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Abstract

Background: Mild cognitive impairment (MCI) is a common non-motor symptom of early Parkinson’s disease (PD),
but the neural mechanisms underlying it remain poorly understood. The aim of the present study was to investigate
the characteristics of cognition-related brain activities in the PD patients with MCI.

Methods: The brain fMRIs and cognition tests were acquired in 39 PD patients and 22 healthy controls (HC) from
September 2013 to January 2015. The patients were divided into two groups: PD-MCI (n = 18) and PD with normal
cognition (PDNC, n = 19). we used resting state fMRI and a regional homogeneity (ReHo) method to explore patterns
of intrinsic brain activity in patients with PD-MCI as compared with PDNC subjects and HC.

Results: Compared with the PDNC group, the PD-MCI group exhibited significantly increased ReHo in parts of the
prefrontal cortex regions (e.g. right superior frontal gyrus, right middle frontal gyrus and orbitofrontal cortex).
Compared to the HC group, a decrease of ReHo value in left thalamus was found in PD-MCI. However, this
reduction was not found in the left thalamus of PDNC group, but in the above prefrontal regions (p < 0.05,
with Bonferroni correction).

Conclusions: These results demonstrate that the ReHo of prefrontal cortex in resting state is changed in PD
patients with MCI. The presence of MCI in PD may be attributed to abnormal regional activity in prefrontal
cortex regions.

Keywords: Parkinson’s disease, Mild cognitive impairment, Resting state fMRI, Regional homogeneity, Brain
activity, Prefrontal cortex

Background
Mild cognitive impairment (MCI) is a common non-
motor feature of Parkinson’s disease (PD). It affects
multiple cognitive domains, such as executive function,
memory, attention and visuospatial abilities [1, 2], and is
associated with increasing age, duration of disease and dis-
ease severity [3]. The frequency of PD-MCI is estimated
to be 42.5 % in a large cohort of newly diagnosed PD par-
ticipants [4], and with a higher risk progressed to demen-
tia during follow-up [5], which may lead to poor quality of
life [6]. Therefore, early identification of PD-MCI by its

biomarkers have been one of the most popular research
fields in recent years. However, the specific neural sub-
strates underlying cognitive dysfunction in PD are still not
well-known [7].
Resting state functional magnetic resonance imaging

(rs-fMRI) is a cognitively unbiased imaging technique
with high spatial and temporal resolution [8], and is
widely thought to reflect spontaneous neural activity of
the human brain relative to task-based [9], especially in
the low-frequency band. Accumulating evidence has
demonstrated that rs-fMRI is a effective and convenient
method of mechanism detection, and monitoring the
progression of PD [10]. Thus, there has been increasing
interest in the use of rs-fMRI in PD and PD-related co-
morbidities [10–13].
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Regional homogeneity (ReHo) is one of the important
analysis methods developed on the basis of rs-fMRI,
which measures the local synchronization of spontan-
eous neural activity by calculating the similarity be-
tween the time series of a given voxel and its nearest
neighbors throughout the whole brain [14]. Unlike the
functional connectivity, ReHo reflects the local features
of brain activity in the resting state rather than the
synchronization of activity between remote brain regions.
To date, ReHo method has been extensively used to ex-
plore the alterations of functional activity in many neuro-
logical and psychiatric disorders, such as Alzheimer’s
disease [15], Schizophrenia [16, 17], depression [18, 19],
and primary insomnia [20]. Likewise, this process has also
been used to determine PD-related patterns of neural ac-
tivity in the resting state [10, 11]. For example, Wu and
colleagues detected that PD patients showed significant
ReHo alterations in extensive brain regions, including
putamen, thalamus, cerebellum, and supplementary motor
area, etc. Besides, they also found that the ReHo values in
some of these regions were correlated with the disease se-
verity measured by the Unified Parkinson’s Disease Rating
Scale (UPDRS) scores [10]. In another study, Zhang and
colleagues revealed a distinct ReHo patterns in two differ-
ent subtypes of PD, which primarily distributed over the
striatal-thalamo-cortical and cerebello-thalamo-cortical
loops [11]. To the best of our knowledge, rare rs-fMRI
study focused on the effect of cognitive function decline
on the patterns of neural activity in early PD patients. Ac-
cording to a recent study, PD-MCI patients displayed
brain activity decreases in the cognitive corticostriatal
loop, which included prefrontal cortex and caudate nu-
cleus while planning a set shift task [12], and prefrontal
hypometabolism was also found in metabolic studies on
PD-MCI [21, 22]. Taken together, these neuroimaging
studies indicate that there exists aberrant neural activity in
PD-MCI patients, and ReHo changes are associated with
different characteristics of the disease. Most importantly,
there may be certain relationship between prefrontal cor-
tex and cognitive dysfunction in PD-MCI patients.
We hypothesized that patients with PD-MCI would

show ReHo alterations in cognition-related regions of
the prefrontal cortex at the baseline state. With the pur-
pose to investigate the cognition-related characteristics
of ReHo, here, we used rs-fMRI and a ReHo measure-
ment to assess regional intrinsic brain activity across the
whole brain in healthy controls (HC), PD patients with
MCI, and those with normal cognitive function.

Methods
Subjects
Thirty-nine PD patients (30 males, 9 females, mean age
of 61.9 years, age range 50–73 years) were recruited
from September 2013 to January 2015 in the neurology

clinic of the First Affiliated Hospital of Fujian Medical
University. Patients were diagnosed by neurologists ac-
cording to the UK Parkinson’s Disease Society Brain
Bank criteria [23]. Exclusion criteria included parkinson-
ism other than idiopathic PD; a history of brain surgery;
special physical conditions not suitable for MRI scan-
ning; diagnosed as PD dementia and other possible rea-
sons that were responsible for cognitive function decline
(such as head injury, stroke, epilepsy, metabolic abnor-
malities and major depression). HC group was com-
prised of 22 healthy volunteers matched for mean age,
gender and level of education. The subjects were all
right-handed and enrolled consecutively. The present
study was approved by the local Ethics Committee of
the First Affiliated Hospital of Fujian Medical University
(Fujian, China), and written informed consent was ob-
tained from all subjects.

Clinical and neuropsychological assessment
Neuropsychological tests were carried out with all sub-
jects. Global cognition was assessed by trained neurolo-
gists by using Mini-Mental State Examination (MMSE)
and Montreal Cognitive Assessment (MoCA). The MoCA
scale has been validated as an effective assessment instru-
ment for diagnosing PD-MCI [24], and with a score less
than 26 was found to be the optimal cutoff point for diag-
nosis of cognitive deficits. The patients then were admin-
istered the UPDRS III and the Hoehn-Yahr stage to
evaluate their motor severity and stage of the patient’s par-
kinsonism while off their medications. All patients came
in off all medications for at least 12 h for testing and sub-
sequent imaging. PD-MCI was defined according to the
Level I (abbreviated assessment) criteria at 1.5 Standard
deviations below normative values, which was proposed
by Movement Disorder Society Task Force in 2012 [24].
Patients who did not fulfill this criteria and had normal
cognitive function were classified as PDNC group.

Data acquisition
All subjects were scanned on a 3.0 T SIEMENS MAG-
NETOM Verio MR imaging scanner (Siemens Medical
Solutions, Erlangen, Germany) at the Department of
Radiology using a standard head coil. Foam padding and
earplugs were used to minimize head motion and noise.
Rs-fMRI data were acquired using an echo-planar im-
aging (EPI) sequence with the following parameters:
31 slices, thickness/gap = 3.5/0.7 mm, TR = 2000 ms,
TE = 30 ms, flip angle = 90°, field of view = 200 ×
200 mm, matrix = 64 × 64. For each subject, a total of
190 time points were obtained. During rs-fMRI acqui-
sition, all subjects were asked to stay awake with their
eyes closed, and to try not to think of anything in
particular. In addition, before MRI data were acquisited,
all individuals were scanned with T2-weighted images
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to exclude morphological abnormalities or intracranial
lesions.

Data preprocessing
Functional data preprocessing was performed by the Data
Processing Assistant for Resting-State fMRI (DPARSF,
http://restfmri.net/forum/DPARSF) and the Resting State
fMRI Data Analysis Toolkit software (REST, http://
www.restfmri.net/forum/REST), which were developed
based on statistical parametric mapping (SPM8, http://
www.fil.ion.ucl.ac.uk/spm). The first 4 time points of fMRI
data were discarded from analysis in consideration of
magnetization stabilization and the adaption of subjects to
the scanning environment, after which 186 time points
remained. Subjects whose head motion parameters exceed
more than 2 mm in any of the cardinal directions (x, y, z)
and 2°of angular motion were excluded from further
analysis. Preprocessing of the data contained several pro-
cesses: (1) slice timing (reference slice is 31) was per-
formed to correct the acquisition time delay between the
different slices; (2) realignment to the first image, accord-
ing to the estimated head movement, was performed to
correct for geometrical displacements; (3) spatially nor-
malized to the Montreal Neurological Institute (MNI)
template by using T1 image unified segmentation, In this
step, voxel size was resampled to 3 mm isotropic voxels;
(4) Linear trends were removed and a temporal filter
(0.01-0.08 Hz) was applied to reduce low-frequency drifts
and physiological high-frequency respiratory and cardiac
noise; Finally, the ReHo maps were spatially smoothed
with a Gaussian filter of 4 mm of full width at half max-
imum (FWHM).

Statistical analysis
Group statistics were performed by using SPSS 20.0.
Demographic and clinical characteristics differences
among the three groups were compared by using one-
way analysis of variance (ANOVA). For nonparametric

data, Kruskal-Wallis test were used. The significance of
group differences was set at P < 0.05.
A one-way ANOVA was performed on the resting-

state REST data to identify the differences between the
PD-MCI, PDNC and HC groups. Voxels with a p value
less than 0.05 and a cluster size greater than 228 voxels
were considered significantly different (Alphasim cor-
rected). Subsequently, the identified brain regions that
showed significant differences were extracted as regions
of interest (ROIs), and the ReHo values were conducted
for a post hoc analysis. Multiple comparisons of the
ReHo values between each pair of groups (PD-MCI vs
PDNC, PD-MCI vs NC, PDNC vs NC) were performed
using a two-sample two-tailed t-test at a threshold of
p < 0.05 (Bonferroni corrected).

Results
We acquired rs-fMRI data from 39 patients and 22
matched HC. No subject was excluded for none of them
has large head motion. Among PD patients, eighteen of
the patients fulfilled the new criteria for PD-MCI, and
the rest of them were classified as PDNC [24]. Table 1
presents demographic and clinical features of each
group. There were no significant differences in age, gen-
der , duration of disease, education level and disease se-
verity between the three groups (p > 0.05). As expected,
patients with PD-MCI had significantly lower global cog-
nition scores than the other two groups (both, p < 0.001).
One-way ANOVA revealed that, among the three

groups, ReHo has significant differences in the follow-
ing regions: right superior frontal gyrus, right middle
frontal gyrus, right orbitofrontal cortex, and left thal-
amus (P < 0.05; AlphaSim corrected) (Fig. 1). By iden-
tify the differences of ReHo values with a two-sample
two-tailed t-test to each pair of groups, We found ReHo
values were increased in the right superior frontal gyrus,
right middle frontal gyrus and orbitofrontal cortex with
no region decreased in the PD-MCI group comparing to

Table 1 Demographic and clinical features of subjects

HC (n = 22) PDNC (n = 21) PD-MCI (n = 18) p-value

Gender (males/females)a 16/6 16/5 14/4 0.930

Age (years)b 61.95 ± 5.27 61.24 ± 6.41 62.83 ± 5.38 0.688

Disease duration (years)b NA 5.73 ± 3.27 6.62 ± 4.55 0.481

Education (years)a 9.27 ± 2.12 10.38 ± 3.49 9.55 ± 3.63 0.435

MoCAa 27.86 ± 1.39 27.90 ± 1.26 20.72 ± 2.42 <0.001

MMSEa 29.59 ± 0.59 29.38 ± 0.80 27.83 ± 1.54 <0.001

UPDRS IIIb NA 17.95 ± 9.23 24.00 ± 10.98 0.070

H-Y Stagea NA 1.90 ± 0.70 2.44 ± 0.98 0.061

Date are showed as means ± standard deviations. PD Parkinson’s disease, HC healthy control, PDNC PD with normal cognition, PD-MCI PD with mild cognitive
impairment, NA non available, MoCA Montreal Cognitive Assessment, MMSE Mini-Mental State Examination, UPDRS III Unified Parkinson’s Disease Rating Scale part
III, H-Y Stage Hoehn-Yahr stage
ap values were calculated using Kruskal-Wallis test;
bp values were calculated using one-way analysis of variance
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the PDNC group, but decreased in the left thalamus that
comparing to the HC group. Interestingly, compared with
the HC group, the PDNC group also showed decreased
ReHo values in the aforementioned regions other than left
thalamus (P < 0.05, Bonferroni corrected; Fig. 2). In con-
trast, we did not find significant decline of ReHo values in
any region in the HC group. More details of these regions
are listed in Table 2.

Discussion
In this study, we utilized rs-fMRI and the ReHo assess-
ment to investigate patterns of intrinsic brain activity in
patients with PD-MCI as comparing to PD subjects with
normal cognition and HC. Our findings indicate that the
ReHo values of regional brain activity were changed in
PD patients in the resting state. Compared with the
PDNC group, the PD-MCI group showed significant
ReHo values increases in the right superior frontal gyrus,
right middle frontal gyrus and orbitofrontal cortex

(BA8/9/10). These regions are the important elements of
prefrontal cortex [25]. The results are accordance to our
hypothesis that ReHo is altered in the cognition-related
regions of the prefrontal cortex in patients with PD-MCI.
Additionally, ReHo value was individually decreased in
the left thalamus in patients with PD-MCI comparing to
normal subjects.
Prefrontal cortex is not only a nub of associative cir-

cuit in the striatal-thalamo-cortical loops, but also an
important part of the frontoparietal network [26]. The
disruption of the above circuit or network, resulted from
the functional abnormality of prefrontal cortex, has been
linked to cognitive dysfunction in PD [27–30]. In the
current study, We found increased ReHo values in the
prefrontal cortex, including the right superior frontal
gyrus, right middle frontal gyrus and orbitofrontal cortex
of the PD-MCI patients. This is consistent with several
imaging studies that have also revealed structural or
functional abnormality in aforementioned regions in

Fig. 1 Differences in ReHo values between the three groups of subjects. The threshold for displaying was set to p <0.05, alphasim corrected,
cluster size > 228. More details of these color regions are described in Table 2
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patients with PD-MCI compared with those with no
cognitive impairment [12, 31–34]. Especially, in a recent
fMRI study, Nagano-Saito et al. even proposed directly
that the presence of MCI in PD affects brain activity in
the prefrontal cortex and some other areas [12]. Consid-
ering these, we insist that there is important relevance
between ReHo alternations in the prefrontal cortex and
early cognition decline in PD patients. However, what
causality between the altered ReHo in the prefrontal
cortex and cognitive impairment in PD remains un-
clear in the current studies , and this needs to be
clarified in the future.
The integrity of the thalamus is generally believed to

be crucial for motor and cognitive function. We found
ReHo decreased in left thalamus of the PD-MCI patients
comparing to the normal subjects. ReHo declines in the
local brain regions reflecting functional synchronization
reductions in those areas may imply the existence of
brain dysfunction [35]. To some extent, thalamic ReHo
reduction in patients with PD-MCI can be attributed to
PD-related movement symptoms and cognitive deficits.
Moreover, the ReHo alteration limited in left thalamus
may be the result of compensatory mechanism of
anti-parkinsonian medication, asymmetry of PD-onset
or our cohort might be in a relatively early stage of
cognitive decline.
In contrast to the HC group, the current study

found that the PDNC patients showed ReHo attenua-
tions in the right superior frontal gyrus , right middle
frontal gyrus and orbitofrontal cortex. This is partially

corresponded to previous researches [13, 36, 37],
which have showed ReHo diminishment in the aforemen-
tioned regions of PDNC patients. However, in our study,
we did not find significant increase of ReHo in the afore-
mentioned regions in the PDNC group. This discrepancy
may be due to the different subtypes of PD.
Meanwhile, we need to notice the limitations of

our study. First, we only applied Level I criteria (ab-
breviated assessment) to define PD-MCI, which cer-
tainly provides less diagnostic certainty than level II
and does not allow subsequent subtyping of PD-MCI.
This constraint prevented us from further investigat-
ing the associations between alterations of ReHo and
cognitive domains. However, the PD patients meet
the level II criteria may be difficult to cooperate the
tests. Second, the participants were predominantly
males, but these patients were recruited consecutively
and there were no gender difference among the three
groups. Third, we are unable to observe the relevant
alterations of ReHo caused to cognitive function de-
cline because of this cross-sectional study, therefore,
longitudinal follow-ups of this cohort and detailed
neuropsychological tests should be conducted in fu-
ture studies.

Conclusions
The current results in our study indicate that regional
spontaneous neural activity in the resting state is altered
in patients with PD-MCI, and these changes mainly lo-
cated in prefrontal cortex regions, which may be related

Fig. 2 Post hoc multiple comparisons of ReHo values in each region of interest (ROI). X title represents three groups of subjects, Y title indicates
the ReHo values of each ROI. Significant results have been showed above the Box plot. a, right superior frontal gyrus, right middle frontal gyrus
and orbitofrontal cortex; b, left thalamus

Table 2 Brain regions of increased and decreased regional homogeneity among three groups

ROI Regions Hemisphere BA Number
of voxels

Peak activation
strength (F)

Peak coordinates

x y z

1 Middle and superior frontal
gyrus, Orbitofrontal cortex

R 8/9/10 376 7.2721 30 33 36

2 Thalamus L / 229 8.3344 -21 -57 9

ROI region of interest, BA Brodmann area, The coordinates x, y and z refer to the anatomical location, indicating standard stereotactic space as defined by
Montreal Neurological Institute
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to the initial stages of cognitive function decline of PD.
These findings add to the growing literature of abnormal
intrinsic brain activity underlying cognitive deficits in
early PD.
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