
Zhao et al. Brain Inf.             (2019) 6:8  
https://doi.org/10.1186/s40708-019-0101-x

RESEARCH

Deterioration from healthy to mild cognitive 
impairment and Alzheimer’s disease mirrored 
in corresponding loss of centrality in directed 
brain networks
Sinan Zhao1, D. Rangaprakash1,2  , Peipeng Liang3 and Gopikrishna Deshpande1,4,5,6,7,8*

Abstract 

Objective:  It is important to identify brain-based biomarkers that progressively deteriorate from healthy to mild 
cognitive impairment (MCI) to Alzheimer’s disease (AD). Cortical thickness, amyloid-ß deposition, and graph meas-
ures derived from functional connectivity (FC) networks obtained using functional MRI (fMRI) have been previously 
identified as potential biomarkers. Specifically, in the latter case, betweenness centrality (BC), a nodal graph measure 
quantifying information flow, is reduced in both AD and MCI. However, all such reports have utilized BC calculated 
from undirected networks that characterize synchronization rather than information flow, which is better character-
ized using directed networks.

Methods:  Therefore, we estimated BC from directed networks using Granger causality (GC) on resting-state fMRI data 
(N = 132) to compare the following populations (p < 0.05, FDR corrected for multiple comparisons): normal control 
(NC), early MCI (EMCI), late MCI (LMCI) and AD. We used an additional metric called middleman power (MP), which not 
only characterizes nodal information flow as in BC, but also measures nodal power critical for information flow in the 
entire network.

Results:  MP detected more brain regions than BC that progressively deteriorated from NC to EMCI to LMCI to AD, 
as well as exhibited significant associations with behavioral measures. Additionally, graph measures obtained from 
conventional FC networks could not identify a single node, underscoring the relevance of GC.

Conclusion:  Our findings demonstrate the superiority of MP over BC as well as GC over FC in our case. MP obtained 
from GC networks could serve as a potential biomarker for progressive deterioration of MCI and AD.

Keywords:  Alzheimer’s disease, Functional MRI, Brain connectivity, Granger causality, Graph theory, Betweenness 
centrality, Middleman power
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1  Introduction
Alzheimer’s disease (AD) is a neurodegenerative disorder 
[1–3] that is initially characterized by memory loss, and 
then cognitive decline and incapacitation as the disease 
progresses. Mild cognitive impairment (MCI) presents as 
a transition period between normal aging and AD, whose 

characteristics are similar to AD [4]. Approximately 50% 
of MCI patients transition to AD in 3–5 years [5]. There-
fore, to understand disease progression [6, 7], this study 
is aimed at identifying brain-based biomarkers that pro-
gressively deteriorate from healthy to MCI to AD, which 
will help in diagnosis and interventional treatment.

Resting-state functional magnetic resonance imag-
ing (RS-fMRI) is a promising modality that can non-
invasively characterize distributed brain networks [8, 9]. 
RS-fMRI has been widely used to study the inter-regional 
functional connectivity (FC) between healthy and disease 
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populations, including for detecting connectivity abnor-
malities in AD and MCI [10]. Studies have found that AD 
is associated with alteration of FC among different brain 
regions [11, 12]. Specifically, it has been shown that AD 
patients have decreased hippocampal FC with prefron-
tal lobe and posterior cingulate cortex [13, 14]. Further, 
connectivity alterations in AD patients’ brain have been 
shown to occur in medial frontal, medial parietal and 
posterior cingulate cortex; those regions also exhibit high 
resting-state metabolism and are part of the “default-
mode network” [15]. Huang et  al. [16] found that com-
pared with control subjects, AD patients had decreases 
in the amount of inter-regional FC, especially in the hip-
pocampus, weaker between-lobe FC and between-hemi-
sphere FC. Reduced resting-state FC [17] has been found 
in the default-mode network of MCI patients. Overall, 
reduction in connectivity has been reported in MCI and 
AD. A small number of previous studies have also found 
increased FC in MCI/AD, which were attributed as com-
pensatory mechanisms for losses in cognitive function-
ality [18, 19]. There has not been direct and expansive 
evidence for this alternative model. The deterioration 
hypothesis (reduced connectivity) is a more mainstream 
view with wider acceptability since it has roots in molec-
ular/cellular level events in AD [20]; hence, we adopted it 
in this study.

Connectivity measures are bivariate and ignore how 
the ensemble of connections characterize brain function, 
while graph measures quantify the topography of the net-
work, which has been shown to be sensitive to disease 
processes [21]. Recently, the combination of RS-fMRI and 
graph theoretical analysis has revealed the topological 
organization of human whole-brain functional networks. 
For example, the healthy brain has been shown to exhibit 
small-world characteristics [21, 22]. Using graph theoret-
ical analysis of AD/MCI patients and healthy populations 
can lead to better understanding of the differences in the 
topology of brain networks as well as the relationship 
between brain connectivity and the disease processes [11, 
23]. Previous studies have found widespread reduction in 
node degree (a measure of connection density) in MCI 
compared to healthy controls, suggesting that graph-
based analyses might potentially be used in the determi-
nation of biomarkers for pathological aging [24, 25]. For 
example, decrease in local clustering coefficient (specifi-
cally, in the hippocampus) and increased characteristic 
path length (CPL) in AD compared to normal controls 
has been demonstrated [11, 24]. Decreased long-distance 
connectivity of the frontal and caudal brain regions has 
been found in AD compared to controls [26]. Moreover, 
betweenness centrality (BC), a local nodal graph measure 
that quantifies how much information may traverse the 
node (any given brain region), was shown to be lower in 

certain brain regions in both AD and MCI compared to 
healthy controls [27].

We identify two shortcomings in previous MCI and 
AD studies employing graph-theoretic complex net-
work analysis of resting-state brain networks. First, it is 
noteworthy that previous studies have not investigated 
whether graph measures mirror neuropathological dete-
rioration from NC to MCI to AD. This is important 
because such metrics could signal a neurodegenerative 
course, which is different from normal aging at early 
stages of the disease when intervention is more likely 
to be successful. Second, previous reports have found 
promise in BC [27], but have utilized BC calculated from 
undirected networks that characterize synchronization 
rather than information flow, which is better character-
ized using directed networks. It is to be noted that both 
synchronization and information flow are prevalent yet 
distinct mechanisms by which brain regions interact with 
each other. Besides, even though BC can determine the 
importance of a particular node in a network, it tends to 
over-inflate the power of nodes [28] as will be explained 
in the next section.

In this study, we addressed these gaps by estimating 
BC from directed networks derived from the applica-
tion of Granger causality (GC) [29–36] to RS-fMRI data 
acquired from the following populations: Normal Con-
trol (NC), Early MCI, Late MCI and AD. We used an 
additional metric called middleman power (MP) which 
not only characterizes information flow through a node 
as in BC, but also estimates the power of the node in 
terms of its criticality for information flow in the entire 
network [28]. We hypothesized that BC and MP of some 
brain regions will progressively decrease [27] from NC to 
EMCI to LMCI to AD.

2 � Methods
2.1 � Subjects
Data used in this study were obtained from the Alzhei-
mer’s disease neuroimaging initiative (ADNI) database 
(http://www.loni.ucla.edu/ADNI). ADNI is a multisite, 
longitudinal observational study of clinical, imaging, 
genetic and bio-specimen biomarkers through healthy 
elders to MCI to dementia or AD. The primary goal 
of ADNI is to assess whether neuroimaging and other 
markers could be utilized to measure the progression of 
MCI and AD. Over 800 adults, aged 55–90 years, were 
recruited from over 50 sites across USA and Canada to 
be followed for 2 or 3 years.

In this study, RS-fMRI data from 35 control subjects, 
34 EMCI, 34 LMCI and 29 AD patients were used from 
the ADNI-2 section of the database. The participants 
in this study were recruited between 2011 and 2013 
through the ADNI-2 protocol, and we selected subjects 

http://www.loni.ucla.edu/ADNI
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who had completed both the 3D MPRAGE and RS-
fMRI data scans in the same visit. We manually dis-
carded 2 LMCI patients from the group so that the ages 
of four groups were statistically matched. Subjects were 
tested with Neuropsychiatric Inventory Questionnaire 
(NPI-Q), Mini-mental State Examination (MMSE), 
Functional Assessment Questionnaire (FAQ), as well 
as Global Clinical Dementia Rating (Global CDR) 
(Table 1).

Functional MRI data were acquired using a T2
*-

weighted single shot echo-planar imaging (EPI) 
sequence on 3.0 Tesla Philips MR scanners with 48 slices, 
slice thickness = 3.3 mm, TR = 3000 ms, TE = 30 ms, flip 
angle = 80°, field of view: RL = 212, AP = 198.75  mm, 
FH = 159  mm, voxel size: RL = 3.3125  mm, 
AP = 3.3125 mm and 140 temporal volumes in each run. 
Anatomical images were acquired using magnetization-
prepared rapid gradient echo (MPRAGE) sequence for 
overlay and localization (TR = 6.8  ms, TE = 3.1  ms, 
voxel size: 1.11 × 1.11 × 1.2 mm3, flip angle = 9°, field of 
view: RL = 204 mm, AP = 253 mm, FH = 270 mm). The 
data were subjected to a standard resting-state preproc-
essing pipeline using the Data Processing Assistant for 
Resting-State fMRI (DPARSF) toolbox that is based on 
Statistical Parametric Mapping (SPM8) [37, 38]. Mean 
time series were extracted from 200 functionally homo-
geneous regions-of-interest (ROIs) identified via spec-
tral clustering (Craddock-200 atlas) [39, 40]. Since our 
study used functional MRI data, we used this popular 
functional atlas instead of an anatomical atlas.

2.2 � Connectivity analysis
Directional brain networks were obtained from RS-fMRI 
data using GC [10], [41–46]. The principle underlying 
GC [47–50] is as follows: If using the past of time series 
X improves the prediction of the future of time series Y, 
then X can be said to have a causal influence on Y [51]. 
Let X(t) = [x1(t), x2(t),…, xq(t)] be the q selected ROI 
time series, then the multivariate vector autoregressive 
(MVAR) model with order p is given by

where A(n) is the model parameter, and E(t) is the vec-
tor of the residual error. There are many previous stud-
ies which have used the MVAR model to estimate the 
causal relationship between fMRI time series from dif-
ferent brain regions. However, using GC on raw fMRI 
signals can be confounded by the spatial and inter-sub-
ject variability of the hemodynamic response function 
(HRF) [52–54]. HRF variability is also found to confound 
group differences in connectivity [55–58], which is of 
consequence to our study as well. This variability of the 
HRF and its smoothing effect can be minimized by blind 
hemodynamic deconvolution methods. Consequently, a 
popular data-driven blind deconvolution approach based 
on the detection of pseudo-events proposed by Wu et al. 
[59] was used to estimate the HRF and latent neuronal 
time series from the observed data. Specifically, RS-fMRI 
data were considered as spontaneous and event-related, 
wherein the events were detected by picking up the com-
paratively large amplitude of BOLD signal fluctuations 
after removing other sources of noise. The HRF of each 
voxel was reconstructed by fitting them with a double 
gamma function and two time derivatives. Finally, latent 
neuronal time series were recovered by Wiener decon-
volution using the corresponding HRF. When the latent 
neuronal variables were input into the MVAR model 
(1) instead of raw fMRI data, we obtained the following 
equation.

(1)X(t) =

p
∑

n=1

A(n)X(t − n)+ E(t),

Table 1  Demographics and clinical variables

Controls EMCI LMCI AD

Sex (F/M) 20/15 16/18 14/20 16/13

Age 74.5 ± 5.8 72.2 ± 5.7 71.4 ± 8.6 73.1 ± 7.35

NPI-Q 0.6 ± 1.3 2.1 ± 3.1 2.8 ± 2.5 3.0 ± 2.4

MMSE 28.8 ± 1.6 28.1 ± 1.5 27.1 ± 2.3 20.9 ± 3.9

FAQ 0.2 ± 0.8 3.3 ± 4.1 5.4 ± 6.2 16.3 ± 7.6

Global CDR 0.0 ± 0.1 0.5 ± 0.1 0.5 ± 0.1 0.8 ± 0.2
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where hq(t) are the hidden neural states, p is the model 
order estimated from the Akaike/Bayesian information 
criterion [10, 31], a and e are the MVAR model coeffi-
cients and errors, respectively. The instantaneous influ-
ences between time series are represented by a(0) and 
the causal influences between time series can be inferred 
from a(n), n = 1.. q. Using a(0) in the model can minimize 
the “leakage” of instantaneous correlation into causality 
[50, 53, 60, 61]. Subsequently, this correlation-purged 
Granger causality (CPGC) from time series j to time 
series i could be obtained using the following equation

The latent neuronal time series corresponding to all 
the 200 ROIs were first estimated using deconvolution 
and then input into a first-order MVAR model to obtain 
the causal connectivity between all pairs of 200 ROI time 
series. We used a first-order model because causal rela-
tionships within neural delays of less than or equal to one 
TR are of interest in neuroimaging [41]. Since fMRI has 
a relatively low temporal resolution, a first-order model 
captures the most relevant causal connectivity informa-
tion [47]. Surrogate data were obtained by randomizing 
the phase of the original time series and retaining their 
magnitude spectrum and then input into the MVAR 
model. This procedure was repeated 1000 times and the 
statistical significance of each connection was obtained 
by comparing the CPGC value obtained from origi-
nal data with the null distribution obtained from sur-
rogate data. If region A significantly influenced region 
B (p < 0.05), then the path from A to B was considered 
directionally connected. This way, we obtained the binary 
directed connectivity matrix for each subject by thresh-
olding the connectivity values (p < 0.05, FDR corrected 
for multiple comparisons). This was used in further graph 
analysis.

2.3 � Nodal graph measures
Betweenness centrality (BC) is a local nodal graph meas-
ure that quantifies how much information may traverse 
the node (any given brain region) and has been widely 
used in graph analysis [62]. To define the BC measure, 
let λi(st) be the number of paths [63] between node s and 
node t, passing through node i. Let the total number of 
shortest paths between node s and node t be denoted by 
λ(st). Then, the BC in network D (containing nodes s, t 
and i) can be defined as

(3)CPGCij =

p
∑

n=1

{

aij(n)
}2

.

(4)BCi(D) =
∑

s,t:s �=i �=t

�i(st)

�(st)
.

Equation  (4) indicates that nodes with high BC con-
nect, otherwise unconnected parts of the network. How-
ever, some nodes located on the shortest path between 
long distance vertices can turn out to possess rather high 
values of BC (due to long geodesics) that in actuality are 
not critical for information flow. This indicates that BC 
is a rather good local graph measure, but may lose its 
advantages in large-scale networks. Comparatively speak-
ing, a middleman in a network occupies a critical posi-
tion that can block at least one node’s information flow 
to another. In the extreme case, middleman nodes might 
have the ability to separate the whole network into several 
disconnected components [28]. On the contrary, central-
ity measures do not necessarily identify these important 
critical nodes, even though their removal might cause the 
functional deterioration of the whole network.

For example, consider the directed network shown 
in Fig.  1. Nodes N1, N2, N3 block information flow 
from nodes F1, F2, F3 to other nodes, respectively. If 
we discard node N1 (Fig. 1, left), information flow from 
F1 to other nodes will be blocked. Thus, the middle-
man nodes are N1, N2, and N3. The value of un-nor-
malized BC of N1, N2 and N3 is equal to 4. However, 
if we discard N4 (or N5) separately, it does not block 
the information flow from any of two nodes that origi-
nally communicated with each other (Fig. 1, right). For 
non-middleman nodes N4 and N5, their BC value is 
equal to 6. Here, the non-middleman nodes (N4, N5) 
have higher BC value compared to actual middleman 
nodes (N1, N2, N3) because betweenness is counted on 
geodesics, and the geodesics between given nodes have 
equal weight. This example illustrates that BC tends to 
exaggerate the power of some non-middleman nodes 
and thus may not necessarily accurately measure the 
‘power’ of middleman nodes (i.e., nodal power), while 
still measuring nodal information flow (Table 2).

Fig. 1  An example network illustrating the concept of middleman 
power (MP) and its superiority over betweenness centrality (BC) 
under certain circumstances
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The brokerage position of middlemen in directed net-
works allows them to be highly extractive to both directly 
and indirectly connected nodes. The brokerage of node i 
in network D can be defined as

where N is the set of all nodes in D, i denotes an arbi-
trary node belonging to set N. Node j is the successor of 
node i and node i is called the predecessor of j if there 
is at least one node that is adjacent to the path from i to 
j. Symbol # denotes the number of instances which sat-
isfy the expression being referred to. For example, #Sj(D) 
is the number of successors of node j in network D. The 
maximal potential brokerage in network D is defined as

where si(D) are all of the direct successors of i in D. By 
normalizing a node’s brokerage score, the middleman 
power (MP) of a node can be defined as

Equation (7) indicates that if a middleman node breaks 
all potential opportunity in the network, in other words 
disconnects connections between all the other nodes due 
to its removal (such as the removal of the center node of 
a star shaped network), then the middleman node has a 
network power of 1. This illustrates that MP measures 
both nodal information flow and nodal power. In this 
study, BC [62] and MP [28] graph measures were cal-
culated for each node from the binarized connectivity 
matrices, obtaining a 200 × 1 BC (and MP) vector per 
subject.

2.4 � Statistical analysis
Six one-sided t-tests using BC (and MP) measures 
were performed (NC > EMCI, NC > LMCI, NC > AD, 
EMCI > LMCI, EMCI > AD, LMCI > AD), to find common 

(5)

bi(D) =
∑

j∈N

#Sj(D)−
∑

j �=i

#Sj(D − i)− #Si(D)− #Pi(D),

(6)B′(D) =
∑

i∈N

[#Si(D)− #si(D)],

(7)vi(D) =
bi(D)

max{B′(D), 1}
.

nodes among all the six comparisons to identify brain 
regions in which BC and MP decreased progressively 
from NC to EMCI to LMCI and AD (p < 0.05, FDR cor-
rected for multiple comparisons, controlled for age and 
gender).

Besides, as a supplemental analysis, we computed and 
tested BC for undirected networks (MP is not defined for 
undirected networks). Conventional FC was computed 
between each pair of 200 ROI time series using Pearson’s 
correlation coefficient. The FC matrices were binarized 
similarly (p < 0.05, FDR corrected for multiple compari-
sons), and a 200 × 1 BC vector was calculated for each 
subject. Six one-sided t-tests were also performed to find 
the common nodes as described before (p < 0.05, FDR 
corrected for multiple comparisons).

2.5 � Behavioral relevance of nodal graph measures
To determine the behavioral relevance of nodal graph 
measures, we correlated both MP and BC of ROIs (which 
satisfied our hypotheses as stated above) with clini-
cal variables (scores of NPI-Q, MMSE, FAQ and Global 
CDR) using the entire subject sample.

3 � Results
MP of left orbitofrontal cortex (L OFC) and lateral 
occipital cortex (LOC) progressively decreased from NC 
to EMCI to LMCI to AD (Fig. 2). These two regions are 
displayed (Fig.  3) on a brain surface using the BrainNet 
Viewer visualization tool (http://www.nitrc​.org/proje​cts/
bnv/) [64]. BC was able to identify only the LOC and not 
L OFC (Fig. 4).

BC estimated from undirected networks obtained 
using conventional FC did not identify a single node. We 
then gradually relaxed the p value threshold in all tests 
and tried to find the node that was common among all 
the six comparisons. It was not until the p-value thresh-
old was 0.25, that the first node, cuneus (Fig. 5) was iden-
tified. Obviously, it was not statistically significant. This 
demonstrates the superiority of using directed connec-
tivity networks (GC) over conventional FC, as well as the 
importance of MP over BC obtained from both directed 
and undirected networks. Figure 6 shows the L OFC and 
LOC as middleman nodes with incoming and outgoing 
healthy connections in the HC group, and subsequent 
gradual pruning of these connections (and the middle-
man property of these nodes) in EMCI, LMCI and AD 
groups.

MP of L OFC and LOC, and BC of LOC (all of which 
were estimated from directed networks), which progres-
sively decreased from NC to EMCI to LMCI to AD, were 
significantly associated with behavioral measures across 
the entire subject sample, thus highlighting their rele-
vance to the underlying neuropathology (Tables 3, 4). It is 

Table 2  The value of  un-normalized betweenness 
centrality and middleman power for the directed network 
in Fig. 1

Betweenness centrality Middleman power

N1 4 4

N2 4 4

N3 4 4

N4 6 0

N5 6 0

http://www.nitrc.org/projects/bnv/
http://www.nitrc.org/projects/bnv/
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noteworthy that MMSE was highest in controls and low-
est in AD; while the opposite was the case for the other 
three measures. Therefore, it makes sense that MMSE 
was positively correlated with nodal graph measures, 
while the other three behavioral measures were nega-
tively correlated. The correlations with behavior were 
also stronger for MP as compared to BC.

Finally, as an exploratory analysis, we performed 
machine learning classification using a linear support 
vector machine (SVM) classifier [65, 66] to assess the 
predictive ability of BC and MP measures. Classifying 
AD vs NC, we found that BC resulted in an accuracy of 

Fig. 2  Middleman power (MP) of the left orbitofrontal cortex (L OFC) and lateral occipital cortex (LOC), which were significantly different between 
the groups and deteriorated from NC to EMCI to LMCI to AD

Fig. 3  The location of two ROIs in the brain which progressively 
decreased with the deterioration of disease. L OFC: left orbitofrontal 
cortex, LOC: lateral occipital cortex

Fig. 4  Betweenness centrality (BC) of lateral occipital cortex (LOC) 
obtained from directed networks using Granger causality (GC), which 
was significantly different between the groups and deteriorated from 
NC to EMCI to LMCI to AD

Fig. 5  Betweenness centrality (BC) of cuneus obtained from 
undirected networks using functional connectivity (Pearson’s 
correlation), which was not significantly different between the groups 
(p > 0.25)
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92.08%, while MP resulted in 84.97% accuracy. Likewise, 
classifying EMCI vs NC, BC resulted in 91.79% accuracy 
while MP resulted in 92.08% accuracy; classifying LMCI 

vs NC, BC resulted in 92.84% accuracy while MP resulted 
in 99.01% accuracy. For each comparison, the accuracies 
of BC and MP were significantly different (p < 0.05). It 

Fig. 6  Middleman nodes L OFC (left) and LOC (right) with corresponding incoming and outgoing connections. From top to bottom: HC, EMCI, 
LMCI, AD. We can observe gradual pruning of the connections associated with these middleman nodes as the disease progresses from EMCI 
through AD. OFC orbito-frontal cortex, LOC lateral occipital cortex, LC locus coeruleus, SFG superior frontal gyrus, MFG middle frontal gyrus, IFG 
inferior frontal gyrus, PHG parahippocampal gyrus, MTG middle temporal gyrus, MOG middle occipital gyrus, Thal thalamus, LPS lateral parietal 
cortex, Ins insula
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must be noted that, given the modest sample size we had, 
it would be better to interpret relative differences in clas-
sification accuracies rather than their absolute values. It 
is expected that with larger samples, the absolute values 
of accuracies may be lesser [67].

The above results indicate that both BC and MP pos-
sess substantial predictive ability in classifying between 
the classes. While BC is better at classifying the extremes 
(NC and AD), MP is more sensitive to progressive dete-
rioration in abnormal cognitive aging, and hence, bet-
ter for classifying EMCI and LMCI from controls. This 
attribute may allow MP (in contrast to BC), to be a better 
marker for identifying individuals with abnormal aging 
earlier in their trajectory.

4 � Discussion
Using RS-fMRI in subjects with progressive stages 
of MCI and AD with matched controls, we obtained 
directed brain networks using GC and estimated graph 
measures (BC and MP) from them. We hypothesized 
that these measures would progressively deteriorate from 
NC to EMCI to LMCI to AD. We found evidence for 
our hypothesis in L OFC (MP and BC) and LOC (MP) 
regions. Our primary findings were as follows. MP of two 
brain regions, LOC and L OFC, significantly decreased 
with the deterioration of the disease, while BC only 
decreased in LOC. In addition, no significant node was 

found in undirected networks (FC) using BC. MP of LOC 
and L OFC, and BC of LOC also exhibited significant 
associations with behavioral scores (MP had better asso-
ciation than BC), indicating their relevance to underlying 
pathology. Our results provide evidence that, for identi-
fying imaging markers of deterioration from NC to MCI 
to DC, (i) MP is a better local nodal graph measure com-
pared to BC and, (ii) MP/BC of directed networks seem 
to be more sensitive to disease progression than BC of 
undirected networks.

Our results are in agreement with previous functional 
network studies. The OFC is damaged conspicuously in 
AD, and from the view of neurofibrillary tangle (NFT) 
pathology, AD cases have pathology in OFC with distinct 
patterns of NFT while control cases have no appreciable 
pathology other than occasional NFT and diffused plaque 
[68]. OFC plays crucial roles in cognitive processing of 
decision-making [69] and age-related cognitive decline 
was shown to mirror neurodegenerative changes in this 
region [70]. On the other hand, LOC has also been pre-
viously noted in AD-related brain imaging studies. For 
example, it has been reported that with the deterioration 
of the disease, LOC showed a faster rate of atrophy in 
AD compared to MCI and NC [71]. Yao et al. found that 
FC between LOC and left amygdala decreased in EMCI 
compared to LMCI, and that the decrease in memory 
ability was related to such connectivity changes [72].

Next, we discuss the direction of network changes in 
MCI and AD (reduction in connectivity or graph meas-
ures with the progression of disease). In the introduc-
tion, we elaborated previous literature that has supported 
the dominant view of reduction in connectivity in MCI/
AD, as well as pointed to a small number of studies that 
have also found increased connectivity. Since there has 
not been more direct and expansive evidence for the lat-
ter, we hypothesized that BC/MP of a few brain regions 
should progressively decrease with the deterioration of 
the disease. The deterioration hypothesis is a more main-
stream view with wider acceptability, since it has roots in 
molecular/cellular level events in AD as discussed below.

Beta-amyloid (Aβ) shows a high degree of spatial over-
lap with default-mode network [73] and recent work has 
detected a linear relationship between amyloid deposi-
tion and FC derangement [74]. The Aβ is the critical ini-
tiating event in AD, starting with the aberrant clearance 
of Aβ-peptides followed by consecutive peptide aggre-
gation and disruption of neural activity [75]. Thal et  al. 
analyzed whole-brain regional Aβ deposition to assess 
differences in the expansion of Aβ-pathology between 
clinically proven AD cases and healthy population [20] 
and their results showed that occipital cortex and frontal 
cortex were severely affected by Aβ deposition with the 
deterioration of the disease. These results by Thal et  al. 

Table 3  Correlation value (R) and  corresponding p 
value for  the  association between  behavioral measures 
and middleman power of L OFC and LOC

Behavioral measures L orbitofrontal cortex Lateral occipital 
cortex

R p value R p value

NPI-Q − 0.34 6.32 × 10−04 − 0.38 1.49 × 10−04

MMSE 0.41 3.30 × 10−05 0.38 1.41 × 10−04

FAQ − 0.48 8.97 × 10−07 − 0.46 2.45 × 10−06

Global CDR − 0.79 2.16 × 10−21 − 0.83 1.33 × 10−25

Table 4  Correlation value (R) and  corresponding p-value 
for  the  association between  behavioral measures 
and betweenness centrality of LOC

Behavioral measures Lateral occipital cortex

R p value

NPI-Q − 0.24 1.86×10−02

MMSE 0.34 1.52×10−03

FAQ − 0.36 3.81×10−04

Global CDR − 0.45 3.11×10−06
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are in concordance with our findings. Taken together, the 
reduction of MP/BC in MCI/AD is supported by dete-
rioration in Aβ deposition with progression of disease. 
Given that estimating Aβ deposition requires a PET scan 
which is more invasive and expensive than an MRI scan, 
our results highlight the possibility of using the graph-
theoretic characterization of directional brain networks 
obtained from RS-fMRI for tracking neurodegeneration.

Some other regions have also been reported to be cru-
cial to AD pathology [11, 76, 77]. In fact, we also identi-
fied cingulate gyrus, hippocampus and middle temporal 
gyrus in 3 of the 6 comparisons (NC > EMCI, NC > AD, 
EMCI > AD) using MP. This is in accordance with previ-
ous studies [11, 76–78]. However, these regions were 
not identified in the remaining 3 comparisons involving 
LMCI (NC > LCMI, EMCI > LMCI, LMCI > AD). Consid-
ering that we were primarily interested in brain regions 
that progressively deteriorated from NC to EMCI to 
LMCI to AD, we did not emphasize these results in this 
report.

To clinically utilize our results, the findings must be 
replicated on a much larger sample, which is representa-
tive of the target population (gender, ethnicity, etc.). 
Future studies could choose to assess dynamic connectiv-
ity in addition to static connectivity as done in this study, 
which might provide further insights. Machine learning 
classifiers could be tested to develop MP/BC as biomark-
ers for prediction of disease progression at the single-
subject level.

5 � Conclusion
In conclusion, our results showed that MP (estimated 
from GC networks) detected more brain regions that 
progressively deteriorated from NC to EMCI to LMCI 
to AD and had better association with behavioral vari-
ables, as compared to BC. Also, BC (estimated from FC 
networks) did not identify a single node, underscoring 
the superiority of GC over FC in our case. Our study pro-
vides evidence for the superiority of MP over BC and GC 
over FC. Estimated from GC networks, MP in L OFC and 
LOC could serve as potential biomarkers for progressive 
deterioration from NC to MCI to AD.
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