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Abstract

Global climate change is expected to have strong effects on the world’s flora and fauna. As a result, there has been
a recent increase in the number of meta-analyses and mechanistic models that attempt to predict potential
responses of mammals to changing climates. Many models that seek to explain the effects of environmental
temperatures on mammalian energetics and survival assume a constant body temperature. However, despite
generally being regarded as strict homeotherms, mammals demonstrate a large degree of daily variability in body
temperature, as well as the ability to reduce metabolic costs either by entering torpor, or by increasing body
temperatures at high ambient temperatures. Often, changes in body temperature variability are unpredictable, and
happen in response to immediate changes in resource abundance or temperature. In this review we provide an
overview of variability and unpredictability found in body temperatures of extant mammals, identify potential blind
spots in the current literature, and discuss options for incorporating variability into predictive mechanistic models.
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Background
Global climate change has provided a sense of urgency to
the importance of understanding the interactions between
organisms and environmental temperatures. As we seek to
improve the accuracy of predicting organismal responses to
changes in climate, emphasis is being placed on mechanis-
tic models that rely on an in-depth understanding of the
thermoregulatory physiology and energetics of a species
[1–6]. To date, however, the bulk of these models have
been built and tested on ectothermic organisms [7–9],
while research on endotherms has lagged behind [10]. This
is partly due to deficiencies in understanding the mecha-
nisms of the relationship between environmental tempera-
tures and energy metabolism in endotherms [8, 11–13].
With a few notable exceptions (eg. [14]), ectotherms
predominantly rely on external sources of heat production
and therefore have a relatively consistent, and thus predict-
able, relationship between ambient temperature (Ta) and
body temperature (Tb) [9, 15, 16]. By contrast, endotherms
can generate heat using metabolism and as such Tb is
generally independent of Ta [17].

From its conception, the comparative study of endo-
thermic thermoregulation has been based on the
assumption that Tb is maintained at a constant and ele-
vated level [7, 18]. One of the most common ways to
quantify the relationship between Tb and Ta in mam-
mals, and in endotherms in general, is the Scholander-
Irving model [18]. Also called thermal profiles, the
Scholander-Irving model requires measuring resting
metabolic rate (preferably from fasted, non-reproductive
individuals, during their rest-phase) over a series of
environmental temperatures to identify the range of Tas
over which metabolic rate remains minimal, referred to
as the thermoneutral zone (TNZ) [18]. At temperatures
below the lower critical limit of the TNZ, thermal
conductance (the rate at which heat is lost from the
body, and the inverse of insulation) is at a minimum and
energetically costly means of heat production (primarily
shivering and non-shivering thermogenesis) are used to
maintain Tb. Similarly, as temperatures increase above
the upper critical limit, where thermal conductance is
maximised, metabolism increases as energetically costly
means of evaporative cooling (panting and sweating) are
employed to maintain a stable Tb [16].
Existing mechanistic models have incorporated the

Scholander-Irving model, and its assumptions, into a set
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of predictive equations used to calculate the costs of
thermoregulation under various environmental condi-
tions [13, 19–21]. However, these models present a
somewhat simplistic version of mammalian energetics in
relation to climate. Often, it is assumed that the animal
is actively defending a set Tb, and therefore the models
do not take into account the potential effects of variable
Tb (but see [22], for a notable exception). Strict homeo-
thermy (a constant, often elevated Tb) is not the norm
and, as we will demonstrate in this review, many endo-
therms vary their Tb considerably. While some species
only show slight daily changes, with higher Tb during
activity than at rest, others employ larger decreases in
Tb during the rest phase [23–27], or thermoconform,
which is accompanied by a decrease in metabolism, by
either reducing Tb, (torpor, [28–30]) or increasing Tb

(hyperthermia, reviewed in [31]). When environmental
temperatures rise above Tb, evaporative cooling is often
the only means of maintaining a stable Tb. To conserve
water and avoid dehydration, some endotherms employ
facultative hyperthermia (also referred to thermocon-
forming or heat storage) at high Ta and increase their Tb

to sublethal temperatures [31–33]. Increases in Tb

reduces both the energetic and water costs of cooling
mechanisms [32, 34, 35].
Variable Tb is widespread in mammals, and both

habitat and evolutionary history have a large influence
on the thermoregulatory characteristics of endotherms
[10, 29, 36]. Energy usage in relation to climate is further
affected by phylogeny, activity level, microclimate selec-
tion, reproductive status, and energy availability [13, 21,
37–40]. Due to fundamental differences in thermo-
regulation between mammals and birds, we will focus
predominantly on mammals in this review (but see
[32, 35, 41] for a discussion on birds). The complex-
ities of predicting metabolism, or even Tb, in relation
to differences in Ta affect the accuracy of predictive mech-
anistic models. In this review we seek to provide an
overview of the variability of thermoregulatory patterns of
extant mammals, demonstrate how this variability can
complicate predictive mechanistic models, and outline
some potential avenues for improvement.

Daily variability in mammalian Tb
Many of the existing models that seek to explain species
distributions or responses of endothermic animals to
climate change are based on the assumption that endo-
therms maintain a high, relatively stable Tb throughout a
variety of habitats and climatic conditions [18, 42, 43].
Although, when compared with ectothermic species, en-
dotherms generally have significantly reduced variability
in Tb, many species show marked differences between
active-phase and rest-phase Tb (Fig. 1) [39, 44, 45]. Mean
normothermic Tb of eutherian mammals lies between 36

and 38 °C (range 30.5–40.7 °C) [46], whereas marsupials
and monotremes are generally considered to have lower
Tbs (mean 35.3 °C, range 30.8–37.4 °C) [46–48]. While
some species, such as the golden hamster (Mesocricetus
auratus) [49] or the swamp rat (Rattus lutreolus; Fig. 1a)
only decrease their Tb 2–3 °C during normothermic
resting, others, such as treeshrews (Tupaia sp.), show
more pronounced 24 h amplitudes in Tb (Fig. 1b) [45].
Marsupials, generally have larger daily Tb amplitudes,
and Tb can vary from between 32 and 34 °C during
normothermic resting, to above 40 °C during activity,
this despite their average Tbs being listed at around 35 °
C (Fig. 1c) [46, 50, 51]. Basoendotherms (sensu [36])
such as tenrecs (Fig. 1d) and echidnas show the highest
level of variability with rest-phase Tb closely following Ta

during most times of the year [52–56].
The cost of endothermy, usually measured via metab-

olism, varies greatly depending on a number of factors
including body size, habitat, resource availability,
climatic conditions, and activity patterns [57–59]. A
strictly nocturnal activity pattern is the ancestral condi-
tion in mammals, and is efficient in warm climates, as it
allows animals to save both water and energy [55, 60,
61]. This is especially true for small mammals with low
normorthermic Tbs (~32–35 °C), as a relatively high Tb

is maintained passively during the day-time rest-phase,
and activity can offset most of the potential thermo-
regulatory costs at night [38, 55, 61]. Conversely, in
colder climates where most small-bodied species rest in
thermally insulated burrows, diurnal activity can reduce
overall energy expenditure by lowering the need for
thermogenesis during the active period [13, 62]. The
relative energetic costs and benefits of a nocturnal or
diurnal activity pattern have so far mostly been discussed
in single species studies, or in hypotheses about the
evolution of endothermy [40, 61, 63–65]. Unfortunately,
nocturnal and diurnal species, as well as those that do
not fit clearly in either category, are usually lumped
together in meta-analyses despite facing vastly different
environmental conditions.
Daily amplitude changes in Tb are not solely the result

of differences in activity, but appear to be under some
level of circadian control, persisting even during
continuous rest [39, 66]. Interestingly, while differences
in resting metabolic rates between the active-phase and
rest-phase were commonly measured in older studies
[67, 68], the recent trend toward focusing on the import-
ance of measuring basal metabolism has meant that the
energetics of resting during the active-phase is largely
ignored. Basal metabolism is measured under a set of
restrictive, and often ecologically irrelevant conditions;
the animals must be post-absorptive, non-reproductive
and not growing [57, 69]. For species with pronounced,
Ta-dependent, decreases in Tb during normothermic
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rest, measuring resting metabolism during the rest-
phase only could grossly underestimate the total baseline
energy and water budgets. Pronounced normothermic
decreases in rest-phase Tb have received considerable
attention in the avian literature [41, 70, 71], where
decreases in Tb of >5 °C are common, but have been
largely ignored in mammals [16].
A major factor that can be overlooked when relying

on simplistic mechanistic models is the potential for
phenotypic plasticity [6, 72]. Individuals of one species,
or even of one population, can respond differently to an
environmental challenge often depending on the condi-
tion of the individual. The daily amplitude of Tb is not a
fixed trait, and can change based on various external
factors such as water and energy availability, or competi-
tion [25, 73–75]. Camels (Camelus dromedarius) for
example maintain a near stable Tb with only little Tb

variation (≤2 °C) and use evaporative cooling when
water is available, but increase daily amplitudes in Tb to
more than 6 °C to conserve water when water stressed
[34]. Similarly, Arabian oryx (Oryx leucoryx) show a
higher amplitude in daily Tb during warm dry periods
than during periods where water was readily available,
which is attributed to low water availability [6]. Flexible
increases in Tb amplitudes by thermoconforming are
also employed by small desert mammals in response to

high Ta during the active phase [33]. Some bats in the
Australian arid-zone are known to tolerate Ta up to 48 °
C, with corresponding skin temperatures up to 45.8 °C
[76]. In general, however, our capacity to model mam-
malian responses to high Ta is hindered by a general lack
of understanding of upper limits in Ta tolerance and
how flexible they are [2, 8, 12, 77]. We have been much
better at collecting lower limits of the TNZ than upper
(204 versus 93) [78]. Specifically, while increases in Tb at
high Ta have been shown to reduce the energetic costs
and increase the efficiency of evaporative cooling in
birds and some small desert mammals [32, 33, 79, 80],
the interplay between water loss, Tb and Ta at the upper
limits of the TNZ are largely unknown in mammals.
Additionally, very little has been done to equate upper
limits measured in the lab to conditions experienced by
the animals under natural conditions (but see [42, 81]).
In general, endotherms with flexible control over nor-

mothermic Tb (i.e. thermolabile species) can maximize
energy and water use efficiency in response to unpredict-
able conditions [7, 33, 72, 82]. An extreme example can
be found in basoendotherms. In these species, the
thermoneutral zone (TNZ) can be difficult to distinguish
as Tb often closely tracks Ta, which also blurs the lines
between normothermy and torpor [63, 83–85]. What
these basoendotherms demonstrate, is that by allowing

Fig. 1 Sample body temperature traces (solid lines) of a single free-ranging individual from several mammal species over a period of 6 days. Also
shown are ambient temperature traces (dotted lines) and the nocturnal period is represented by the grey bars and daytime by the white bars.
The mammals represented are: (a) an Australian diurnal homeotherm with small daily amplitudes in Tb (Rattus lutreolus, Order: Rodentia, Stawski,
Körtner, Nowack and Geiser unpublished data); (b) a diurnal homeotherm from Borneo with large daily Tb amplitude (Tupaia tana, Order:
Scandentia, Levesque, Tuen and Lovegrove unpublished data); (c) an Australian nocturnal daily heterotherm shown with a torpor bout, low
resting Tb, and high active Tb (Antechinus stuartii, Order: Dasyuromorphia, Stawski, Körtner, Nowack and Geiser unpublished data); and (d) a
nocturnal basoendotherm from Madagascar (Setifer setosus, Order: Afrosoricida, data from [55])
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Tb to decrease along with Ta they reduce the Tb – Ta

gradient, which allows for lower rates of heat loss as well
as a widening of the range of Ta over which minimum
rates of metabolism are measured. Such flexible thermo-
regulation usually corresponds with a parallel ability to
be active over a larger range of Tbs [55, 86–89] and is
seen to a lesser degree in other endothermic species with
high thermolability, but requires more study [7, 77, 90,
91] (Levesque, Lovegrove and Tuen unpublished data).
Thermolability, and by extension the characteristics of
the TNZ, is not fixed seasonally, however. For example,
the reddish-gray mouse lemur (Microcebus griseorufus)
not only hibernates during the winter period, but also
increases the breadth of their normothermic TNZ
during the colder period of the year [92]. In this species
the lower critical temperature of the TNZ decreases by
7.5 °C from summer to winter, which allows the species
to keep its energy demands during normothermia
constant despite colder Tas during winter [92]. This is a
relatively common phenomenon in non-hibernating
mammals, but most studies focus on change in
insulation rather than change in Tb as an energy saving
mechanism [93–95]. A large body of work exists asses-
sing the evolution of thermal flexibility in ectotherms
(reviewed by [15]), but similar approaches have yet to be
applied systematically to endotherms [10, 11].

Seasonality and unpredictability of mammalian Tb
In addition to daily changes in Tb, many mammalian
species show changes in their Tb between seasons. The
most extreme example are the so called ‘heterothermic’
mammals [29] which can temporarily abandon normo-
thermia and reduce Tb and metabolic rate in a state of
torpor. Definitions of torpor, and therefore hetero-
thermy, vary throughout the literature. Although most
agree that torpor occurs when rest-phase decreases in
Tb are large enough for metabolism to drop below basal
levels, the distinction between the two states can
sometimes be unclear [52, 91, 96]. In practice, however,
torpor is often defined using arbitrary Tb cut-offs which
can underestimate energy saved by Tb reductions above
the torpor cut-off Tb (see [91], for an in-depth discus-
sion). Similar to the vast differences in the daily Tb am-
plitudes, torpor patterns are highly variable both among
and within species (Fig. 2) [10, 29, 36, 53, 97, 98].
However, a decrease in Tb during winter can not only be
observed in heterothermic species, but also, to a lesser
degree, in homeothermic species. The homeothermic,
European red squirrels (Sciurus vulgaris), for example,
lower their Tb slightly during the winter [99]. This has
also been observed in large mammals, such as the red
deer (Cervus elaphus) [27] or the Przewalski horse
(Equus ferus przewalskii) [100]. Lower Tb combined with

Fig. 2 Examples of variable patterns of torpor expression, defined by reductions in body temperature (solid lines). Ambient temperatures are represented
by the dotted lines and night and day are illustrated by the grey and white bars, respectively. Shown are: (a) an Australian daily heterotherm showing one
short torpor bout (Petaurus breviceps, Order: Diprotodontia, Nowack unpublished data); (b) an opportunistic hibernator from Australia showing a bout of
multiday torpor (Nyctophilus bifax, Order: Chiroptera, Stawski and Geiser unpublished data); (c) a thermo-conforming tropical hibernator from Madagascar
during hibernation, the data shown are from a multi-day torpor bout with a single bout of activity occurring the night of the 23rd of September (Setfier
setosus, Order: Afrosoricida, data from [55]); and (d) a food storing hibernator from North America showing multiple single day bouts in the laboratory
(Tamias striatus, Order: Rodentia, data from [94])
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increased fur thickness can already lead to substantial
energy savings [101], without suffering the potential
negative side-effects of torpor [102–106]. Despite the
various benefits, torpor use is also associated with costs,
for example, a low Tb interferes with reproduction as it
delays fetal development (reviewed in [107]) and hinders
spermatogenesis [108, 109]. Further costs include slowed
locomotor reactions [89, 110], decreased sensory percep-
tion [110] and increased oxidative stress ([111], but see
[112]) therefore there is some benefit to avoiding or re-
ducing torpor if resources are abundant [102].
Traditionally, the study of heterothermy in mammals

has focused exclusively on strict categorical classifications:
daily heterotherm (torpor less than 24 h with a relatively
high torpid Tb), hibernator (multiday torpor bouts at low
Tb), or homeotherm. However, as thermoregulatory
characteristics from more species, especially those from
tropical or sub-tropical environments, have been made
available, it seems more likely that heterothermy and
homeothermy exist on a continuum [36, 53, 113]. Further-
more, by focusing entirely on strict categorical variables,
many studies have ignored the potential adaptive benefits
to small, non-torpid changes in Tb [7, 91]. It is clear that
there exists a high degree of variability in both the level of
Tb (often reported as mean Tb or set-point Tb) and the
precision with which it is regulated [10, 29, 36, 46].
Furthermore, it is probable that some degree of hetero-
thermy, and likely variable torpor expression, was the
ancestral condition in mammals, and that the high degree
of homeothermy in extant species evolved via a highly het-
erothermic ancestor [36, 53, 114]. Interestingly, whether
the variability in Tb observed is the result of differences in
the level of control over Tb, or the side-effect of differ-
ences in metabolism and thermal conductance, remains a
topic of debate [58, 67, 115]. After reviewing the Tb of a
large number of birds and mammals, Clarke and Rothery
[46] came to the conclusion that “… a complex relation-
ship between mass, Tb and resting metabolic rate and
leaves open the intriguing question of whether evolution
has adjusted resting metabolic rate through changes in Tb

or whether Tb is simply a consequence of resting meta-
bolic rate that has evolved for a particular environment
and ecology.” This confusion illustrates that we still lack a
basic mechanistic understanding of effects of Ta on mam-
malian Tb and metabolism, something which needs to be
taken into consideration when attempting large-scale,
multi-species, predictions of responses to climate change.
One potential complication arising from the complex

interplay between Tb, conductance, heat storage, water
balance and metabolism, is that Tb is rarely a good proxy
for energy expenditure. Unlike ectotherms, where differ-
ences in metabolic rate at different temperatures are
largely the result of Arrhenius effects of temperature on
metabolism [116], in endotherms the same Tb can be

the result of a number of energetically differing states
including, activity, resting, heating, cooling, or torpidity
[52, 91, 117]. Furthermore, behavioural thermoregula-
tion is common and many mammals bask to lower ener-
getic needs during rewarming from torpor [118–123] or
to reduce energy costs at cold Tas [26]. For example,
tree-roosting long-eared bats (Nyctophilus spp.) fre-
quently roost under exfoliating bark and in particular on
the northern facing side of the tree, which receives more
sun than the south side in the southern hemisphere
[124]. The roosting site, therefore receives sunlight
throughout the day and warms up considerably, allowing
bats to passively increase their Tb (Fig. 2b). Indeed,
throughout winter the Tb of long-eared bats was found
to fluctuate daily between 10–20 °C while remaining
torpid. Passive rewarming also allowed bats to save
energy on days when they rewarmed to a normothermic
Tb [124]. The benefits of basking has also been shown in
small marsupials, where in the field it was confirmed
that they are able to move at very low Tb (as low as
14.6 °C) to a basking site to further rewarm in the sun
[125–127]. The energetic savings of passive rewarming
have been confirmed for bats, marsupials, and primates
and arousal costs are decreased by up to 66 % in
comparison to active arousals [97, 120, 128]. Basking
also plays a role in the thermoregulation of large mam-
mals as indicated by the finding of radiant heat-assisted
rewarming during winter in a large mammal, the Alpine
ibex (Capra ibex ibex) [26]. Furthermore, depending on
the insulative properties of their resting sites, tropical
hibernators, such as tenrecs or lemurs (Fig. 2d), may
even undergo long-term hibernation in which their Tb

passively tracks Ta, leading to strong daily fluctuations of
Tb at a low metabolic cost [52, 55, 64, 97, 129]. The
potential for energy and water savings accrued by bask-
ing is therefore an important component to energy bud-
gets in species exposed to high Tas or to radiant heat.
For hibernating species the extent of torpor use can also

be dependent on body condition or quantity of available
food stores [102, 130]. For example, in southern African
hedgehogs (Atelerix frontalis) and mouse lemurs, only
heavy individuals will undergo hibernation during the
winter period, whereas individuals with a lower body mass
will only use shorter bouts of torpor [98, 131, 132].
Similarly, throughout summer when Ta is mild and insects
are abundant, individuals of the Australian subtropical/
tropical insectivorous Eastern long-eared bat (Nyctophilus
bifax) employ more torpor if they are in better body
condition in comparison to individuals in poorer body
condition [133]. The authors hypothesized that by using
torpor bats can reduce their need to forage, hence
reducing their exposure to predators [133]. Importantly,
individuals in better body condition can continue to
employ torpor and save fat reserves, whereas those in
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poorer body condition likely need to forage extensively to
meet their daily energy requirements [132, 133]. But
factors other than energy expenditure, such as low water
availability (see above) or the reproductive status of an
individual can also influence torpor use. While some spe-
cies abandon torpor use during pregnancy and lactation
[63, 138, 139], others will continue to use torpor to save
energy during inclement conditions and even to delay par-
turition until a more favourable time [107, 140, 141].
When attempting to model how a species will respond

to changes in climate, it is important to have an under-
standing of how often, and for how long, they will be able
to employ torpor. For a species with readily predictable
torpor bout lengths and hibernation seasons of a set
length, such as the Holarctic ground squirrels (family
Sciuridae, tribe Marmotini, [142]), this would often cover
the winter months only (eg. [143]), although this may
also change based on latitude or local climate conditions
[144, 145]. Such obligate hibernators, must undergo
significant pre-hibernation fattening before entering into
torpor [30, 105, 146, 147]. However, many species are able
to enter torpor opportunistically throughout the whole
year, depending on environmental conditions, and there-
fore, as we will discuss below, their energetic budget can
be difficult to predict [133, 148–152]. Further, recent
studies have indicated that torpor use increases in
response to unpredictable climatic conditions, such as
droughts, fires or storms [51, 110, 153, 154].
Variability in Tb, and therefore in energy usage, at both

the inter- and intra-specific level poses a complication
for predictive models. If an animal increases its Tb, ra-
ther than shouldering the costs of increased Ta through
energetically costly means of defending a set Tb, some of
the costs of rising Ta may be overestimated. Conversely,
in an animal attempting to reduce energy and water
usage through torpor, higher Ta can reduce potential
savings [64, 155]. In contrast to species that use torpor
opportunistically, strict hibernators that are less flexible
in their physiological response are likely to face negative
consequences when surface temperatures rise. Recent
studies have indicated that warmer winter temperatures
lead to more frequent arousals during hibernation
periods [155–157], imposing the risk for small seasonal
hibernators to deplete fat reserves before the end of
hibernation [158]. Therefore, to be able to accurately
predict mammalian responses to climate change, we
need to incorporate a level of predictability in hetero-
thermic responses.
To quantify the prevalence of predictability, or unpre-

dictability, in torpor usage within a species, we coded all
of the species found in Table 1 of Ruf and Geiser’s [29]
recent review of mammalian heterotherms as one of
three categories (Fig. 3). The first category, ‘predictable’,
was used to classify species which only employed torpor

(either via daily heterothermy or hibernation) in
response to seasonal shortages of food or water, or cold
temperatures. Species which were shown to employ
torpor in a highly variable manner or regardless of time
of year or season were classed as ‘unpredictable’. Finally,
species where all the measurements of Tb were from a
single season, or predominantly collected in the labora-
tory, were classed as ‘data deficient’. To date, most
species that have been demonstrated to use torpor
opportunistically inhabit warmer and more unpredict-
able habitats (Fig. 3a) [72, 159]. This finding, might be
due to the fact that many temperate or arctic species
have been only studied in the laboratory or exclusively
during the winter season, and the predictability of torpor
use for many temperate/arctic species is therefore
unknown. Interestingly, a slightly higher proportion of
daily heterotherms were unpredictable (57 % versus
46 % for hibernators) but a combined total of 31 % of
the species were found to be data deficient. This latter
finding indicates the need for further studies on free-
ranging animals, which was also one of the results of a
large comparison of two heterothermy metrics by Boyles
et al. [10]. One of the metrics from that study, the
thermoregulatory scope, necessitated only a mean
normothermic Tb and a minimum torpid Tb, whereas
the second, the heterothermy index, required continuous
Tb traces. The former had over ten times the number of
species (or measures from different species) than the
latter, although the authors admit to only being able to
obtain a subset of available Tb datasets. The amount of
data we have on heterothermy in mammals is heavily
skewed towards laboratory data, which often underesti-
mates torpor use [160]. A large number of the ‘data
deficient’ species were also found at the lower latitudes.
This is not surprising, however, because, our knowledge
of the physiology of tropical and sub-tropical mammals
lags far behind that of temperate species [52, 59, 64].

Conclusions: Tb variability, heterothermy, and
modelling
Studies on the Tb patterns and thermoregulation of free-
ranging animals have illustrated the effects, and some-
times confounding influences, of a number of factors
including predation risk [150], presence of conspecifics
[145], food availability [130, 161], competition [162] and
extreme events [50, 51, 153, 163] on Tb. Yet, robust
predictions of responses to climate change require an
in-depth understanding of how animals exist in the wild
[4, 8]. The level of unpredictability in terms of Tb

control in mammals can make predictions more compli-
cated, but not impossible. However, if we are to improve
our ability to predict potential responses of mammals to
a changing global climate, we need to improve our
understanding of endothermic physiology. Large-scale
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predictive models assessing the physiology of endo-
therms in relation to climate, and therefore their poten-
tial to be resilient (or not) in the face of global climate
change have lagged behind the literature on ectotherms
largely due to this fact. In particular, the lack of data on
upper critical limits of the TNZ in mammals, or of
thermal tolerance more broadly, as well as how these
relate to free-ranging populations, severely hinders our
current ability to build accurate models. The compre-
hensive study of responses to high Ta, both in the labora-
tory and the field is of pressing importance. Similarly, as
extreme events and variability in Ta are expected to
increase in the coming decades [35, 164], more effort
should be placed on quantifying the level of plasticity in
a species response to environmental conditions [72]. To
be able to include thermolability into predictive models
we must first understand it. We believe that three steps
are necessary to achieve this: 1) the level of Tb variabil-
ity, and its predictability, must be quantified in a range
of species; 2) the energy and water costs of strict homeo-
thermy versus any level of variability must be deter-
mined; and 3) the potential for variability must be
modelled to provide predictions under both low and
high variability scenarios. As has been mentioned previ-
ously, a first step would be to look to the ectotherm
literature, where a large body of work has evaluated the
costs and benefits to changing both the level (mean Tb)

and the precision (variability) [7, 10, 11], but we need to
ensure that we include a variety of species representing
different habitats, evolutionary histories, and life-
histories. Conceptual and predictive models taking into
account the potential for variability, and phenotypic
plasticity, will certainly prove to be more robust, and will
provide a greater means of understanding endothermic
physiology in the face of changing climates.

Abbreviations
Ta: Ambient temperature; Tb: Core body temperature; TNZ: Thermoneutral
zone
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