although gestures co-occur with lan-
guage, they represent information visually and spatially
and so they may engage spatial processing during lin-
guistic communication. Indeed, some theories of gesture
suggest that they are particularly important during
spatial communication (Hostetter & Alibali, 2007) while
others emphasize the relationship between gesture and
language (McNeill, 1992; Rowe & Goldin-Meadow,
2009). If gestures are coded spatially, we would expect
gesture processing to be related to spatial WMC (. Alter-
natively, if gestures function to influence the processing
of concurrent linguistic information, we would expect
gesture processing to be related to verbal WMC.
The available evidence suggests that sensitivity to ges-

tures may depend on available visuospatial and/or
kinesthetic working memory resources. For example, in
a priming task that included both speech and gesture,
individuals with higher spatial WMC showed more sen-
sitivity to information in gesture, while those with higher
verbal WMC showed more sensitivity to information in
speech (Özer & Göksun, 2019). Similarly, Wu and Coul-
son (2014b) examined the role of verbal and visuospatial
WMC in gesture comprehension and found that individ-
uals with high visuospatial WMC were more sensitive to
gesture than those with low visuospatial WMC. In a sep-
arate study, these researchers examined the relationship
between performance on a gesture comprehension task
and kinesthetic working memory, a novel subsystem of
working memory which is postulated to be responsible
for the storage and manipulation of bodily movements
(Wu & Coulson, 2015). Individuals with high kinesthetic
WMC were more sensitive to gestures and were better
able to inhibit information from irrelevant gestures (Wu
& Coulson, 2015). Together, these findings suggest that,
in perception, sensitivity to gesture may depend on

available visuospatial and/or kinesthetic resources, bene-
fitting those with high capacity in relevant modalities.
However, the resources involved in learning from ges-

ture may be distinct from those involved in understand-
ing through gesture. In this article, we examine the
relationships between math learning with gesture
present or absent at instruction, visuospatial WMC, ver-
bal WMC, and kinesthetic WMC. In Study 1, we exam-
ined performance on an abstract mathematical task with
gesture present at instruction. We used only a single
instructional condition in order to increase power to
detect relationships between WMC and learning. After
finding such relationships in Study 1, in Study 2, we
examined performance on an abstract mathematical task
with gesture absent at instruction using a new sample of
participants. We then combined findings from Study 1
and Study 2 to compare patterns across instructional
conditions.

Predictions
The findings from Wu and Coulson (2014b, 2015) and
from Özer and Göksun (2019) reveal that gestures load
on visuospatial and kinesthetic WMC. However, these
studies investigated action words and discourse process-
ing, not learning. If these findings generalize to instruc-
tional contexts, we would expect the availability of
gesture during instruction might allow learners to use
visuospatial and kinesthetic WMC that would otherwise
not be engaged during instruction. If so, then adding
gesture to instruction should improve learning for indi-
viduals with high visuospatial and kinesthetic WMC.
To test these predictions, Study 1 examined the rela-

tionship between individual differences in verbal, visuo-
spatial, and kinesthetic WMC and learning when
instruction includes gesture. Participants watched video
instruction on a new mathematical system where the in-
structor used both speech and gesture. Following in-
struction, participants completed a posttest and a
transfer test to assess learning. They then completed a
visuospatial working memory task, a verbal working
memory task, and a kinesthetic working memory task.
Finally, participants completed an abbreviated mathem-
atical anxiety rating scale and gesture attitudes question-
naire. Our goal in Study 1 was to assess how learning a
novel mathematical concept with both speech and
gesture at instruction relate to visuospatial, verbal, and
kinesthetic WMC.

Study 1
The objective of Study 1 was to examine the relationship
between individual differences in visuospatial, verbal,
and kinesthetic WMCs and learning mathematical
equivalence with gesture. Approval was obtained from
the Institutional Review Board prior to data collection.
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Participants
Seventy-five University of Iowa undergraduates participated
in the study. Eleven participants were excluded from the
final analyses. Participants were excluded for being non-
native English speakers (n = 2), technical errors (n = 3), for
not performing above chance in the learning task (n = 2), or
because they did not have available ACT scores (n = 4).
Thus, only 64 native English speakers were included in the
analyses (35 male, 29 female). We determined this sample
size a priori, based on simulations of our design and as-
sumptions about effect sizes derived from prior research
(Marstaller & Burianová, 2013; Wu & Coulson, 2015). We
also preregistered our analytic approach with the Open
Science Framework based on our expectations. Participants
received course credit for participation.

Materials
Abstract Mathematical Equivalence Task
To assess learning with gesture, we used an abstract
Mathematical Equivalence Task modified from Hendrix

et al., 2018 (originally adapted from Kaminski, Sloutsky,
& Heckler, 2008). This is a completely novel mathemat-
ical task, created for studying math learning in the la-
boratory. The task follows a system of modular
arithmetic and requires students to learn to solve prob-
lems in a commutative group of order three, a mathem-
atical system operating over shapes (diamond, circle, and
squiggle) (see Fig. 1). We did not include a pretest be-
cause participants had no prior experience with the
stimuli and the rules for combining them in our abstract
math system. As such, they had no knowledge of the
meaning of the symbols or the ways in which to com-
bine them.
Participants first learned six rules for combining the

three shapes in this novel mathematical system. Rules
were presented one at a time in written format on a
computer screen. All six rules are displayed in Fig. 1a.
Participants had an unlimited amount of time to read
each rule and chose when to proceed. After each rule
was presented, participants answered one or two

Fig. 1 Example images from the abstract mathematical task. a The summary depiction of the six rules presented to participants prior to
instruction. b Screenshot from an example instructional video with gesture. c An example problem from the posttest, where the correct answer is
squiggle. d An example problem from the transfer task
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practice problems before seeing the next rule. These
practice problems all tested simple equations that re-
quired participants to combine two shapes and calculate
the result. These problems tested participants’ under-
standing of the preceding rule. Participants received
feedback if they selected an incorrect response and were
required to repeat the question until they selected the
correct response. After viewing the rules and solving the
practice problems, participants were shown all six rules
together (Fig. 1a) and had as much time as needed to
read and reflect on the six rules before proceeding to the
instructional videos.
Participants then viewed six video-recorded explana-

tions that described how to solve more complex prob-
lems in the symbol system. The problems used during
instruction were based on math problems used to study
the concept of equivalence in younger children and re-
quired participants to apply the rules to problems with
five symbols; there were three symbols on the left side of
the problem and one symbol and one blank space (a
missing symbol) on the right sides of the problem. The
instructor explained how to solve the problem to find
the symbol that belonged in the blank space. The videos
included both speech and gesture and ranged from 13 to
33 seconds. All gestures used in the instructional videos
were deictic gestures; the instructor in the video pointed
to the shapes in the equation as she elaborated mathem-
atical equivalence problem-solving strategies (see Fig.
1b). In each video, the instructor points to each shape
and explains how the shapes combine with each other as
well as what shape each side of the question reduces to.
She then gives the answer for which shape belongs in
the blank space (access https://osf.io/wh92e/ for instruc-
tional videos).
After each instructional video, participants solved a

practice problem, similar in form to the problem pre-
sented in the video. Participants could not move forward
until they selected the correct response. Following in-
struction, participants were given a posttest (27 ques-
tions) and a transfer test (12 questions) to assess
learning and generalization. All of the problems on the
posttest and transfer test were novel; these problems did
not appear during training. All posttest and transfer test
problems were scored as correct or incorrect, or 1 or 0,
respectively. The transfer task followed a similar math-
ematical structure as the abstract math task, but it used
different objects, requiring participants to generalize
their knowledge beyond the learning context (see Fig.
1d). Unlike in the posttest, however, during the transfer
test, the rules for combining symbols in this new system
were visible during problem solving on each trial, so par-
ticipants did not need to keep this information in mem-
ory. The top portion of the image in Fig. 1d appeared on
each transfer test problem. Cronbach’s alpha for the

posttest was 0.86 and for the transfer test was 0.74.
Thus, both tests demonstrated sufficient internal
consistency to serve as individual measures of learning.

Visual Patterns Task
To assess visuospatial WMC, we used an adaptation of
the Visual Patterns Task (Chu & Kita, 2011; adapted
from Della Sala, Gray, Baddeley, & Wilson, 1997). Test-
retest reliability of the Visual Patterns Task is 0.75 (Della
Sala et al., 1997).
Participants viewed patterns of white and black blocks,

presented for 3 seconds each. Immediately after the
presentation of the pattern, the patterns of blocks were
replaced with letters in every block, and participants
were prompted to verbally recall the letters correspond-
ing to the black blocks that were previously shown. Par-
ticipants did not need to remember these letters, as the
letters were visible throughout recall, serving to provide
an efficient way of referencing the spatial locations in
the grid. Spans ranged from seven to eleven black blocks
with five trials at each level and an equal number of
white and black blocks at each level. Responses were
video recorded and scored online and offline.

Sentence Span Task
To assess verbal WMC, we used an adaptation of the
Reading Span Task (Waters, Caplan, & Hildebrandt,
1987). The Reading Span Task is considered the stand-
ard task for assessing verbal WMC. Test-retest reliability
composite Z-score measures were calculated separately
for cleft subject sentence (rz = 0.75) and for subject-
object sentences (rz = 0.83), demonstrating high test-
retest reliability (Waters & Caplan, 1996).
Participants viewed a series of sentences and made

judgments about each sentence. At the end of each trial
(two to eight sentences), participants were prompted to
verbally recall the last word of each sentence in the
order that they had been shown. Spans ranged from two
to eight sentences with five trials at each level. Re-
sponses were video recorded and scored online and
offline.

Movement Span Task
To assess kinesthetic working memory, we used an
adaptation of the Movement Span Task that has pre-
viously been related to sensitivity to information from
gesture (Wu & Coulson, 2014a; Wu & Coulson, 2015).
Analyses demonstrate a high reliability estimate of
α = 0 .95 (Wu & Coulson, 2014a).
Participants viewed a series of hand and arm move-

ments presented on video. At the end of each trial, par-
ticipants were prompted to replicate the movements
with as much detail as possible. Spans ranged from one
to five movements with three trials at each level.
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Responses were video recorded, and movements were
coded and scored offline. Single points were given for
each movement that was replicated correctly, half points
were given for each movement that reflected the target
movement, but had slight deviations, and no points were
given to movements that did not reflect any movements
within a span. Points did not depend on the order in
which participants recalled each movement within a
span. Because we implemented a specific coding system
for the movements, we assessed reliability; the intercoder
agreement for scoring kinesthetic working memory span
was 99%.

Composite ACT Score
Composite ACT score was obtained from university re-
cords and was used to control for cognitive ability. Per-
formance on the ACT correlates highly with
independent measures of general intelligence (Koenig,
Frey, & Detterman, 2008). The median reliability esti-
mate for the composite ACT score is 0.97. We expected
that composite ACT score would positively predict
learning in our novel math learning task.

Abbreviated Math Anxiety Rating Scale (A-MARS)
The A-MARS was included at the end of the study as an
exploratory measure of mathematical anxiety (Alexander
& Martray, 1989). The A-MARS is a 25-item question-
naire with a 5-point Likert scale ranging from “Not At
All” to “Very Much”; participants were asked to indicate
their level of anxiety in mathematical-relevant scenarios.
Analyses demonstrate a high reliability coefficient of
α = 0 .98.

Gesture Attitudes Questionnaire
A Gesture Attitudes Questionnaire was included at the
end of the study as an exploratory measure (Nathan,
Yeo, Boncoddo, Hostetter, & Alibali, in press). The Ges-
ture Attitudes Questionnaire is a 16-item questionnaire
with a 5-point Likert scale ranging from “Strongly Dis-
agree” to “Strongly Agree”; participants were asked to in-
dicate their level of agreement to specific statements
about the function of gesture during communication.

Procedure
Participants were run individually, and the experimenter
was in the testing room throughout the session. The
study was conducted in a fixed order; all participants
completed each task in the order in which they were
described previously and completed a short participant
information questionnaire at the end of the study.

Results
We assessed learning by measuring problem-solving ac-
curacy on the posttest and transfer test. We then

modeled the extent to which visuospatial, verbal, and
kinesthetic working memory predicted learning. Com-
posite ACT score was included as a covariate. All vari-
ables were normally distributed with the exception of
kinesthetic working memory, which was positively
skewed. Working memory spans, and composite ACT
scores were all standardized prior to analysis.
To assess multicollinearity, we first examined the bi-

variate correlations among predictors. The correlations
among the three working memory measures were rela-
tively weak (r = .27 for visuospatial and verbal working
memory, r = .30 for kinesthetic and visuospatial working
memory, and r = .26 for verbal and kinesthetic working
memory), suggesting that the various forms of WMC
were unconfounded in our sample. To assess the poten-
tial impact of multicollinearity on our statistical models,
we calculated variance inflation factor (VIF) values for
all predictors. All values were under 2.50 (visuospatial
working memory = 1.62, verbal working memory = 1.74,
kinesthetic working memory = 1.27, and composite ACT
score = 1.57), suggesting that the level of multicollinear-
ity in our data was low. The correlations between com-
posite ACT score and verbal working memory (r = .36)
and ACT and kinesthetic working memory (r = .16) were
also weak. There was a fairly large correlation (r = .61)
between ACT and visuospatial working memory. ACT
was included as a control variable and was entered into
the models before our predictor variables. Thus, any ef-
fects of our working memory measures were interpreted
as above and beyond effects of composite ACT score.
The mean performance on the posttest was 0.75

(range: 0.30–1, SD = 0.21) and mean performance on
the transfer test was 0.61 (range: 0.17–1, SD = 0.24),
indicating that participants were successful in learn-
ing from our instruction. We used a generalized lo-
gistic mixed-effect model to account for variability
across subjects and difficulty of problems. We mod-
eled the log odds of correctly solving each problem
from composite ACT score, verbal working memory
span, visuospatial working memory span, and
kinesthetic working memory span. We also included
participant and problem intercepts as random
effects. Our preregistered model (available in the
Supplemental Material) included all higher-order in-
teractions, however there were no significant inter-
actions and there was no evidence to suggest that
removing the higher-order interactions significantly
decreased model fit (Post: χ2(4) = 1.19, p = .88;
Transfer χ2(4) = 5.90, p = .21), and so we report the
simpler model without any interactions here.
The findings for posttest and transfer test were highly

similar to one another. For posttest performance, com-
posite ACT was a significant predictor (β = 0.86, z = 3.62,
p < 0.001) and visuospatial working memory was a
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marginal predictor (β = 0.42, z = 1.79, p = 0.074; see
Fig. 2). Kinesthetic and verbal working memory were
not significantly associated with performance
(kinesthetic: β = 0.075, z = 0.36, p = 0.72; verbal: β = −
0.11, z = − 0.57, p = 0.57). For transfer test performance,
both composite ACT (β = 0.47, z = 2.39, p = 0.017) and
visuospatial working memory (β = 0.43, z = 2.17, p =
0.030) were significant predictors. Kinesthetic and verbal
working memory were not significantly associated with
performance (kinesthetic: β = 0.082, z = 0.48, p = 0.63;
verbal: β = 0.011, z = 0.067, p = 0.95).
We also explored the relationship between scores on

the A-MARS and performance on the abstract math task
and the three working memory measures. These ana-
lyses, reported in the Supplementary Materials, revealed
that math anxiety did not account for the relationship
between visuospatial WMC and learning with gesture.
Finally, we explored whether gesture attitudes were re-
lated to learning with gesture using the Gesture Atti-
tudes Questionnaire; however, there was no evidence
that the two were related (see Supplementary Materials).
Experiment 1 provided evidence that learning math-

ematical equivalence with gesture is significantly related
to visuospatial WMC, particularly for transfer perform-
ance. However, it is possible that this pattern simply

reflects demands of the abstract math task, which re-
quires operating over visual shapes, rather than the pres-
ence of gesture at instruction. Because all participants
viewed instruction with gesture, Study 1 cannot discern
these two possibilities. Accordingly, we conducted a
follow-up study, where participants learned the same
material without accompanying gesture.

Study 2
Study 2 was identical to Study 1 except that, in the
video instruction, the instructor did not gesture dur-
ing instruction (the instructors hands stayed at her
side; Fig. 1b). The participants in Study 2 were differ-
ent than those in Study 1; however, all participants
from Study 1 and Study 2 were University of Iowa
undergraduates concurrently enrolled in Elementary
Psychology. Approval was obtained from the Institu-
tional Review Board prior to data collection.

Participants
Sixty-eight University of Iowa undergraduates partici-
pated in the study. Of these, four participants were ex-
cluded from the final analyses, either for not performing
above chance in the abstract mathematical learning task
(n = 1) or because composite ACT scores were not

Fig. 2 Model predictions from the combined analysis of Study 1 (left column) and Study 2 (right column) for the posttest (top row) and the
transfer test (bottom row). The multilevel logistic models predicted posttest or transfer test performance from two-way interactions between
gesture group and verbal working memory span, and gesture group and visuospatial working memory span, with composite ACT score as a
covariate, and random intercepts for participant and problem. For graphical purposes, performance was separately predicted from verbal and
from visuospatial working memory capacities while holding all other variables in the model constant. Error bars represent the 95% confidence
interval of the predictions
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available (n = 3). Thus, 64 native English speakers were
included in the analyses (17 male, 47 female). As in
Study 1, we determined this sample size a priori, based
on simulations of our design and assumptions about
effect sizes derived from prior research (Marstaller &
Burianová, 2013; Wu & Coulson, 2015), and we preregis-
tered our analytic approach with the Open Science
Framework based on our expectations. Participants
received course credit for participation.

Results
Our analytic approach was identical to Study 1. The bi-
variate correlations among the three working memory
measures were again weak (r = .31 for visuospatial and
verbal working memory, r = .29 for kinesthetic and visuo-
spatial working memory, and r = .13 for verbal and
kinesthetic working memory). Again, we calculated VIF
values for all predictors to ensure no issues regarding mul-
ticollinearity, and all values were under 2.50 (visuospatial
working memory = 1.59, verbal working memory = 1.65,
kinesthetic working memory = 1.50, and composite ACT
score = 1.71). Similar to Experiment 1, there were small
correlations between ACT and verbal working memory
(r = .39) and ACT and kinesthetic working memory (r =
−.04), and a moderate correlation (r = .51) between ACT
and visuospatial working memory. All variables were nor-
mally distributed with the exception of kinesthetic work-
ing memory, which was positively skewed. The three
working memory measures and composite ACT scores
were all standardized prior to analysis.
Mean performance on the posttest was 0.74 (range:

0.37–1, SD = 0.17), and on the transfer test was 0.59
(range: 0.17–1, SD = 0.22). We again focused on explora-
tory models with no interaction terms as there was no
evidence to suggest that the higher-order interactions in-
cluded in our preregistered analysis improved model fit
(Post: χ2(4) = 2.16, p = .71; Tran χ2(4) = 6.38, p = 0.17; full
model available in Supplementary Materials).
Again, the pattern of results was similar across the

posttest and the transfer test. For posttest performance,
composite ACT was a marginal predictor (β = 0.40, z =
1.84, p = 0.066) and verbal working memory was a
significant predictor (β = 0.42, z = 2.03, p = 0.042; see Fig.
2). The effects of visuospatial working memory (β =
0.043, z = − 0.20, p = 0.84) and kinesthetic working mem-
ory (β = 0.23, z = 1.32, p = 0.19) were not significant. For
transfer test performance, both ACT (β = 0.66, z = 3.73,
p < 0.001) and verbal working memory (β = 0.36, z = 2.27,
p = 0.023) were significant predictors. The effects of
visuospatial working memory (β = 0.017, z = 0.099,
p = 0.92) and kinesthetic working memory (β = 0.138,
z = 0.19, p = 0.84) were not significant.
As in Study 1, we explored the relationship between

math anxiety and gesture attitudes and performance

on the abstract math test and on performance on our
three working memory measures. Again, the analyses
revealed that neither math anxiety nor gesture atti-
tudes accounted for the relationship between verbal
WMC and learning without gesture (see Supplemental
Materials).
This pattern of results suggests that composite ACT

score and verbal working memory significantly predict
mathematical learning after instruction without gesture.
Thus, the group of participants that were instructed
without gesture did not show the same pattern observed
in Experiment 1; when instruction included gesture,
ACT and visuospatial working memory were associated
with performance.
To further examine the relationship between learning

in each instructional condition and WMC, we combined
the data from both studies and conducted exploratory
analyses including instructional group (gesture or no
gesture) as an additional predictor. Because none of our
previous analyses revealed a relationship between
kinesthetic working memory and learning on either test,
we did not include kinesthetic working memory in the
combined analysis. Additionally, because model com-
parison did not support inclusion of interactions be-
tween forms of WMC, we report only the findings from
the models predicting posttest and transfer performance
from interactions between instructional group and visual
and instructional group and verbal WMC.
Because the two samples were collected at separate

times, we compared them. There were no differences in
overall performance by group on any of our main tasks
or measures (see Table 1). However, there was a signifi-
cant difference in the gender distribution of the two
samples (χ2(1) = 10.49, p < .01). We therefore examined
the relationship between gender and learning; however,
model comparison did not suggest that gender was re-
lated to learning or that the difference in gesture com-
position could account for differences in the patters
across the two studies (see Supplemental Materials).
We modeled the log odds of correctly solving prob-

lems from two-way interactions between gesture group
and verbal working memory span, and gesture group
and visuospatial working memory span, with composite
ACT score as a covariate. The gesture group served as
the reference group in our coding scheme.
Again, the patterns across posttest and transfer were

highly similar. In the combined posttest analysis, there
was a positive main effect of composite ACT score on ac-
curacy (β = 0.58, z = 3.67, p < .001). There was not a sig-
nificant effect of instructional group (β = − 0.37, z = − 1.45,
p = 0.15). There was also a positive main effect of visuo-
spatial working memory on posttest accuracy (β = 0.61,
z = 2.93, p < 0.01). This pattern was qualified by a signifi-
cant negative interaction between gesture group and

Aldugom et al. Cognitive Research: Principles and Implications            (2020) 5:27 Page 8 of 12



visuospatial WMC (β = − 0.67, z = − 2.52, p = 0.012),
revealing that, in the no-gesture group, the association
between visuospatial working memory and performance
was significantly attenuated. This finding demonstrates
that visuospatial working memory is significantly related
to learning when gesture is present, but not when gesture
is absent. The main effect of verbal working memory
(β = − 0.038, z = − 0.21, p = 0.83) and the interaction of
verbal working memory with group (β = 0.38, z = 1.42,
p = 0.16) were not significant.
We then analyzed transfer test performance using the

same model structure. There was again a positive main
effect of composite ACT score (β = 0.55, z = 4.26,
p < .001) and no main effect of instructional group (β =
− 0.24, z = 1.16, p = 0.25). There was a positive main
effect of visuospatial working memory (β = 0.41, z = 2.48,
p = 0.013), and a trend for a negative interaction between
group and visuospatial working memory, although the
coefficient was not significant (β = − 0.35, z = − 1.64, p =
0.10). There was not a main effect of verbal working
memory (β = 0.013, z = 0.089, p = 0.93), but there was a
marginal interaction between gesture group and verbal
working memory (β = 0.36, z = 1.71, p = 0.088). Thus, for
transfer test performance, the pattern suggested a trend
that visuospatial WMC was related to performance in
the gesture group but not in the no-gesture group.
Furthermore, verbal WMC was related to performance
in the no-gesture group, but not related to performance
in the gesture group.
We considered potential confounders. We examined if

participants with a stronger mathematical background
were responsible for the differential effects. Our effects
did not differ after removing participants who self-
reported majoring in math, engineering, marketing, or fi-
nance (n = 31), demonstrating that these effects were not
driven by participants with greater mathematical know-
ledge (see Supplemental Materials). We also considered
if differences in study time could explain our findings;
however, including study time as a covariate in our
analyses did not change the pattern of performance (see
Supplemental Materials).

Discussion
This study reveals that the working memory resources
associated with learning in a novel math task vary de-
pending on the nature of the instruction that is
provided. In Study 1, when gesture was present at in-
struction, individuals with higher visuospatial WMC

performed better on the abstract math task compared
with individuals with lower visuospatial WMC, even
after controlling for composite ACT score. In Study 2,
when gesture was not present at instruction, there was
no evidence that posttest performance was related to
visuospatial WMC. Instead, individuals with higher
verbal WMC performed better, even after controlling for
ACT. Findings from our exploratory analyses combining
the data from the two studies provide additional evi-
dence that the pattern of association varied across the
two instructional groups. Importantly, because the same
abstract mathematical task was used in both the gesture
and no-gesture conditions, these findings cannot be due
to specific demands of the mathematical task but rather
must reflect characteristics of the instruction, which
varied across groups.
Individuals with high visuospatial working memory did

not benefit from this capacity when instruction did not
include gesture, but they showed enhanced learning
when instruction did include gestures, suggesting that
gestures may be encoded and processed in visuospatial
working memory. Although gestures co-occur with
speech, they present information visuospatially, and so
they must enter the processing system visuospatially.
The finding that learning with gesture is related to
visuospatial WMC suggests that visuospatial characteris-
tics of gesture may continue to be important as language
processing unfolds (Wu & Coulson, 2007, 2011). These
findings suggest that gestures can function to engage
cognitive resources that would otherwise not support
learning.
Our initial hypothesis was that kinesthetic working

memory would predict learning with gesture at instruc-
tion, given prior work finding that individuals with high
kinesthetic WMC are more sensitive to gesture (Wu &
Coulson, 2015). However, there was no evidence for a
relation between kinesthetic WMC and learning in
either instructional condition. It is possible that the
working memory resources that support learning from
gesture in a novel math task are quite distinct from the
resources that support extracting information from
gesture during discourse. However, it is also possible
that our study was not sensitive to potential effects of
kinesthetic working memory as the distribution of scores
for kinesthetic WMC in our sample was non-normal
and had a limited range.
Prior work has shown that WMC predicts mathemat-

ical ability (Alloway & Alloway, 2010; Gathercole &

Table 1 Mean performance on measures by group

Group Posttest performance Transfer test performance Composite ACT score VSWM VWM KWM Math anxiety

Gesture 0.75 0.61 26.1 14.0 4.2 2.5 51.5

No gesture 0.74 0.59 27.0 13.3 4.3 2.6 56.7
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Pickering, 2000; Jarvis & Gathercole, 2003), and that ges-
ture at instruction generally improves mathematical
learning (Cook et al., 2013; Cook et al., 2016; Novack,
Congdon, Hemani-Lopez, & Goldin-Meadow, 2014).
This study is the first to demonstrate that gesture may
not benefit all individuals equally. These results are im-
portant for enhancing theoretical understanding of how
gestures are processed, but are also critical in informing
instructional practice and interventions.
The findings reported here have implications for per-

sonalizing instruction. Because individuals with high
visuospatial WMC are particularly likely to benefit when
instruction includes gesture, and individuals with greater
verbal WMC may benefit when instruction does not in-
clude gesture, the findings suggest that gestures may be
particularly beneficial for learners with low verbal work-
ing memory but high visuospatial working memory. One
set of learners that is likely to have this cognitive profile
is learners with Developmental Language Disorder. Chil-
dren with Developmental Language Disorder demon-
strate worse mathematical performance than typically
developing children, and this performance difference is
accounted for by lower verbal working memory abilities
(Fyfe, Matz, Hunt & Alibali, 2019). Interestingly, these
same children perform similarly to typically developing
children on a visual pattern task. Thus, learners with De-
velopmental Language Disorder may be particularly
likely to benefit from the additional visuospatial infor-
mation that is afforded by gesture.

Limitations and future directions
We did not find a significant difference in perform-
ance across our two instructional conditions, which is
inconsistent with the prior literature. However, these
data were not collected to optimally test for differ-
ences across instructional groups. Moreover, in all
models combining the data from the two studies, per-
formance in the gesture group was better than per-
formance in the no-gesture group. It is possible that
there is no overall benefit to gesture in this task,
however, we believe this is unlikely given other on-
going work in our labs using the same task. It is also
possible that the lack of an effect is due to the non-
random sampling procedure or due to sampling vari-
ability expected when studying small effects without
high-powered designs.
It is unclear exactly how visuospatial working memory

supports learning with gesture. One possibility is that
gesture and visuospatial working memory work together
to enhance encoding of visuospatial information (Alibali,
Crooks, & McNeil, 2018; Crooks & Alibali, 2013). The
external support of gesture at instruction may work with
visuospatial working memory to enhance the learner’s
ability to mentally represent problem features. Previous

work has shown that children’s encoding abilities are re-
lated to their strategy use (McNeil & Alibali, 2004). Fu-
ture work might examine if there is a relationship
between individual differences in WMC and encoding of
information with or without gesture to assess the possi-
bility that encoding mediates the relationship between
WMC and learning.
Spatial ability is comprised of both spatial visualization

and spatial reasoning, and has been found to uniquely
predict STEM expertise above and beyond verbal and
mathematical abilities (Lubinski, 2010; Wai et al., 2009).
While we only used one task to tap into visuospatial
working memory, future work may benefit from includ-
ing multiple measures of spatial thinking in addition to
measures of visuospatial WMC to attempt to gain a bet-
ter understanding of the relationship between spatial
ability, visuospatial working memory and mathematical
learning with gesture.

Conclusions
We found that visuospatial WMC predicted mathemat-
ical equivalence learning with gesture at instruction,
even after controlling for composite ACT score. When
gesture was not present at instruction, verbal working
memory significantly predicted learning, after controlling
for composite ACT score. These findings are the first to
demonstrate a relationship between individual differ-
ences in WMC and learning with gesture in adults. This
work has important implications for both educational
and clinical settings and offers insight into specific popu-
lations that might benefit most from gesture as add-
itional support during instruction.
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