Kanekal ar)d Miyoshi Progress in Earth and Planetary Science (2021) 8:35 P rogress | N Ea rth an d
https://doi.org/10.1186/540645-021-00413-y P| t S .
anetary >cience

REVIEW Open Access

Dynamics of the terrestrial radiation ")
belts: a review of recent results duringthe
VarSITI (Variability of the Sun and Its

Terrestrial Impact) era, 2014-2018

Shrikanth Kanekal'" @ and Yoshizumi Miyoshi?

Abstract

The Earth's magnetosphere is region that is carved out by the solar wind as it flows past and interacts with the
terrestrial magnetic field. The inner magnetosphere is the region that contains the plasmasphere, ring current, and the
radiation belts all co-located within about 6.6 Re, nominally taken to be bounding this region. This region is highly
dynamic and is home to a variety of plasma waves and particle populations ranging in energy from a few eV to
relativistic and ultra-relativistic electrons and ions. The interplanetary magnetic field (IMF) embedded in the solar wind
via the process of magnetic reconnection at the sub-solar point sets up plasma convection and creates the
magnetotail. Magnetic reconnection also occurs in the tail and is responsible for explosive phenomena known as
substorms. Substorms inject low-energy particles into the inner magnetosphere and help generate and sustain
plasma waves. Transients in the solar wind such as coronal mass ejections (CMEs), co-rotating interaction regions
(CIRs), and interplanetary shocks compress the magnetosphere resulting in geomagnetic storms, energization, and
loss of energetic electrons in the outer radiation belt nad enhance the ring current, thereby driving the geomagnetic
dynamics. The Specification and Prediction of the Coupled Inner-Magnetospheric Environment (SPeCIMEN) is one of
the four elements of VarSITI (Variability of the Sun and Its Terrestrial Impact) program which seeks to quantitatively
predict and specify the inner magnetospheric environment based on Sun/solar wind driving inputs. During the past
4 years, the SPeCIMEN project has brought together scientists and researchers from across the world and facilitated
their efforts to achieve the project goal. This review provides an overview of some of the significant scientific advances
in understanding the dynamical processes and their interconnectedness during the VarSITl era. Major space missions,
with instrument suites providing in situ measurements, ground-based programs, progress in theory, and modeling are
briefly discussed. Open outstanding questions and future directions of inner magnetospheric research are explored.
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1 Introduction

The term “magnetosphere” was introduced by Gold in
1959 (Gold 1959) to describe the region above the iono-
sphere and coincided with James Van Allen’s discovery
of the radiation belts (Van Allen et al. 1959). The solar
wind (Parker 1958), flows past the Earth forming the
magnetopause which is the outer boundary of the mag-
netosphere. The solar wind is supersonic and forms the
bow shock just ahead of the magnetopause. Co-located
with the radiation belts is a region containing low-energy
plasma which is home to a variety of plasma waves. The
radiation belts comprise an outer belt and an inner belt
separated by the so-called slot region. The outer belt is
populated mostly by electrons ranging in energy from a
few hundred keV to tens of MeV and is highly dynamical
in nature varying on time scales ranging from minutes to
years (Baker and Kanekal 2008). The inner belt comprises
mostly of protons and is relatively stable varying slowly
over time scales of years and is presumed to be predom-
inantly the result cosmic ray albedo neutron decay (Hess
1959).

In the recent past major missions such as NASA’s Van
Allen Probes (Mauk et al. 2014; Sibeck et al. 2012),
JAXA’s Arase (Miyoshi et al. 2018), THEMIS (Angelopou-
los 2008), and others vastly improved our understanding
of the magnetosphere, particularly the inner magneto-
sphere which includes the radiation belts and the plas-
masphere. New observations such as the discovery of a
long-term storage ring or the “third belt” (Baker et al.
2013) to the first direct observation of wave-particle inter-
action (Fennell et al. 2014; Kurita et al. 2018; Kasahara et
al. 2018) are prime examples of new observational in situ
measurements enabled by advances in instrumentation.
Theoretical understanding of the importance of wave-
particle interactions have also enabled understanding the
physics behind the particle energization and loss (see, for
example, chapter by Bortnik et al. in Balasis et al. (2016)).

The Variability of the Sun and Its Terrestrial Impact
(VarSITI) program (Shiokawa and Georgieva 2020) com-
menced in 2014 with an aim to promote international
collaboration in data analysis, modeling, and theory to
understand how the solar variability affects the Earth. The
program comprises four scientific elements. The SPeCI-
MEN (Specification and Prediction of the Coupled Inner-
Magnetospheric Environment) element’s main goal is “the
quantitative prediction and specification of the Earth’s
inner magnetospheric environment based on Sun/solar
wind driving inputs”

2 Review

2.1 Solar drivers of magnetospheric dynamics

It is by now well established that the Sun is the ulti-
mate driver of magnetospheric phenomena; indeed, it is
the steady solar wind that carves out the magnetosphere

(2021) 8:35

Page 2 of 22

and delineates it from the surrounding interplanetary
space. The Sun produces many transient eruptions, of
which coronal mass ejections (CMEs), co-rotating inter-
action regions (CIRs), and interplanetary shocks affect the
terrestrial magnetosphere. The consequences, i.e., mag-
netospheric responses, encompass phenomena such as
substorms, geomagnetic storms, and aurore and affect
plasma waves and energetic particle populations. The
time scales of magnetospheric response, particularly the
inner magnetosphere, range from minutes to years (Baker
and Kanekal 2008).

2.1.1 Coronal mass ejections

Coronal mass ejections are large eruptions of plasma
together with the embedded magnetic field from the Sun
that are now understood as major drivers of geomag-
netic activity and were first observed as late as the 1970s
(Gopalswamy 2016). CMEs propagate at different speeds
through the solar wind and often are preceded by an inter-
planetary shock. They may contain well-ordered magnetic
fields, e.g., magnetic flux ropes and clouds (Klein and
Burlaga 1982), and the interplanetary shock ahead of
the CME is a prime acceleration site for solar energetic
particles SEP (Desai and Giacalone 2016). A schematic
illustrating the topology of a CME is shown in Fig. 1
(reproduced from Zurbuchen and Richardson (2006)).

2.1.2 Corotating Interaction Regions and High-Speed
Streams

A stream interaction region is formed when slow solar
wind is overtaken by the fast solar wind which originates
from coronal holes. The coronal holes move down to
lower heliospheric latitudes during the descending phase
of the solar cycle and usually persist for periods longer
than the solar rotation period of about 27 days (as seen
from the Earth). During these times, the stream inter-
action regions are somewhat stable and rotate with the
Sun and are termed CIRs. Figure 2 shows a conceptual
schematic of a CIR (adapted from Owens and Forsyth
(2013)).

2.1.3 Interplanetary shocks

Interplanetary shocks are known to accelerate charged
particles (Jones and Ellison 1991) and are also responsible
for accelerating electrons in the outer zone on very short
time scales of the order of a few drift times (Blake et al.
1992). The acceleration and injection are quite distinct (Li
et al. 2018) from either radial transport or wave-particle
interactions (see the Section 2.5 section).

2.2 Theinner magnetosphere
2.2.1 Morphology and structure
Until recently, observations of the Van Allen belts indi-
cated that there are two belts, an outer belt comprised
mostly of electrons and an inner belt mostly comprised
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Fig. 1 A schematic illustrating the topology of a CME (reproduced from Zurbuchen and Richardson (2006)). The interplanetary shock ahead of the
CME is followed by a turbulent sheath region. Closed magnetic loop lines have counter-streaming particles and may have amagnetic cloud topology

of protons. These two regions were separated by the so- (Cummings et al. 1993). However, after the launch of the
called slot region which was a region that was normally ~ Van Allen Probes, new observations by the REPT (Rel-
bereft of energetic electrons. Other particle populations ativistic Electron Proton Telescope) (Baker et al. 2014a)
include transiently trapped solar particles and some- showed that a third belt or “storage ring” was formed soon
what more long-lasting trapped anomalous cosmic rays  after the passage of a CME effectively “splitting” the outer

Slow wind

Fig. 2 A conceptual schematic of a CIR (adapted from Owens and Forsyth (2013)). Forward (reverse) shock is shown as a dashed blue (red) line
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belt. Figure 3 reproduced from Baker et al. (2013) shows
the logarithm of relativistic differential electron fluxes
at 3 distinct energy ranges, viz., 3.2 to 4.0 MeV, 4.0 to
5.0 MeV, and 5.0 to 6.2 MeV in panels a, b, and c respec-
tively. The time period is from 1 September to 4 October
2012 with the ordinate showing the L* parameter (for a
detailed discussion of L*, Mcllwain L value, and radiation
belt coordinates, see Roederer and Lejosne (2018)) with
the fluxes are color coded according to the color bar at
right.

After about September 4, when the belts were enhanced,
the plasmapause was located at very high L* values (> 4.5)
which may have accounted for the stable existence of the
newly formed ring. It has been suggested that the electron
decay lifetimes which are due to interaction with plasma-
spheric hiss inside the plasmapause are long (Thorne et
al. 2018). Other competing theories have also been pro-
posed and include rapid storm-time outward ULF wave
transport (Mann et al. 2016) and lack of resonant scat-
tering of ultra-relativistic electrons by chorus and hiss
(Shprits et al. 2013).

Another hitherto unnoticed morphological feature of
the outer electron belt at relativistic and at ultra-
relativistic energies is that of the so-called impenetrable
barrier (Baker et al. 2014a). The observations of high-
energy electron fluxes by the REPT instrument onboard
Van Allen Probes showed that over prolonged periods of
many years. Figure 4 reproduced from Baker et al. (2014a)
shows in a format similar to Fig. 3 color-coded logarithm
of differential electron fluxes of energies ranging from
2.0 to 8.8 MeV (panels a through e) for a period ranging
from 1 September 2012 to 1 May 2014. It is seen that the
electrons do not “penetrate” to L shells lower than 2.8
across all energies for this entire period.
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This remarkable feature may be due to extremely slow
inward diffusion coupled with pitch angle scattering
removing those electrons that reach these low L values.
However, there has been some speculation that the “bar-
rier” could also potentially arise from particle scattering
by human produced waves by radio transmitters.

Thus, in the recent past, measurements have revealed
hitherto unobserved morphological features of the radi-
ation belt in the inner magnetosphere made possible by
new missions with state-of-the-art instrumentation

2.3 Inter-connectedness and cross scale/cross-energy
coupling

The influence of the plasmasphere on radiation belts
via wave-particle interactions is well known (see the
“Wave-particle interactions” section) and arises due to the
plasmasphere being home to plasmaspheric hiss, while
outside the plasmapause injection of low-energy elec-
trons and ions from the magnetotail and their anisotropy
results in EMIC and chorus waves (Li et al. 2019;
Magnetosphere-lonosphere Coupling in the Solar Sys-
tem, 2016; See Chapter 9 by Thorne. R., et al. 2016).
The plasma waves generated by the low-energy par-
ticles (so-called source populations; see Jaynes et al.
(2015)) transfer energy to intermediate energy parti-
cles (“seed” populations) energizing them. The waves
also pitch angle scatter electrons de-trapping them
and ultimately leading to particle loss. Thus, a cross-
scale coupling exists that connects the lowest energy
to the highest energy particle populations in the inner
magnetosphere, via the intermediary plasma waves.
Figure 5 reproduced from Miyoshi et al. (2018) shows
schematically the inter-connectedness and cross-energy
coupling.
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instrument on Van Allen Probes; reproduced from Baker et al. (2013)
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Fig. 3 Formation of the third belt or “storage ring” soon after the passage of a CME effectively “splitting” the outer belt observed by the REPT
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Fig. 4 The “impenetrable barrier” for relativistic electrons as observed by the REPT instrument on Van Allen Probes (reproduced from Baker et al.
(20144a)). At all energies, inward radially diffusing electrons do not penetrate below L ~ 2.8
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That the plasmasphere itself may be affected by solar
influences was demonstrated recently by observations
from Van Allen Probes of the cold plasma density and
electric field in the inner magnetosphere (Thaller et al.
2019). Using long-term observations from Van Allen
Probes, Thaller et al. (2019) demonstrated that the outer
plasmasphere and the plasmapause boundary were driven
by modulations in the solar wind. Furthermore, their
findings indicated that these modulations were stronger
during the declining phase of the solar cycle, possibly due
to the prevalence of CIRs, and were substantial in ampli-
tude. As mentioned earlier, the processes in plasmasphere
are intimately connected to the electron populations in
the outer radiation belts. Thus, these modulations of the
plasmasphere potentially could be important in under-
standing the driver dependence of outer radiation belt
dynamics

2.4 Inner magnetosphere observatories

The VarSITI era saw several major space missions that
were either directly dedicated to the study of the inner
magnetosphere, e.g., NASA’s Van Allen Probes (Mauk et
al. 2014; Sibeck et al. 2012) and JAXA’s Arase (Miyoshi et
al. 2018), or were able to contribute significantly to sci-
entific questions pertaining to the inner magnetosphere.
These include THEMIS (Angelopoulos 2008) and MMS
(Burch et al. 2016). The VarSITI era also witnessed the
maturation of the paradigm shifting technology of Cube-
Sats and associated inexpensive access to space.

In the following, we provide a very brief overview of
these major missions and illustrate the CubeSat approach
using as an example the CeREs mission (Kanekal et al.
2018).

The Van Allen Probes mission launched in 2012
comprises two identically instrumented spacecraft each
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Fig. 5 Diagram illustrating the interconnectedness and cross-scale coupling between particles, waves, and underlying physical processes
(reproduced from Miyoshi et al. (2018)). The energy and spatial scales are indicated on the ordinate and abscissa, respectively. The processes and

carrying a comprehensive suite of instruments measur-
ing plasma waves, magnetic fields, and energetic particles
(electrons, ions, and ion composition) over a wide energy
range. The goal of the mission was to “provide under-
standing, ideally to the point of predictability, of how
populations of relativistic electrons and penetrating ions
in space form or change in response to variable inputs of
energy from the Sun” The mission and its science goals
are fully described by Mauk et al. (2014).

The ERG project is a Japanese geospace exploration
project, which consists of three different research teams:
Arase (ERG) satellite, ground-based observations, and
modeling simulation. The main science target of the
project is understanding of transportation, acceleration,
and loss of energetic particles in radiation belts and
dynamics of geospace during space storms. As a key
observation of the ERG project, Arase was launched in
2016 and has started the regular observations since March
2017. Arase has nine science instruments to measure
plasma/particles and field and waves. The orbit of Arase
is similar to Van Allen Probes, but Arase measures higher
magnetic latitudes up to 40 degrees and higher L-shell up
to 10. Overview of the project and science goals are fully
described by Miyoshi et al. (2018).

The THEMIS mission was launched in 2007 and
comprises five identical spacecraft whose main science
goal was the study of substorms in the magnetotail.
Each spacecraft carries onboard particle instruments that

measure low-energy electrons and ions as well as electric
and magnetic fields. While the mission’s main focus is on
the magnetotail, since the spacecraft travers through the
radiation belts, the mission also contributes to the study
of the inner magnetosphere. The details of the mission
are described by Angelopoulos (2008). Since 2010, two
of THEMIS spacecraft orbit around the Moon while the
remaining three remain in Earth orbits.

2.4.1 The CubeSat/SmallSat paradigm

In the recent past, CubeSats, which comprise 10 cm cubes
called 1U, have moved from being a teaching and aca-
demic tool to becoming contenders for doing significant
science (National Academies of Sciences, Engineering,
and et al. 2016). In particular, low earth orbit (LEO) is well
suited for CubeSats, since currently due to their power
and volume limitations, data transmission rates are some-
what of an issue. However, innovative new instrumenta-
tion utilizing advances in detector technology, electronics,
and rad-hard processors have brought the capabilities
of instruments onboard major missions in the past to
these compact space platforms. For example, the MERIT
(Kanekal et al. 2019) instrument onboard the CeREs
(Kanekal et al. 2018) combines avalanche photodiodes
(APD) and solid-state detectors (SSD) to provide electron
measurements from a few keV up to ten MeV. Figure 6
shows the CeREs CubeSat with the MERIT instrument
at the top. The CubeSat, which was launched December
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Fig. 6 Photograph of the CeREs (Compact Radiation belt Explorer)
CubeSat. CeREs is a typical 3U CubeSat carrying a single instrument,
the MERIT (Minaturized Elecgron pRoton Telescope) as the science
payload

(2021) 8:35

2018, however soon lost contact with the ground station
only about a week into the mission. CubeSats remain a
risky proposition while affording the possibility of good
science at a low cost.

Another 3U CubeSat, the Colorado Student Space
Weather Experiment CubeSat, CSSWE has however been
successful and made some significant science contribu-
tions (Schiller et al. 2014), such as establishing that ener-
getic electrons from cosmic ray neutrons get trapped in
the radiation belts (Li et al. 2017). Other CubeSat missions
that are studying terrestrial radiation belts include ELFIN
(Shprits et al. 2017), AC6 (Blake and O’Brien 2016), and
FireBird (Spence et al. 2012). The latter two have stud-
ied electron microburst precipitation and have provided
information regarding microburst spatial extent (Blake

Page 7 of 22

and O’Brien 2016) and spectra (Crew et al. 2016). CubeSat
missions are being considered for interplanetary regions
as well, for example, the CUSP (Desai et al. 2019) CubeSat
expected to launch early 2020 will measure supra-thermal
and solar energetic protons. Figure 7 shows a synoptic
view measurements made by the FireBird (Crew et al.
2016) together with those made by the MagEIS (Blake
and et al. 2013) instrument onboard Van Allen Probes
illustrating the complementary nature of contributions to
radiation belt science by CubeSats and major missions.

One of the main advantages that CubeSats bring to the
study of inner magnetosphere is the capability to do multi-
point measurements. Detailed in situ measurements of
particles and waves in the inner magnetosphere have been
mostly confined to single point measurements or at most
missions comprising two spacecraft. Large major missions
are expensive and take many person-years of effort. Cube-
Sats, taking advantage of recent developments in both
inexpensive launch vehicle systems and instrumentation,
can fill this lacuna and provide valuable scientific insights
that arise from multi-point measurements, e.g., resolving
spatio-temporal ambiguities.

2.5 Electron dynamics in the outer belt

The Earth’s outer radiation belt comprising mostly of elec-
trons is a very dynamic region with electron intensities
varying by orders of magnitude in time scales ranging
from minutes to days (see, for example, Kanekal (2006);
Miyoshi et al. (2018)) which has been well established by
observations going back to the nineties (Baker et al. 1994).
Figure 8 shows the measurements of energetic electrons
spanning nearly a decade by SAMPEX and Polar space-
craft. The dynamic nature of the outer zone is evident
from the figure, which shows many electron enhance-
ments as well as loss over a nearly a solar cycle. Further-
more, the global coherent nature (Kanekal et al. 2001) of
electron energization is also well illustrated in Fig. 8. Note
that SAMPEX was in low Earth orbit while Polar was in
a high-inclination, high-altitude orbit during this period.
It has long been established that the causative agents for
electron energization are high solar wind speeds (Paulikas
and Blake 1979; Baker et al. 1989) and a persistent south-
ward component of the interplanetary magnetic field
(Blake et al. 1997). Electron losses are important as it
is currently known that the net flux of energetic elec-
trons is a “delicate balance” between energization and loss
processes. Figure 9 illustrates this by showing observa-
tions of three storms of similar geomagnetic intensities
wherein net energization, loss, and no change in pre- and
post-storm electron fluxes are seen.

In the following sections below, we discuss and review
the current understanding of electron energization and
loss processes in the context of focusing on recent results
during the SPECIMEN era.
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Fig. 7 Measurements of > 985 keV electrons by sensors onboard FireBird and differential flux by MagElS for the 893 keV channel (reproduced from
Crew et al. (2016). The top panel shows the Dst index, the middle panel FIREBIRD-integral counts, and the bottom panel MagEIS measurements

2.5.1 Electron energization processes and Lanzerotti 1974); similarly outward radial motion
Radial transport Electrons moving radially inward gain  tends to decrease particle energy and more importantly
energy due to the conservation of the first adiabatic invari-  to loss via escape through magnetopause. Radial diffu-
ant; this process is termed radial diffusion and has been  sion is caused by magnetic and electric field perturbations
established several decades ago (Falthammar 1965; Schulz ~ (Falthammar 1965), and more recent work has shown that
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enhanced ULF wave activity speeds up this process con-
siderably (Elkington et al. 1999; Shprits et al. 2008; Su and
et al. 2015). Jaynes et al. (2018) have used REPT observa-
tions of ultra-relativisitic electrons during the 17 March
2015 event to show that electrons are energized to as
high as & 8 MeV in energy on rather short time scales.
Figure 10 shows measurements of 6.3 MeV electron fluxes
by the REPT instrument for the month of March 2015.
The top panel of the figure shows a clear inward motion
on electrons, and Jaynes et al. (2018) calculate a diffusion
rate Dy; of about 0.3 dayf1 for these ultra-relativistic elec-
trons. Another study by Zhao et al. (2018) demonstrated
that inward radial diffusion was responsible for energiz-
ing electrons to ultra-relativistic energies, again using data
from the REPT instrument.

Another study by Ozeke et al. (2020) used ground-based
measurements of ULF waves to characterize the global
distribution of the ULF wave power and simulated radial

diffusion effects during March 2015 and March 2013 on
electron fluxes in the outer zone. They compared their
simulation results with observations made by the REPT
instrument onboard Van Allen Probes and concluded that
ULF wave-driven radial diffusion was an important mech-
anism for both energization and loss via magnetopause
shadowing (see Fig. 4 of Ozeke et al. (2020)).

It is clear from these and other studies that enhanced
radial diffusion plays an important role in radia-
tion belt dynamics while energization and pitch angle
scattering by wave particle are also an equally significant
mechanism.

Wave-particle interactions Wave-particle interactions
play an important role in energizing radiation belt
electrons. There are two different processes in the
wave-particle interactions: (1) drift resonance between
drifted electrons and MHD fast mode waves and (2)
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cyclotron resonance between gyrating electrons and
Whistler mode/magnetosonic mode waves. The first pro-
cess has been recognized as an adiabatic process due
to conservation of the first and second invariants, while
the second process has been recognized as non-adiabatic
process through violation of all invariants.

Since the late 1990s, theories have suggested that inter-
actions through cyclotron resonance causes accelerations
of relativistic electrons (Summers et al. 1998), and sev-
eral observational studies indicate that interactions with
Whistler mode chorus contribute to flux enhancement of
relativistic electrons. Measurements on the radial profile
of the phase space density are essential to discriminate
the processes (Green and Kivelson 2004). Several stud-
ies carried out prior to the Van Allen Probes mission
reported on the observation of a peak in the phase space
density inside the outer belt likely arising from internal
electron energization. However, detailed and comprehen-
sive observations by Van Allen Probes provided definitive
evidence for local electron energization as distinct from
energization due to radial transport (Reeves et al. 2013).

Reeves et al. (2013) showed growing peak of the
phase space density, which indicates that generation of
MeV electrons occur inside the outer belt. Thorne et
al. (2013) showed variations of the plasma wave data
and electron data from Van Allen Probes and compared
with the quasi-linear simulation. They concluded that
Whistler mode waves actually cause acceleration of MeV
electrons.

During the Van Allen Probes era, there are a number
of reports that whistler mode waves accelerate electrons
and growing peak of the phase space density inside the
outer belt (Reeves et al. 2013), and it has been established
that internal acceleration through resonance with whistler
mode waves should be a key process on the formation of
MeV electrons of the outer belt. The elementary process
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of accelerations has also been identified by both Van Allen
Probes and Arase (Fennell et al. 2014; Kurita et al. 2018).

Another important aspect of the wave-particle inter-
actions is understanding the non-linear wave-particle
interactions. Whistler mode chorus waves are generated
through non-linear interactions with electrons through
formation of the electron hole/hill in the phase space
(Omura et al. 2009). Evidence of non-linear interactions
has been reported by comparing theories (Foster et al.
2017; Kubota and Omura 2018).

Generation of chorus waves and acceleration of rela-
tivistic electrons are the result of an interplay among dif-
ferent plasma/particle populations via wave-particle inter-
actions. Cross-energy coupling process (Miyoshi et al.
2018) is a key concept to understand enhancement of the
outer belt electrons. Figure 11 (Jaynes et al. 2015) shows
a schematic diagram of how different plasma/particle
populations contribute to generate of plasma waves and
subsequent enhancement of outer belt electrons. These
processes occur associated with substorm activities. Sus-
tained substorm activities for a few days driven by the
small amplitude of southward IMF are essential to cause
the large flux enhancement through this process (Miyoshi
et al. 2013).

Rapid injection by IP shocks Interplanetary shocks can
inject energetic electrons into the magnetosphere very
rapidly on time scales of a few minutes, i.e., on electron
time drift time scales; the most dramatic such an event
was first observed by the CRRES spacecraft (Blake et al.
1992). The observations showed very high energy elec-
trons with energies > 13 MeV were injected deep into
the magnetospheric slot region (5 2 < L 5 3). Blake
et al. point out that the spectrum continues up to almost
50 MeV. The injected electrons were stably trapped in the

Enhancement of

> outer; belt
= relativistic electrons
S> Substorm Energy accelerated by strong
o¢ sl ; :
= injections to transfer from chorus wave interactions
—1 enhance source ST
B d g population to
gz JNc seo chorus waves s
populations =, >
Replenishment of source and seed electrons

Progression of events

Y

Fig. 11 Diagram illustrating the interplay and contribution of low-energy electrons (source) in generating plasma waves which act upon a seed
population to energize electrons to relativistic energies (reproduced from Jaynes et al. (2015))
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inner zone and lingered for many years as observed by the
SAMPEX spacecraft (Looper et al. 1994). The process of
injection is fairly well understood and has been modeled
(Lietal. 1993); (Hudson et al. 1997); Wygant et al. (Wygant
and et al. 1994)) and results from the electrons “surfing”
a magnetosonic pulse electric field while conserving their
first invariant.

During the VarSITI era, multiple IP shocks have resulted
in rapid injections of electrons energized during their
transport from outer regions of the magnetosphere (Fos-
ter et al. 2015; Kanekal and et al. 2016; Schiller et al. 2016).
The injected electrons often lead to enhanced bunches
electrons as they drift around (drift echos). Figure 12
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shows the radiation belt electron response to the IP shock
event of March 2015 (Kanekal and et al. 2016). The figure
shows pitch angle-resolved electrons of several energies
as measured by the REPT instrument. Rapid injection fol-
lowed by velocity dispersed drift echos are seen, with the
arrival of the shock indicated by a vertical black line. Elec-
tron enhancements are seen to occur within about 5 min
of the shock arrival. Due largely to the paucity of mea-
surements, studies relating various shock properties to
characteristics of electron injections have not been well
established. For example, the March 2015 shock event
showed a more harder spectrum (as compared to electron
spectrum just prior to injection) than the September 2017
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event which was a much stronger shock (Kanekal 2020).
A study by Schiller et al. (2016) studied the relationship
between shock characteristics and the highest energy of
the injected electrons and found that shock mach num-
ber correlated best and suggest that shock strength plays
an important role. The studies mentioned in the previous
paragraph have established underlying physical processes
that result in these injections; however, we emphasize no
conclusive relationship between IP shock parameters and
electron properties such as spectral hardness has been
established.

The space weather implications of rapid energization
due to IP shocks are significant, since, as the March 1991
event demonstrated, very high-energy electrons can be
injected deep unto the magnetosphere and persist for
several years. Persistent high fluxes of electrons pose a
critical threat to spacecraft.

Solar driver dependence Relativistic electrons of the
outer belt show different responses associated with the
solar wind disturbances. As mentioned previously, large-
scale solar wind structures such as CMEs and CIRs cause
geomagnetic storms, and the outer belt electron flux and
spatial distributions also change during the period. For
geomagnetic storms, intense southward IMF is essential
to cause severe magnetic storm through the enhancement
of the cross-polar cap potential. On the other hand, mag-
netic storms do not always cause large flux enhancement
of the outer belt electrons (Reeves et al. 2013). Several
studies showed some cases of strong outer belt relativistic
electron enhancements during non-storm times (Schiller
et al. 2014), and these studies pointed out increasing of
chorus wave power during the flux enhancement event.
It has been indicated that the high-speed coronal hole
stream following CIR is more effective for the large flux
enhancement at GEO rather than CME-driven storms and
the southward IMF embedd in the high-speed coronal
hole stream is important for the large flux enhancement
(Miyoshi and Kataoka (2005), (2008); Kilpua et al. 2015).
Li et al. (2011) has shown that the solar wind speed is not
a necessary condition for the flux enhancements at GEO.
These studies indicate the importance of the southward
IMF besides the solar wind speed that has been consid-
ered as a primary parameter for the outer belt electrons,
and prolonged substorm activities are essential to cause
the flux enhancement.

From the analysis of 200 stream interface events in
solar cycle 23, Miyoshi et al. (2013) have shown that the
southward IMF in the high-speed stream that is controlled
by the Russell-McPherron effect (Russell and McPher-
ron 1973) affects key parameters of electron accelera-
tion by chorus waves. These parameters include source
electron population, thermal plasma density, and chorus
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wave activity itself. They showed that prolonged sub-
storm activity is essential for the large flux enhancement.
Their model as depicted in Fig. 13 (Miyoshi et al. 2013)
shows how solar wind speed and the prolonged south-
ward IMF control relativistic electron flux enhancement
through wave-particle interactions. More recently, Zhao
et al. (2017) showed increase of electron PSD associated
with solar wind/geomagnetic parameters as well as the
important role played by substorms.

It is generally accepted that CMEs predominantly occur
during the ascending phase and CIRS during the descend-
ing phase of the solar cycle; however, that is not always the
case. Kanekal et al. (2015) studied an interesting period
during November 2013 when the radiation belts were
driven concurrently by weak CMEs during an ongoing
HSS event. They used Van Allen Probes measurements
of electron intensities to calculate phase space densities
(PSD) and found that the lower-energy electrons were
accelerated by radial diffusion while the higher-energy
electrons were energized by wave-particle interactions.
Figure 14 shows the radial profile of PSD obtained using
MagEIS and REPT measurements onboard Van Allen
Probe A (similar results were found for Probe B). The pro-
files for two values of K, the second adiabatic invariant and
for multiple values of the first, i.e., u show that at lower
values of the latter, the profiles are monotonic whereas at
higher values exhibit a peak.

Another recent study by Pandya et al. (2019) compared
radiation belt responses to 28(27) CME(CIR) events. They
examined the dependence of electron flux variability upon
interplanetary parameters such as solar wind speed, IMF
Bz. Their findings emphasize the different nature of elec-
tron responses to these two types of solar drivers. The
distinct response of the radiation belts to solar drivers has
also been demonstrated by Baker and et al. (2014c) who
studied an event during March 2013 when a high-speed
stream was followed by a coronal mass ejection. They
showed that this resulted in energization due to prolonged
gradual radial diffusion which was followed by a much
more rapid enhancement. More recently, Baker et al
(2019) used relativistic electron measurements spanning
6 years from the REPT instrument onboard Van Allen
Probes. Their long-term study confirmed the important
role played by solar wind speed in energizing electrons,
specifically a threshold speed of 500 km/s being required
to enhance relativistic electron intensities. Long periods
when the solar wind speed did not exceed the thresh-
old showed no detectable high-energy electrons. As the
authors point, this fact, despite being known for decades
(see, for example, Baker et al. 1979; Paulikas and Blake
1979), still remains unexplained as to the physical pro-
cesses leading to the existence of such a threshold value.

From these studies, prolonged southward IMF, high-
speed solar wind, and low solar wind dynamic pressure
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have been recognized as the main contributions to cause
the large flux enhancement. These situations are read-
ily found in trailing edge of the stream interface with
the toward/away sector polarities in spring/fall through
Russell-McPherron effect. During the period, intense cho-
rus waves are observed (Miyoshi et al. 2013; Li et al. 2014).
It is important to note that prolonged substorm activities
with/without magnetic storms are essential to cause the
large flux enhancements. This is an important paradigm
to indicate the need for more accurate space weather
forecasting models.

2.5.2 Electron loss processes

Magnetopause shadowing An important mechanism of
loss of electrons from the radiation belts is the so-called
magnetopause shadowing, where drifting electrons are
on trajectories that encounter the magnetopause, and
as a consequence, they escape the magnetosphere into
interplanetary space. During disturbed times, as for exam-
ple when a CME compresses the magnetosphere, the
magnetopause moves inward and electrons which were
on closed drift shells now encounter the magnetopause

and escape. Studies suggest electron loss occurs associated
with enhancements of the solar wind dynamic pressure,
suggesting that the magnetopause shadowing leads to
electron loss (Turner and Ukhorskiy 2020).

If the phase space density of electrons in the outer part
of the outer belt decreases, negative spatial gradient of the
phase space density is expected, and subsequent outward
radial diffusion takes place (Miyoshi et al. 2003; Shprits et
al. 2006), which contributes to electron loss of the whole
outer belt. Simulations using the Fokker-Planck equation
have assumed that electron phase space density decreases
if the last-closed drift L-shell is larger than the dayside
magnetopause.

On the other hand, actual trajectories of electrons in
the dayside magnetopause are complicated, and drift-shell
bifurcation causes the pitch angle scattering. Several test
particle simulations have investigated these electron tra-
jectories in detail (Kim et al. 2008, 2010, Saito et al.
2010). As mentioned by Kim and Lee (2014) and Mauk
et al. (2016), it is difficult for electrons to cross the field
line of the dayside magnetopause because gyro-radius of
electrons are too small, and further detailed analysis 1b
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considering actual structure of the dayside magnetopause
is necessary.

Particle precipitation Pitch angle scattering is another
important process to cause loss of relativistic electrons
from the outer belt. Whistler mode waves and EMIC
waves are important for the pitch angle scattering of rel-
ativistic electrons (Millan and Thorne 2007). From late of
the 2000s, observational evidence has shown that EMIC
waves actually cause the pitch angle scattering of MeV
electrons (Miyoshi et al. 2008; Rodger et al. 2015; Usanova
et al. 2014), which has been theoretically predicted in 1971
(Thorne and Kennel 1971). Since EMIC waves are gener-
ated by a temperature anisotropy of hot ions, ring current
ions affect MeV electrons through wave-particle interac-
tions. Several studies (Kubota and Omura 2017) indicated
that rapid precipitations are possible through non-linear
interactions between EMIC waves and MeV electrons.
Whistler mode waves also contribute to the loss of
electrons. Hiss waves cause the pitch angle scattering of
MeV electrons, and the flux of MeV electrons gradually
decreases. Interactions with hiss waves are a primary loss
process of MeV electrons in the slot region. Recent stud-
ies (Zhao et al. 2019) showed that interactions with hiss
waves produce reversed energy spectra in the slot region.
Chorus waves also cause precipitation of electrons. The
Arase observations identified for the first time that flux
enhancements of tens keV electrons inside loss cone cor-
respond to enhancement of chorus waves (Kasahara et
al. 2018), which is definite evidence that pitch angle
scattering and subsequent precipitation by wave-particle
interactions actually occur. Figure 15 reproduced from
Kasahara et al. (2018) illustrates schematically the interac-
tion between chorus waves at the equator and bouncing
electrons which are pitch angle scattered ultimately into
the loss cone and precipitate. Figure 16 also reproduced
from Kasahara et al. (2018) shows ERG/Arase measure-
ments illustrating the simultaneous enhancement of wave
power (top panel) and increased intensities of nearly field-
aligned electrons clearly indicating the causal connection
between the waves and precipitation of these electrons. If
chorus waves propagate to higher latitudes, chorus waves
can resonate with high-energy electrons and cause the
pitch angle scattering of sub-relativistic/relativistic elec-
trons (Miyoshi et al. 2015; Miyoshi et al. 2020), which
may contribute tothe loss of MeV electrons. One of the
significant phenomena about particle precipitation is the
microbursts of relativistic electrons. Combined obser-
vations by balloon, FIREBIRD-II, AC-6 Cubesat identi-
fied the spatial and temporal evolution of a microburst
region (Anderson et al. 2017). The relationship between
microbursts and chorus waves as observed by FIREBIRD-
II and Van Allen Probes (Breneman et al. 2017) indicates
that microbursts of MeV electrons result from non-linear
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wave-particle interactions between electrons and chorus
waves (Horne and Thorne 2003; Saito et al. 2012; Wang
and Shprits; Miyoshi et al. 2020).

While it has been confirmed that both Whistler mode
waves and EMIC waves cause significant precipitation of
energetic electrons from the outer belt, quantitative esti-
mation to discriminate dominant loss process of the outer
belt has still been open problem.

2.6 Ground-based observations and conjunction studies
During solar cycle 24, multi-spacecraft have observed
Geospace, which enable us to realize multi-point coor-
dinated observations. Many conjunction studies among
Van Allen Probes, Arase, THEMIS, MMS, and other satel-
lites are achieved. One of the coordinated observations
from multi-spacecraft is the radial profile of the phase
space density. Boyd et al. (2018) investigated the phase
space density profile up to L = 7.5 using both Van Allen
Probes and THEMIS satellite, and they showed the peak
of PSD beyond apogee altitude of Van Allen Probes.
Multi-spacecraft observations could discriminate spatial-
temporal variations of particle and field/waves. For exam-
ple, Kurita et al. (2018) showed loss of MeV electron flux
on timescales 30 min using both Van Allen Probes and
Arase satellites and argued that EMIC waves cause the
pitch angle scattering. Teramoto et al. (2019) identified
modulations of MeV electrons by the MHD-fast mode
waves occurring over the limited azimuthal longitudes
using Van Allen Probes and Arase satellite.

Another great advantage for the inner magnetosphere
research is the development of ground-based network
observations. Several multi-point network observations
have been developed, SuperDARN radars, magnetome-
ters, optical imagers, riometers, and VLF/LF radio wave
receivers. There have been many opportunities for con-
jugate observations between satellites and ground-based
observations, which identified latitudinal/local time dis-
tributions.

2.7 Open questions and future directions
During the VarSITI era, new discoveries (e.g., multiple
belt structure) and new observations (e.g., direct obser-
vations of wave-particle interactions) advanced the cur-
rent understanding of the dynamics of the inner mag-
netosphere, in particular, that of energization and loss
of radiation belt electrons. This was made possible by
improved instrumentation and dedicated missions such as
Arase, Van Allen Probes, MMS, and THEMIS. For exam-
ple, Arase and van Allen Probes carried comprehensive
instrument suites that characterized electric and magnetic
fields, plasma waves, and energetic particles.
Nevertheless, many open questions remain, and indeed,
some of the recent discoveries may have opened up new
frontiers. For example, while the role of wave-particle
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magnetospheric conditions that result in the most intense
injections? An event similar to the March 1991 (Blake et
al. 1992) could pose a serious hazard for spacecraft and
space weather consequences such as induced currents in
power grids. Quantitative understanding of the origin of
the highest energy electrons also remains an important
open question, despite some recent progress (Zhao et al.

interactions in energization and loss has long been recog-
nized (for a review see for example Thorne (2010)), the
importance of non-linear wave-wave and wave-particle
interactions remains an open question. Recent theoreti-
cal and modeling (e.g., see Omura et al. 2015) suggest that
they play a crucial role. Another important open question
is in regard to electron loss from the radiation belts, viz.,
the relative importance of magnetopause shadowing and
wave-particle precipitation (Turner et al. 2012). Of critical
importance is the role of energetic particle precipitation in
affecting the chemistry of the upper atmosphere (Turunen
et al. 2016), an important open question that needs to
be answered regarding climate change. The discovery of
the so-called impenetrable barrier (Baker et al. 2014a)
raises the question of its possible anthropic origin via
ground-based VLF transmitters. Another open question
is regarding the immediate injections resulting from IP
shocks, i.e., what are the IP shock properties and internal

2019).
The need for multi-point measurements in advancing

our quantitative understanding of the inner magneto-
spheric dynamics has long been recognized. This is a
key direction in future scientific endeavors. The advent
of CubeSats has made this a real and tangible goal
Innovations in space instrumentation and low-cost access
to space have further spurred interest in the community,
and proposed missions include constellations of Cube-
Sats to study radiation belts, ring current, and plasma
waves that drive particle dynamics (Kanekal et al. 2018,
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2019; Li et al. 2013). These CubeSat missions also play a
complementary role to major “flag ship” type missions as
the latter often have capabilities that are comprehensive
(Fox and Burch; Miyoshi et al. 2018). Increasing soci-
etal reliance upon space-based assets for communication,
Earth observation, and global climate issues are also driv-
ing the need for future mission to comprehensively under-
stand the near-Earth environment. Flagship type missions
that address the Sun-Earth, inner heliosphere as an inte-
grated system are another important future trend that is
being recognized as necessary to understand not only the
system-as-a-whole but also the constituent parts such as
the radiation belts and ring current.

3 Conclusions

During the varSITI era, much progress has been made
in understanding the dynamics of the inner mag-
netosphere, and this review has focused particularly
on the dynamics of the outer zone electrons. Major
missions such as Arase, THEMIS, Van Allen Probes,
and CubeSats and high-altitude balloons have contributed
to the progress. New discoveries, such a multi-belt
morphology, existence of a putative prevention of
continued inward motion of energetic electrons (so-called

impenetrable barrier mentioned earlier), and direct obser-
vation of wave-particle interactions, are some of the sig-
nificant observational findings during the VarSITI era.
In addition, our understanding of the underlying physi-
cal processes of electron energization and loss has also
advanced considerably, e.g., in delineation of the impor-
tance of source, seed populations that lead to energiza-
tion. Other areas of advances in understanding electron
energization include the complementary role played by
wave-particle and radial diffusion in producing ultra-
relativistic electrons. Conjunctions between spacecraft
and ground-based observations have been used to under-
stand particle precipitation and the role of various plasma
waves in general in regard to electron energization as
well as loss. Contribution to space weather aspects, such
as detailed observations of rapid injection of multi-MeV
electrons by interplanetary shocks, has re-emphasized
the need for continuous monitoring of radiation in
geospace.

Yet, despite the impressive achievements during the
VarSITI era, not unexpectedly, the new findings and
advancements have opened up new vistas with many
new scientific questions. This era has also seen the
coming-of-age of CubeSats and advances in the
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miniaturization of space instrumentation, which have
for the first time made multi-point in situ measure-
ments possible. We believe that the future is bright
for further progress in our understanding of the inner
magnetosphere, especially in the light of techno-
logical innovations regarding space platforms such
as CubeSats, low-cost launches and sophisticated
instrumentation.
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