
Chaudhary et al. Hereditas  (2016) 153:16 
DOI 10.1186/s41065-016-0019-8
RESEARCH Open Access
PineElm_SSRdb: a microsatellite marker
database identified from genomic,
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sequences of pineapple (Ananas comosus
(L.) Merrill)
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Abstract

Background: Simple Sequence Repeats or microsatellites are resourceful molecular genetic markers. There are only
few reports of SSR identification and development in pineapple. Complete genome sequence of pineapple available in
the public domain can be used to develop numerous novel SSRs. Therefore, an attempt was made to identify SSRs
from genomic, chloroplast, mitochondrial and EST sequences of pineapple which will help in deciphering genetic
makeup of its germplasm resources.

Results: A total of 359511 SSRs were identified in pineapple (356385 from genome sequence, 45 from chloroplast
sequence, 249 in mitochondrial sequence and 2832 from EST sequences). The list of EST-SSR markers and their details
are available in the database.

Conclusions: PineElm_SSRdb is an open source database available for non-commercial academic purpose at
http://app.bioelm.com/ with a mapping tool which can develop circular maps of selected marker set. This database
will be of immense use to breeders, researchers and graduates working on Ananas spp. and to others working on
cross-species transferability of markers, investigating diversity, mapping and DNA fingerprinting.
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Background
The extremely surprising flavour and fragrance of
pineapple (Ananas comosus L.) delighted mankind at that
time of its discovery by Christopher Columbus and
even today. Pineapple, a perennial monocot plant
belongs to Bromeliales order, Bromelioideae subfamily
and Bromeliaceae family. Pineapple is a tropical plant
native to South America, domesticated more than
6000 years ago [1]. At the end of the sixteenth
century, pineapple had become pantropical and is the
third most economically important tropical fruit crop
after banana and mango. Pineapple has become
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industrial crop during 20th century [2,3]. In addition to
fresh fruit consumption, pineapple is used for canned
slices, juice and juice concentrate, extraction of bromelain
(a meat-tenderizing enzyme), high-quality fibre, animal
feed and medicines [2]. At present, gross production value
of pineapple is approaching $9 billion due to its cultiva-
tion on 1.02 million hectares of land in over 80 countries
and annual production of 24.8 million metric tonnes of
fruit [4]. Wild varieties of pineapple are self-compatible,
whereas cultivated pineapple, A. comosus (L.) Merr., is
self-incompatible [5], which provides an opportunity to
scrutinize the molecular basis of self-incompatibility in
monocots.
Over the last few decades, a wide range of molecular

markers have been developed and used in crop improve-
ment as molecular markers are helpful in assessing
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germplasm diversity, testing of hybridity, trait mapping,
marker assisted selection etc. [6]. Among all the markers
till date, Simple Sequence Repeats (SSRs) are the most
ideal, powerful and reliable markers for molecular plant
breeding applications because of their high abundance,
co-dominant inheritance and multiple alleles [7]. In
addition, BES-SSR markers serve a useful resource for
integrating genetic and physical maps [8,9].
SSRs consists of 2–7 base pair tandem repeat motifs of

mono-, di-, tri-, tetra and penta-nucleotides (A, T, AT,
GA, AGG, AAAG etc.) with different lengths of repeat
motifs. These repeats are extensively distributed
throughout plants and animal genomes. A high level of
genetic variation is observed between and within species
due to differences in the number of tandem repeating
units at a locus which produces a highly polymorphic
banding pattern [10] and is detected by the Polymerase
Chain Reaction (PCR) using locus specific flanking
primers [11]. Molecular markers are widely recognized
as a tool in generating linkage maps [12] as they define
specific locations in the genome unambiguously [13,14].
There are few valuable software and tools available for

SSRs identification and in-silico marker development.
Important sources for SSR identification are with bene-
fits from the advanced next generation sequencing tech-
nology such as TROLL [15], MISA [16], SciRoko [17],
SSR Locator [18] and GMATo [19]. MISA is the most
common tool used for SSR identification. Generation of
SSR markers have been exhaustive due to the time-
Fig. 2 Main page of the database
consumption, expensive process for generation of gen-
omic libraries and sequencing of large number of clones
later to find the SSR-containing DNA regions [20] and
labour-intensive. To expedite this task, the traditional
methods of SSR markers generation from genomic
libraries [21] have been recouped briskly by in-silico
mining of SSRs from DNA sequences available in bio-
logical databases [22,23] and from expressed sequence
tags (ESTs) that represent only the coding region of the
genome [24–26].
Methods
Retrieval of genome sequences
The complete genome sequence of pineapple (Ananas
comosus (L.) Merrill) was retrieved from the CoGe
Genome (Genome ID- 25734) page (https://genomevolu
tion.org/coge/GenomeInfo.pl?gid=25734) in FASTA for-
mat. The chloroplast genome (Genome ID- 25280) and
mitochondrial genome (Genome ID- 25281) of pineapple
were also downloaded from CoGe Genome info respectively
(https://genomevolution.org/coge/GenomeInfo.pl?gid=2528
0&81) in FASTA format. Total 5978 EST sequences of pine-
apple were downloaded from NCBI http://www.ncbi.nlm.
nih.gov/nucest/?term=ananas+comosus in FASTA format.
SSRs identification
MISA tool allows the identification and localization of
perfect microsatellite as well as compound microsatellite
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which are interrupted by a certain number of bases.
MISA uses Perl script for SSRs analysis. It requires a
set of sequences in FASTA format and a parameter
file that defines unit size and minimum repeat num-
ber of each SSR. MISA is available at http://pgrc.ipk-
gatersleben.de/misa/. MISA tool provides two result
files; misa file and statistical file. MISA file provides
the information about SSR repeat types like simple,
interrupted or compound, size of SSR and SSR pos-
ition in genome sequence. Statistical file contains the
statistical information like the frequency chart of SSR
motif and distribution of SSR to differently repeat
type classes. Classification of SSRs was done manually
on the basis of their presence in coding region and
non-coding region of the genome sequences.
Database development
An open, non-commercial database PineElm_SSRdb is
designed for educational purpose. PineElm_SSRdb is
available at http://app.bioelm.com/.
Fig. 4 Genomic SSR marker list
Results and discussion
The home page of the database provides the complete
access of the database (Figs. 1 and 2). Genomic sequence
of Ananas comosus (L.) Merrill is available as 3133 scaf-
folds of 381,905,120 bp length. Of these scaffolds only
2726 contain SSRs. From genomic sequence 356385
SSRs were identified. Two thousand four hundred
eighty-six sequences contain more than one SSR and
19086 compound SSRs are also exists. From NCBI 5978
EST sequences of 4,294,909 bp were downloaded of
which 1886 sequences yielded 2832 SSRs (Fig. 3). Of
these 1886 sequences 638 were found to contain more
than one SSR region and 83 with compound repeat
regions. The access to the database can be obtained
from http://app.bioelm.com/ by creating user account.
This will allow the users to generate images and search
results. Genomic markers can be viewed as listed in
Fig. 4 and as a circular map of the selected markers
using incorporated tools (Additional file 1).
There is only one chloroplast genome sequence of

159,600 bp available for Ananas comosus (L.) Merrill in
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which there are 45 SSRs exists and only one complex
repeat (Additional file 2). There are 13 sequences of
881,399 bp Ananas comosus (L.) Merrill mitochondrial
genome yielded 249 SSRs of which 13 sequences contain
more than one SSR and 8 SSRs were found in com-
pound formation (Fig. 5 and Additional file 3). The EST-
SSR statistics were represented in Additional file 4. SSRs
identified from chloroplast and mitochondrial sequences
are highly specific and unique to pineapple. These SSRs
are not present in any other NCBI database and also not
present in the nuclei genome of pineapple.
Databases support instant availability of curated data

for individual users in facilitating further effective use of
the generated data. In that path, we have developed a
database to support pineapple breeders to effectively use
SSR markers in their breeding program. These SSR
markers or microsatellites are of 1–6 nucleotide tandem
repeated motifs present in all prokaryotic and eukaryotic
genomes [27]. Amid different classes of available mo-
lecular markers, SSR markers are effective for a variety
of applications in plant genetics and breeding [28, 29].
Although being a commercially important plant, only

few studies for SSR development were available for Pine-
apple. Wohrmann and Weising [30], identified 696 EST-
SSR markers in pineapple; Feng et al. [31] developed
genomic and EST-SSR library to identify 94 and 1110
SSRs loci respectively. Complete Pineapple genome [4]
opens new direction to focus our research towards pine-
apple. In addition, bioinformatics tools also add-on pre-
vailing methods by automating the assignment of SSR
identification from existing DNA sequences. A recent
study reported 320,207 SSRs in genomic and ESTs
sequences of pineapple [32]. Whereas, we have identified
356385 SSRs from genomic sequences of pineapple
which may play a major role in diversity analysis of gen-
etic stocks. Diversity analyses of pineapple genetic stocks
were reported earlier with few markers which were in-
sufficient in to distinguish them. Developing fingerprints
Fig. 5 Mitochondrial SSR marker list
of cultivars may be required to protect the breeders
right. Genome wide identification of markers can serve
this purpose as SSR markers have been handy for inte-
gration the physical, genetic and sequence-based phys-
ical maps in plant species, and concurrently equipped
breeders and geneticists with an effective tool to bridge
phenotypic and genotypic variation. SSR markers have
been handy for integration the physical, genetic and
sequence-based physical maps in plant species, and con-
currently equipped breeders and geneticists with an effect-
ive tool to bridge phenotypic and genotypic variation [33].
SSR markers were classified based on number of

repeats (Figs. 6, 7 and 8). The proportion of mono and
di repeats are likely to be equal for genomic SSRs con-
tributing to the total 60% of genomic SSR markers. Like-
wise, hexa and complex repeats are approximately equal
at 4% of genomic SSRs (Fig. 6). Recent studies of plant
markers are more focused towards gene-specific markers
rather than arbitrary DNA markers, and microsatellite
markers are of great significance in identification of
genes and QTLs [34]. EST-SSRs are highly efficient in
differentiating genotypes differing for a specific trait. We
have identified 2832 SSR markers from the validated
EST sequences, where tri repeats followed by di repeats
contributes more to the markers (Fig. 7). Tetra and
mono repeats contribute maximum number of mito-
chondrial – SSRs (Fig. 8). In all sets of data analysed, we
could find least number of complex repeats and only
one complex SSR exists in chloroplast genome of
pineapple.
Molecular basis of polymorphism and their distribu-

tion across the genome is quite different for SNP and
SSR markers. Both SSR and SNP are neutral, multi-
allelic and co-dominant markers. SSR marker in genetic
diversity analyses have been a powerful, handy, cost
effective tool and can reveal the amplicon size poly-
morphism as they vary in sequence, whereas SNP haplo-
types vary within a sequence. SNP markers display
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population structure better with bigger population
whereas, for diversity analyses, SSR unveils better group-
ing of accessions even at trait level. Further, it has been
demonstrated that haplotypes at combinations of SSR
loci may be very powerful in detecting association of
QTLs (Quantitative Trait Loci) in their proximity [35].
Henceforth, the utility of SSR/SNP marker in crop im-
provement will depend on the quality of information
required with respect to parameters for genetic diversity
and population structure. Overall, to assess genetic
relatedness, SSR markers are more informative and
highly effective [36].

Conclusion
The main outcome of this study; identified SSRs
markers in genomic, chloroplast, mitochondrial and
EST sequences of Pineapple will be of immense use
to breeders and molecular biologists to assess marker
frequency and distribution in both coding and non-
coding regions, to study transferability across genera
Fig. 7 Distribution of EST- SSR markers
and to carry out phylogenetic analysis based on SSRs.
PineElm_SSRdb is an open source database developed
for easy handling and availability for the scientific
community.
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