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Abstract

Ensembles of climate change projections created by general circulation models (GCMs) with high resolution are
increasingly needed to develop adaptation strategies for regional climate change. The Meteorological Research
Institute atmospheric GCM version 3.2 (MRI-AGCM3.2), which is listed in the Coupled Model Intercomparison Project
phase 5 (CMIP5), has been typically run with resolutions of 60 km and 20 km. Ensembles of MRI-AGCM3.2 consist of
members with multiple cumulus convection schemes and different patterns of future sea surface temperature, and
are utilized together with their downscaled data; however, the limited size of the high-resolution ensemble may
lead to undesirable biases and uncertainty in future climate projections that will limit its appropriateness and
effectiveness for studies on climate change and impact assessments. In this study, to develop a comprehensive
understanding of the regional precipitation simulated with MRI-FAGCM3.2, we investigate how well MRI-FAGCM3.2
simulates the present-day regional precipitation around the globe and compare the uncertainty in future
precipitation changes and the change projection itself between MRI-AGCM3.2 and the CMIP5 multiple atmosphere—
ocean coupled GCM (AOGCM) ensemble. MRI-AGCM3.2 reduces the bias of the regional mean precipitation
obtained with the high-performing CMIP5 models, with a reduction of approximately 20% in the bias over the
Tibetan Plateau through East Asia and Australia. When 26 global land regions are considered, MRI-AGCM3.2
simulates the spatial pattern and the regional mean realistically in more regions than the individual CMIP5 models.
As for the future projections, in 20 of the 26 regions, the sign of annual precipitation change is identical between
the 50th percentiles of the MRI-FAGCM3.2 ensemble and the CMIP5 multi-model ensemble. In the other six regions
around the tropical South Pacific, the differences in modeling with and without atmosphere-ocean coupling may
affect the projections. The uncertainty in future changes in annual precipitation from MRI-AGCM3.2 partially
overlaps the maximum-minimum uncertainty range from the full ensemble of the CMIP5 models in all regions.
Moreover, on average over individual regions, the projections from MRI-FAGCM3.2 spread over roughly 0.8 of the
uncertainty range from the high-performing CMIP5 models compared to 04 of the range of the full ensemble.
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1 Introduction

To establish mitigation and adaptation strategies for
future climate change, studies on climate change and as-
sessment of its impacts have been conducted worldwide.
These recent studies have frequently used future climate
projections simulated by multiple general circulation
models (GCMs) in the framework of the Coupled Model
Intercomparison Project (CMIP); e.g., the CMIP phase 5
(CMIP5; Taylor et al. 2012). While the projections from
GCMs and these study results are provided with 100-km
or coarser resolution, strategies must be developed for
regional and local scales. Thus, there is a scale mismatch
between these studies and stakeholders.

Dynamical and statistical downscaling techniques may
be used to overcome the mismatch, yet confidence in
the resulting scenarios is not always increased by the
downscaling (Wilby and Dessai 2010; Hall 2014;
Shepherd 2014). The downscaled climate information at
a regional scale can include regional processes and the
effects of complex terrain that GCMs cannot resolve.
However, bias in the large-scale circulation simulated by
GCMs leads to bias in the downscaled atmosphere from
the GCM output (Hall 2014). Moreover, regional climate
models (RCMs) cannot represent phenomena with large
temporal or spatial scales beyond their boundaries nor
phenomena that are not well-represented in GCMs, such
as tropical cyclones. The spatial patterns of the regional
precipitation climatology from downscaling experiments
strongly depend on the pattern from GCMs (Separovié
et al. 2013) as do the regional future changes (Inatsu
et al. 2015; Karmalkar 2018). Therefore, GCMs with
sufficiently high horizontal resolution are required to
simulate the climate realistically from global to regional
scales. The added value obtained by using enhanced-
resolution GCMs for various climate variabilities (e.g.,
in reproducing large-scale circulation features like the
El Nifio—Southern Oscillation) has been reviewed by
Haarsma et al. (2016).

The Meteorological Research Institute (MRI) of the
Japan Meteorological Agency has been developing such
a high-resolution GCM for more than 10 years (Mizuta
et al. 2006). At present, the atmospheric GCM version
3.2 (MRI-AGCM3.2; Mizuta et al. 2012) is generally run
with horizontal resolutions of 60 km and 20 km and has
successfully simulated the global distribution of tropical
cyclones (Yoshida et al. 2017) and regional characteris-
tics such as the seasonal march of the East Asian mon-
soon (Kusunoki 2018). MRI-AGCM3.2 has been widely
recognized as one of the GCMs participating in CMIP5
(IPCC 2013). In addition, the climate dataset generated
by MRI-AGCM3.2 has been utilized in various inter-
national programs, for instance the Coordinated Regional
Downscaling Experiment (CORDEX; https://www.cordex.
org, Gutowski Jr. et al. 2016) in the World Climate
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Research Program, and the CMIP6 project, the High
Resolution Model Intercomparison Project (HighResMIP;
Haarsma et al. 2016). In Japan, domestic impact assess-
ments and adaptation measures are often based on the
climate simulations by MRI-AGCM3 2.

Climate simulations by MRI-AGCM3.2 have been
designed to reproduce well regional-scale climatology
and extreme events with reasonable quality and then to
investigate their future changes (Kitoh et al. 2016).
Present-day climate simulations have been performed
using an observed sea surface temperature (SST) dataset
while future climate simulations have used various fu-
ture change patterns of SST and sea ice estimated from
the CMIP simulations. In general, prescription of ob-
served SST in AGCM simulations can reduce SST bias
and the consequent systematic bias in the present-day
climate simulations relative to coupled atmosphere—
ocean GCMs (AOGCMs). The feedback by the atmos-
phere—ocean coupling process, however, is not simulated
in an AGCM, which can lead to distorted precipitation
fields in some regions (He and Soden 2016; Kitoh et al.
2016). As well as the ensemble with different SST
changes, an ensemble with different cumulus convection
schemes has been created with the 60-km resolution
MRI-AGCM3.2 (MRI-AGCM3.2H) because the computa-
tional resources required are relatively small compared to
the 20-km resolution MRI-AGCM3.2 (MRI-AGCM3.2S).
Thus, the ensembles with MRI-AGCM3.2 can be used to
assess future projections and their uncertainty arising
from the differences in SST changes and model physics.

In addition to its good reproduction of tropical cyclones,
the performance of MRI-AGCM has been investigated for
climatology and extreme events on various spatial scales
(e.g., Mizuta et al. 2012). Focusing on the assessment of
simulated precipitation and its future change, Kusunoki
(2017) indicated that MRI-AGCM3.2H performs well in
simulating global precipitation, comparably to or better
than atmospheric-MIP (AMIP) models in the CMIP5
archive. Kitoh and Endo (2016) and Mizuta et al. (2017)
assessed global precipitation, including extreme weather
events, using MRI-AGCM3.2S and MRI-AGCM3.2H,
respectively. The high resolution of MRI-AGCM3.2 has
allowed realistic simulations of regional precipitation (e.g.,
Endo et al. 2012, 2017; Kusunoki and Mizuta 2013; Ose
2017, 2019; Surendran et al. 2019). For instance, Endo
et al. (2012) reported that MRI-AGCM3.2 at both resolu-
tions realistically simulates the present-day precipitation
over several areas in Asia, and discussed the contributions
of SST changes and model physics to the uncertainty in
future changes of regional precipitation using MRI-
AGCM3.2H. Okada et al. (2017) and Kusunoki (2018)
evaluated the modeled seasonal march of the rain band
that appears in the East Asian monsoon season. In
addition, Okada et al. (2017) showed that the difference in


https://www.cordex.org
https://www.cordex.org

Ito et al. Progress in Earth and Planetary Science (2020) 7:77

the future SST patterns in the tropics affects the pre-
cipitation change over Japan using MRI-AGCM3.2S
projections.

While the ability of MRI-AGCM to accurately represent
precipitation climatology over the globe and specific re-
gions has been demonstrated, a comprehensive understand-
ing of its ability and the projections of future precipitation
change in regions around the globe has yet to be estab-
lished. Moreover, there has been insufficient discussion of
the global and regional properties of the uncertainty in
future projections with the MRI-AGCM3.2 ensemble. For
impact assessments of climate change, information about
the most severe situations is very useful. The MRI-
AGCM3.2 ensemble has a limited size of about 10 mem-
bers due to its high horizontal resolution. The limitations
of a small ensemble and also a single model may lead to an
undesirably biased future projection with undesirably small
uncertainty. The CMIP provides an ensemble of opportun-
ity, although it is not completely clear that it provides the
full uncertainty in climate projections (Knutti 2010). Thus,
a comparison with the uncertainty from the CMIP ensem-
ble is helpful to examine the limitations of the MRI-
AGCM32 ensemble and, furthermore, gives information
about whether a single AGCM can cover the uncertainty
from the CMIP ensemble.

In this study, we use a comparison with the CMIP5
ensemble to comprehensively evaluate the regional pre-
cipitation climatology over the globe simulated by MRI-
AGCM3.2. The precipitation climatology is the output
most frequently analyzed in impact studies. To investigate
the extent to which the MRI-AGCM3.2 projections are
adequate for discussing regional precipitation changes, as
well as projections of severe situation, our evaluation is
conducted with respect to two points: how well does the
simulated present-day precipitation represent the observa-
tions over individual regions, and to what degree does the
MRI-AGCM3.2 ensemble capture the uncertainty in the
future changes of regional precipitation projected with the
CMIP5 multi-model ensemble (MME). Our principal pur-
pose is to identify the characteristics of future changes
and their uncertainty at a regional scale. Thus, we analyze
the CMIP5 AOGCM ensemble throughout our analysis,
instead of AMIP-type model simulations that are identical
with the MRI-AGCM3.2 simulations. Evaluations of the
present-day precipitation are conducted to identify model
performance in representing the observations. Then,
based on this performance, we create various subsets of
the CMIP5 models and compare the future projections
with them. In addition, comparisons between MRI-
AGCM3.2 and the CMIP5 AOGCMs can provide infor-
mation on the advantage of forcing by observed SST for
simulations at regional scale. Comparisons of the present-
day precipitation between MRI-AGCM3.2 and AMIP
models are given in the Supplementary Material.
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2 Methodology

2.1 Climatological dataset from MRI-AGCM3.2

The climatological dataset used in this study is simulated
using two horizontal resolutions of MRI-AGCM3.2 as
described above. MRI-AGCM3.2H has a horizontal reso-
lution of TL319 (triangular truncation at 319 waves; ~ 60
km) and 64 vertical layers with the top at 0.01 hPa, and
MRI-AGCM3.2S has a resolution of TL959 (~20 km)
with the same vertical structure as MRI-AGCM3.2H.
Three different cumulus convection parameterization
schemes are implemented in MRI-AGCMS3.2H: the
Kain—Fritsch (KF) scheme (Kain and Fritsch 1990),
the Arakawa—Schubert (AS) scheme (Randall and Pan
1993), and the Yoshimura (YS) scheme (Yoshimura
et al. 2015). MRI-AGCM3.2S was only run using the
YS scheme.

Present-day climate simulations are performed using
the UK Met Office Hadley Centre’s sea ice and SST
dataset (HadISST1.1; Rayner et al. 2003) for historical
SST and sea ice concentration observations. Future
climate simulations are based on the representative
concentration pathway (RCP) 8.5 scenario. Using spatial
patterns of changes in SST and sea ice under the RCP8.5
scenario from the CMIP5 models, cluster analysis of the
patterns produced three clusters of models. The SST
change patterns (C1-C3) corresponding to these three
clusters and their mean (C0) were estimated. Details of
the analysis and the method of creating the four patterns
are described in Mizuta et al. (2014). The four spatial
patterns were applied to the future climate simulations
with both resolutions of MRI-AGCM3.2. In sum, there
are three (one) ensemble members for the present-day
climate simulation from MRI-AGCM3.2H (MRI-
AGCM3.2S) and 12 (4) members for the future climate
simulation. The spatial pattern of standard deviation of
the four SST changes from CO to C3 is shown in Fig. 1.
Similar patterns were obtained for the annual mean and
two seasonal means, June—August (JJA) and December—
February (DJF). There were large deviations in high-
latitude regions as well as in the northwest regions of
the Pacific and the Atlantic.

We computed annual mean precipitation Py, boreal
summer (JJA) mean precipitation Py, and boreal winter
(DJF) mean precipitation Ppjr from monthly data over 20
years (1984-2003) for the present-day climate and 20
years of the late twenty-first century (2080-2099) for the
RCP8.5 future climate scenario. In order to scale the fu-
ture change of precipitation, annual mean surface air
temperature (hereafter referred to as temperature) was
also estimated. The ensemble members used are summa-
rized in Table 1. The MRI-AGCM3.2H ensemble mem-
bers for present-day and future climate are labeled HP
and HEF, respectively, and the MRI-AGCM3.2S members
SP and SF. The scheme used by each member is specified
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Fig. 1 Spatial pattern of standard deviation of four different SST change (K): three clusters and their mean. a Annual, b JJA, and ¢ DJF

by adding the scheme name; for example, HPYS for the follows the definition in the IPCC Special Report on
present-day simulation by HP with the YS scheme. Managing the Risks of Extreme Events and Disasters to

Regional characteristics were identified in each of 26 ~ Advance Climate Change Adaptation (IPCC SREX; IPCC
global land regions. The classification of the regions 2012) and is illustrated here in Fig. 2. As in IPCC (2012),
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Table 1 MRI-AGCM ensemble members
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Member name® Model Horlzot}tal Cumulus convection
resolution scheme
Present-d RCP8.5 scenario
esent-cay (ASST patternsb)
HPYS HFYS (C0-C3) MRI-AGCM3.2H 60 km Yoshimura (YS)
HPaiL4 HPAS  HFarL HFAS (C0-C3) MRI-AGCM3.2H 60 km Arakawa—Schubert (AS)
HPKF HFKF (C0-C3) MRI-AGCM3.2H 60 km Kain—Fritsch (KF)
SPYS SFYS (C0-C3) MRI-AGCM3.2S 20 km Yoshimura (YS)

* First and second characters denote the model resolution (H: 60 km; S: 20 km) and the climate period (P: present-
day; F: future), respectively. Third and fourth characters denote the scheme used. HParr and HF a1 are general

term of the multi-members.

® These are ensembles with four different patterns of SST change, CO—C3.

we mainly analyze precipitation over land because of the
importance for impact studies. To confirm the funda-
mental simulation ability as a GCM, global precipitation
is also evaluated. The assessment of the geographical
distribution of precipitation is performed using the skill
scores proposed by Taylor (2001). The score S is defined
as

B 4(1+R)
(0+0 1) (1+Ro)’

where R is the spatial correlation coefficient between
reference observation and simulation and o is the stand-
ard deviation of the simulation spatially normalized by

the observation. The maximum correlation attainable
Ry is assumed to be 1 following Kusunoki (2017). We
evaluated the simulations of the present-day precipita-
tion averaged over 20 years on each native grid spa-
cing of MRI-AGCM3.2H/S and also the simulations
with MRI-AGCM3.2S interpolated onto the spacing of
MRI-AGCM3.2H. Future change was estimated on
the native grid spacing of each model without the
spatial interpolation.

2.2 CMIP5 multi-model ensemble

The comparisons with the CMIP5 models used the out-
comes simulated by 50 AOGCMs for the present-day
climate (CMIP5p,esent an) and by 42 AOGCMs for the
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Fig. 2 Definition of the 26 global land regions specified in IPCC SREX (IPCC 2012)
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RCP8.5 future climate (CMIP5rcpgs an) (Taylor et al
2012). One ensemble member run for each model was
used. Annual and seasonal mean precipitation over the
same period as the MRI-AGCM3.2 dataset were com-
puted from monthly mean data with the original hori-
zontal resolution of each model. We then interpolated
the 20-year averaged values onto the MRI-AGCM3.2H
grid. The annual mean temperature used as the scaling
of future precipitation change was also interpolated onto
the MRI-AGCM3.2H grid for the 20-year averaged
values. The models are listed in the Supplementary
(Table S1).

In addition to the full ensemble of all model members,
the following subsets of high performance models were
produced: the subsets with high Taylor’s skill scores for
global precipitation (CMIPghighs) and for regional land
precipitation (CMIPgpigns), and the subsets with small
mean absolute error (MAE) for global precipitation
(CMIPGgmane)- Each of the subsets has 12 members and
is the same size as the set of HF members and the mem-
bers of these subsets are included in both CMIP5p,ecen.
¢ an and CMIP5gcpgs an. Hence, we investigated the
characteristics of the future projections with HF, relative
to the projections with not only the CMIP5 full set but
also the subsets with high performance.

2.3 Observational products for validation
Simulations of present-day precipitation were validated
against multiple precipitation products because of the
discrepancies in precipitation estimates among observa-
tional products reported by Sun et al. (2018). We used
the following observational datasets. The products based
on global gauge observations, which are provided over
land with a grid spacing of 0.5°, are the Global Precipita-
tion Climatology Centre (GPCC) full data reanalysis
v.7.0 (Schneider et al. 2016), the global unified gauge-
based analysis by the NOAA Climate Prediction Center
(CPC) v.1.0 (Xie et al. 2010), the Climatic Research Unit
Timeseries (CRU TS) v.4.03 (Harris et al. 2014), and
NOAA’s precipitation reconstruction over Land
(PRECL) v.1.0 (Chen et al. 2002). Products that are esti-
mated mainly from satellite data are the CPC Merged
Analysis of Precipitation (CMAP; Xie and Arkin 1997),
the Global Precipitation Climatology Project 1 degree
daily (GPCP-1DD) v.1.2 (Huffman et al. 2001) and the
Multi-Source Weighted-Ensemble Precipitation (MSWEP)
v2.1 (Beck et al. 2019). The CMAP, GPCP-1DD, and
MSWEP products are available over the full global surface
with horizontal resolutions of 2.5°, 1.0°, and 0.1°, respect-
ively. All products cover the global land area for the period
of interest (1984-2003, 20 vyears), except GPCP-1DD
(1997-2014, 18 years).

The MSWEP product is provided at high resolution and
covers the whole of our target period and thus was
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adopted as the reference dataset for the validation.
MSWEP has precipitation estimates generally lying toward
the mean of those from other datasets (Fig. 6 in Sun et al.
2018). The observations were interpolated onto the MRI-
AGCM3.2H grid. When evaluating Taylor’s score and the
model bias in the present-day precipitation by SP without
spatial interpolation, the MSWEP precipitation was inter-
polated onto the MRI-AGCM3.2S grid.

3 Results

3.1 Evaluation of the performance of the present-day
simulations

3.1.1 Global distribution of the simulations of present-day
precipitation

Figure 3 shows the global distribution of present-day
P ann derived from observations and the bias in the model
simulation. Compared with the mean of CMIP5p,esent an
with a maximum bias of more than 1% (Fig. 3f), MRI-
AGCM3.2 simulates Panp with a bias of less than 0.5%
over most areas from the Tibetan Plateau through East
Asia and Australia (Fig. 3b—e). The three members of
HPs, HP11, have a similar pattern of bias in the global
land precipitation (Fig. 3c—e). Differences in the horizontal
resolution between HPYS and SPYS are not largely re-
sponsible for the global distribution of the bias (Fig. 3b, e).
Each member of MRI-AGCM3.2 simulates more precipi-
tation in the Pacific intertropical convergence zone than
the observations, as pointed out by Kusunoki (2017), and
also over the Indian Ocean with different patterns for the
three members. An overestimate of P,y is notable over
the central North Pacific and the western tropical Pacific,
which is not seen or is small in the mean of CMIP5p,egep,-
¢ an- Additionally, there is a large difference in northern
South America where MRI-AGCM3.2 overestimates the
precipitation and the mean of CMIP5p,esent an underesti-
mates it. The spatial pattern of the bias is similar between
the means of CMIP5pesent oy CMIP5ghigns, and
CMIPSGsmaIlE (Flg ?)f—h)

3.1.2 Regional performance of the simulations of present-
day precipitation

In order to evaluate how well each member reproduces
land Pann at regional scale, Taylor’s skill scores and
model biases in the regional mean with respect to
MSWEP in each of the 26 regions shown in Fig. 2 are
summarized in Figs. 4 and 5, respectively. We also con-
sider the performance of CMIP5¢gpghs (i-e., the subset
exhibiting the highest 12 skill scores for global precipita-
tion; Fig. 4) and CMIP5gpghs (i.e., the subset for regional
land precipitation; Fig. 5), as well as the performances of
HP,y and CMIP5p,esent an. We used the skill score as
the main metric to select the subsets for comparison because
the difference of the pattern from the observations results in
a large bias. Furthermore, corrections of the spatial pattern
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relevant to large-scale atmospheric circulations are more dif-
ficult than corrections of the bias at a grid point (e.g., Mar-
aun 2016). The abbreviations and region numbers of
individual regions used are those in Fig. 2.

The scores for all HP members exceed 0.8 in 16 re-
gions, and in an additional five regions some HPs have a
score > 0.8, but not in wet regions of AMZ (region num-
ber 7) and SEA (24), dry regions of WSA (9) and SAH
(14), and a high-latitude region of CGI (2; Fig. 4). The
scores in CGI (2) are less than 0.8 but are within the dis-
crepancy between the observations, as in the case with
Europe (11-13) and Asia (18-21). There are high scores
>0.9 in North America (3-4) and Europe (11, 13), in
addition to TIB (21), EAS (22), and SAU (26) where the
bias is small in Fig. 3. The global precipitation is also
represented with a score above 0.9. Such a high score >
0.9 is approximately equal to or greater than the highest

score of CMIP5p esent - The CMIP5Ghighs ensemble in-
cludes members with scores lower than the 50th
percentile of CMIP5pesent an in all regions and also for
global land (GLB Land in Fig. 4). That is to say, CMIP5-
Ghighs can represent the pattern of global PNy realistic-
ally but does not do so well for the patterns of regional
land Pann. HPap, by contrast, represents both patterns
closer to the observations because the average score of
0.94 over HP for global Pany exceeds any scores from
CMIP5p,esent_an (GLB in Fig. 4) and all scores of HPy
for regional land Pany are above the lowest score of
CMIP5Ghighs, apart from the three regions WSA (9),
SAS (23), and SEA (24). All HP members show a higher
score than the top three scores of the 75th percentile or
more in CMIP5¢hpighs, in 11 regions. Interpolating Py
onto the MRI-AGCM3.2H grid, SPYS shows a higher
score than HPYS in 12 regions. In four regions including
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TIB (21), the score of SPYS exceeds all scores of HP4j.
Without the interpolation, the score decreases in all
regions and the decrease is 0.05 on average over the
regions.

For seasonal precipitation, HP,; has a score >0.8 in
12 regions in JJA and 19 regions in DJF (Fig. S1). The
scores in SAU (26) are greater than the highest score of
CMIP5p,esent_an in both the annual and the seasonal
means.

Figure 5 shows that some HP members represent
Pann with a bias comparable to the discrepancies
between the observations in 12 regions; e.g., South
America (7-8, 10), South and Southeast Asia (22-24),
and Australia (25-26). In the three regions CGI (2), SSA
(10), and CEU (12) in particular, all biases from HP4y,
are within the discrepancy of the observations. In CGI
and CEU, all skill scores are also within the discrepancy
(Fig. 4), indicating that HP,j represents precipitation

quantitatively and spatially close to reality. As seen in
Fig. 3, the bias in TIB (21) is more than 30% smaller in
the mean of HP,y than in the 50th percentiles of
CMIP5pesent_an and also CMIP5gyghs. Similarly, the bias
is approximately 10% smaller in EAS (22) and SAS (23)
and >25% smaller in NAU (25). All biases from HP 4y
are smaller than the largest bias from CMIP5gpgps in all
regions. Focusing on a quartile of CMIP5gpigns indicat-
ing the three smallest biases, the bias is larger in HP 4.
However, we should note that the combination of three
members selected from CMIP5gpighs varies region-by-
region, whereas the same HP members are evaluated
consistently in every region.

Although HP,;p simulates well the spatial pattern
of global and global land precipitation relative to
CMIP5p,esent an (Fig. 4), the members overestimate
the precipitation, in particular, the global land pre-
cipitation with a bias comparable to the 75th
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percentile of CMIP5p csene an and CMIP5¢gpighs. This
is because areas of negative bias are more widely dis-
tributed in the mean of CMIP5p,esent an than in
HPsrp (Fig. 3) and, consequently, the bias is offset
globally in CMIP5p,esent an- MAE in both the global
land and sea and global land precipitation from
HP4pp is smaller or comparable to the smallest MAE
from CMIP5p,esent an (not shown).

Depending on the convection scheme used, Pjj5 simu-
lated by HP,y are within the spread of observations in
17 regions and Ppyg in 15 regions (Fig. S2). In CEU (12),
all biases in the annual and the seasonal means are com-
parable to the discrepancies between observations.

SPYS simulates Ppynyn with less bias than HPYS in
more than half the regions on the common MRI-
AGCM3.2H grids, and also Py, in 10 regions and Ppje
in 16 regions. In addition, the bias in Pany from SPYS is
small regardless of the convection scheme used in HP 5
in seven regions including TIB (21). The skill score re-
duces in all regions when evaluating the SPYS precipita-
tion on the native grid (Fig. 4). On the other hand, the

bias in the regional mean precipitation is almost equal in
cases with and without the interpolation except for
WSA (9) with the complex terrains of the Andes, where the
bias reduces by 10% in the evaluation on the native grid.
This implies that there may be a difference in the spatial
pattern of precipitation between MSWEP and SPYS.

3.1.3 Model rank for the performance over the regions

To gain an overview of the performance of each model,
we ranked 55 models using MAE and skill score: three
of HP,y, the interpolated SPYS, 50 of the individual
model members of CMIP5p,esent an, and the MME mean
of CMIP5p,esent an- The rank of each model and the
MME mean were computed as follows. First, in each re-
gion, each model was ranked from 1 to 55 according to
its MAE or score, with rank 1 assigned to the model
with the smallest MAE or the highest score. Secondly,
for each model, the order/rank in each region was aver-
aged over all the regions. A small overall rank corre-
sponds to the model having a smaller MAE or a higher
score in many regions.
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The x-axis in Fig. 6 denotes the rank from 1 to 55
based on the average rank and the y-axis denotes the
rank averaged over the regions. HP,y; and SPYS always
rank in the top 15 models for both metrics except for
MAE in Pany from HPKF. In particular, HPYS and
SPYS are always in the top five models for the seasonal
precipitation. For the skill score, individual members of
HPs and SPYS are often ranked higher than the MME
mean of CMIP5p,esent an. HPKFE has the best average
rank of 13.7 on the score for Py, and HPYS and SPYS
follow HPKF with average ranks of 14.0 and 15.2, re-
spectively. HPYS has the best rank on the score for Py,
followed by SPYS and HPKF. Thus, HP,j and SPYS can
simulate the spatial pattern and the regional mean of the
present-day precipitation close to the observations in
more regions than can the CMIP5 models. The CMIP5
models change their rank depending on the metric, and
their ranks are not always above those of HP ;. Namely,
prescribing observed SST for a GCM contributes to a
more realistic spatial pattern and amount of regional
precipitation climatology around the globe. The order of
rank is almost the same when using the AMIP-type sim-
ulations in the CMIP5 (Fig. S3), and HP,; is ranked

around the MME mean of the AMIP simulations, espe-
cially for the skill score.

3.2 Future change projection for the RCP8.5 scenario

3.2.1 Global comparison of the uncertainty in future
precipitation change

Figure 7a—d illustrates the future change of Pany
averaged over the projections by the HF 5, ensemble and
the MMEs of CMIP5RCP8.57AH: CMIPSGhighSy and
CMIP5¢¢mane- As described in IPCC (2013), the mean of
CMIP5gcps s _an projects an increase of global land Pany
at the 90% confidence level in most regions of the mid-
dle- and high-latitude Northern Hemisphere and a de-
crease around the Mediterranean (Fig. 7b). The regions
with a significant change extend farther in HF yj; than in
CMIP5gcps s an (Fig. 7a), and the sign of the change co-
incides with the sign given by CMIP5gcpgs an in most
regions (Fig. 7e). In Australia and northern South Amer-
ica, the mean of HF,j projects an increase at the 90%
confidence level while that of CMIP5rcpgs an projects
an insignificant decrease (Fig. 7e). Figure 7h shows that
the mean of HF,) projects a noticeably wetter climate
over the land than the mean of CMIP5rcpgs an
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especially from the Tibetan Plateau to East Asia, over
northern South America, and the dry regions of
Australia and the Sahara. The projections from the full
ensemble of the CMIP5 models and its subsets are simi-
lar over the land even when the models are selected by
their performance on present-day precipitation (Fig. 7c,
d, i, j). Although the precipitation change over the ocean
is beyond the scope of this study, we note that the
change over the tropical Pacific is different in the means
of the CMIP5rcps s an and the subsets. HF 5 projects a
precipitation change with an El Nifio-like pattern on the

ensemble mean, relative to the CMIP5rcpss an projec-
tions (Fig. 7h). The pattern, however, is not always
detected in the comparison with the high-performing
subset projections (Fig. 7i, j). The changes in Pj, and
Ppje show a similar pattern over the tropical Pacific
(Figs. S4 and S5).

In order to identify features of the uncertainty in fu-
ture precipitation changes from HF,j, we explored how
the uncertainty spread of HF ), compares with that from
the CMIP5zcpgs models. Previous studies assessed the
uncertainty from subsets of ensemble members using
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the degree to which the maximum-minimum range of
uncertainty from all ensemble members is covered by
the range from the subset (McSweeney et al. 2015; Kar-
malkar 2018; Ito et al. 2020a). Following this method-
ology and expressing precipitation changes for ensemble
E as AP(E), we computed the fraction of the maximum-—
minimum range of AP(HF,j) to the range of AP(E’),
and refer to this as a fraction of the relative range (FR).
Here, we used three ensembles as the ensemble E': all
42 members of CMIP5gcpg s an, and the 12 members of
each of CMIP5¢pighs and CMIP5ggmali-

The value of FR for HF 4 relative to CMIP5rcpss ans
FR,j, exceeds 0.7 around North America, southern Af-
rica, East Asia, and Australia (Fig. 8a). Grid cells where
FRay lies between 0.7 and 1.3 (i.e., the spread of
AP Ann(HFap) is within +30% of the spread of APany
(CMIP5gcps5_an)), make up 11% of the global land grid
cells, and grid cells with values between 0.5 and 1.5
make up 35%. As for CMIP5ghighs and CMIP5¢smalie,
the percentage of the grid cells with FR within 0.7-1.3
(0.5-1.5) increases up to approximately 45% (75%) (Fig.
8b, ¢). Therefore, selecting the high-performance CMIP5
models to represent the present-day precipitation more
than doubles the area where the uncertainty ranges of
HF Ay and the selected CMIP5 models are close. The
fraction from the uncertainty of CMIP5Ghighs, FRGhighs»
exceeds 0.7 over most land areas. A similar spatial pat-
tern is seen in the fraction from CMIP5gsmaie, FRGsmallE-
Of the 12 members in each of CMIP5ghighs and
CMIP5Gsmalie, three members of CMIP5¢pghs are not in
CMIP5¢¢mane. Thus, the three members make their own
patterns, e.g., Australia and South America around the
tropical Pacific where a different pattern of APann ap-
pears (Fig. 7i, j).

The tendency for a closer spread between HF,); and
the high-performing subsets of the CMIP5 models is de-
tected in the seasonal precipitation change (Fig. S6). As
with the annual precipitation change, for the seasonal
precipitation change, the percentage of the grid cells
with FRGhighs and FRgsmane within 0.5-1.5 increases to
approximately 70% of all land grid cells from 40% in
FRap

3.2.2 Uncertainty in the projected change of regional mean
precipitation

The projected future change of regional mean Py over
land is shown in Fig. 9. Here, we analyze the projections
by the MMEs of CMIP5¢highs and CMIP5gyghs, together
with the HF; ensemble and the CMIP5rcpg s an MME.
Additionally, considering the effects of model resolution,
the future changes projected with SF are also considered,
which were computed from the regional mean on the
native grid of MRI-AGCM3.2S.
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There is a wide spread in the projections AP(CMIP5xc.
ps5_an) in low-latitude regions and a narrower spread in
the middle- and high-latitude regions, as shown in IPCC
(2013) with respect to both land and sea areas. The uncer-
tainty from AP(HF,)) of the annual and seasonal precipi-
tation presents a similar picture (Fig. S7). This may be due
to the difference in the main precipitation systems; i.e., the
major systems are sub-grid scale (produced by cumulus
convection schemes) at low latitudes and grid scale at
middle and high latitudes.

The maximum-minimum uncertainty range from
HF oy partly overlaps all the range from CMIP5rcpgs an
CMIP5GhighS: and CMIP5RhighS except for CMIP5RhighS
in CGI (2). The range from HF,y is 0.4 of the range
from CMIP5gcps s _an On average over all 26 regions; the
fraction increases to 0.8 (0.73) of the range from CMIP5-
Ghighs (CMIP5gpighs). In terms of the future change in
the global average, specifically global land precipitation,
the spread of the projections with HF ) is equal to 0.74
of the spread from CMIP5rcpgs an and to 0.95 of that
from CMIP5ghighs. Thus, the future change projected
with HF ) roughly has an uncertainty very close to the
uncertainty in the projections with the high-performing
CMIP5 models, as described above. In the individual
areas, the projections with HF,; have a wider spread
than the range from CMIP5ghighs and CMIP5gpghs in
SAF (17) and AMZ (7), and a comparable spread in NEB
(8), WAS (19), EAS (22), SEA (24), and SAU (26). On
the other hand, there is a relatively small spread of the
HF Ay projections in NAS (18) and TIB (21). The projec-
tions with the SF ensemble lie within the uncertainty
from HF,j in most regions. Given that the SF ensemble
is the ensemble of only four patterns of SST change, the
spread is small but the individual regional pattern of
spread resembles the spread from HF ;.

Over the Tibetan Plateau and East Asia, where a sig-
nificant increase is projected by the ensemble means of
both HF sy and CMIP5rcpgs an (Fig. 7a, b), the rate of
increase is 0.5-2% larger in HFA; on average over TIB
(21) and EAS (22). The rate in TIB is an additional 1%
larger in the mean of the SF ensemble than that of HF 5y,
which is a marked difference compared with other re-
gions. The projected future change has the opposite sign
of future change between the 50th percentiles of
AP(HEF 5yy) and AP(CMIP5gcps 5 _an) in six regions around
the tropical South Pacific: Central and South America (6
-9) and Australia (25-26). In particular, in CAM (6) and
NEB (8), more than three HF ,; members project an in-
crease and different three members project a decrease so
that the future change is insignificant. On the other
hand, although there is a large uncertainty in the projec-
tions with not only CMIP5gcpss an but also CMIP5-
Ghighs and CMIP5gpighs, more than 75% of HF sy project
an increase in AMZ (7), NAU (25), and SAU (26) and a
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decrease in WSA (9). In particular, all members of HF ;
project the opposite sign to the 50th percentiles of
AP(CMIP5rcpss an) in WSA and NAU. In NAU, the
50th percentile of AP(HF,y;) is 5.3% while that of
AP(CMIP5rcpg s an) is —0.7%. Of the six regions with
opposite signs in different ensembles, the mean of HP 5y
has a score > 0.8 in NEB (8) and Australia (Fig. 4) and a
bias comparable to the discrepancies between observa-
tions in AMZ (7), NEB (8), and Australia (Fig. 5). This
suggests that forcing with the observed SST reduces the
SST bias in HP,y; compared with the CMIP5 coupled
simulations, and consequently HP,; performs well in
representing the present-day precipitation. On the other
hand, with regard to future simulations, the differences
between the atmosphere-only model and the coupled
model could cause the opposite sign in the future
precipitation changes in the regions. A relatively large
positive precipitation change in HF,; is consistent with
Kitoh and Arakawa (1999), who have demonstrated that
the lack of SST and cloud-radiation feedback in

AGCMs brings about an overestimate of precipitation in
warm-SST regions.

For the global mean, HF,; projects a wetter climate
than CMIP5grcps s an especially over the land; the pro-
jections with more than half the members of HF,
exceed the maximum changes of CMIP5gcpgs an and
CMIP5Ghighs. DeAngelis et al. (2015) have indicated that
CMIP5 models that underestimate the sensitivity of
shortwave absorption to an increase in atmospheric
water vapor tend to overestimate the precipitation increase.
From their results, the CMIP5 model developed at MRI
shows a lower sensitivity of shortwave absorption than the
other CMIP5 models. The radiation scheme in that model
is almost the same as the scheme used in MRI-AGCM3.2
for computing the sensitivity. Thus, the sensitivity could to
some extent contribute to the greater increase of the pre-
cipitation by HF 5, than by CMIP5rcpg 5 an-

Similar to Pann, the projections of HF 5y spread over 0.35
and 046 of the maximum-minimum uncertainty range
from APjA(CMIP5gcpss an) and APpjp(CMIP5rcpgs an) on
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average over all 26 regions, respectively (Fig. S7). The frac-
tion increases to 0.78 and 0.96 of the range from APj,(C-
MIP5¢highs) and APpjp(CMIP5¢hghs), respectively.

4 Discussion

4.1 Contribution of cumulus schemes and SST forcing to
the uncertainty

The uncertainty from HFy) is estimated from the future
precipitation changes by 12 ensemble members corre-
sponding to combinations of three different cumulus
convection schemes and four SST change patterns. In
order to discuss the sources of uncertainty in the HF
projections, we created two subsets, one with different
convection schemes but the same CO SST-change
pattern (HFc,,,; three members) and the other with the
same YS scheme but different SST change patterns
(HFggt; four members). The FR values were then esti-
mated for the maximum-minimum uncertainty range
from the projections with HF¢c,,, and HFsgt relative to
the range with HF,; (FRcony and FRssy, respectively).
FRconv (FRggT) denotes the ratio of HF ¢y, (HFsgt) cov-
ering the uncertainty from HF 5.

Figure 10 shows global distributions of FRce,, and
FRgst. The area where either HF,,, or HFssr captures
over 0.6 of the uncertainty from HF,y is only approxi-
mately 40% of the global land, implying that the ensem-
ble consisting of both multiple SST patterns and
multiple convection schemes is needed to cover most of
the uncertainty from the high-performing CMIP5
models. FRc,,, is larger than FRgst in Africa and north-
ern South America (Fig. 10a). On the other hand, a rela-
tively large FRsst appears around Australia and Siberia
(Fig. 10b). Around Asia, Endo et al. (2012) have assessed
the contribution of each factor to the uncertainty by
analysis of variance on the same MRI-AGCM3.2H data-
set. Their results indicate that the uncertainty in AP,
as well as in APjja and APpje, is mainly caused by
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differences in the cumulus convection schemes in South
and Southeast Asia, which is consistent with the rela-
tively large FRcony seen in Fig. 10a.

To investigate the atmospheric fields leading to the
spreads of the projections of APsnn, Fig. 11 shows the
standard deviation in future change for three atmos-
pheric circulation variables: sea level pressure (ASLP),
temperature at 850 hPa (AT850), and geopotential
height at 500 hPa (AZ500). Because of the common SST
change pattern, the deviation in AT850 from HFc,,, is
globally small except for the western part of the tropical
Pacific (Fig. 11b). On the other hand, HFc,,, shows a
relatively large deviation in AZ500 over the tropical and
subtropical regions of 30°S-30° N (Fig. 11c). That is to
say, the response of AZ500 over the regions depends on
the cumulus convection scheme, which may relate to the
difference in the precipitation changes between the dif-
ferent cumulus schemes. Therefore, FRc,,, is large
around Africa and northern South America over 30° S
-30° N. The dependence of AZ500 on the schemes over
30° S-30° N is seen regardless of the patterns of SST
change; the KF (AS) scheme gives a more positive (nega-
tive) anomaly in AZ500 than the YS scheme (Fig. S8a).

HFsst shows a roughly similar distribution of the devi-
ation in AT850 to that in the SST change (Figs. 1a and
11e). Around Australia where FRggr is large, ASLP from
HFsst shows a large deviation (Fig. 11d). The difference
of ASLP between members with different SST change
patterns responds to the prescribed patterns of El Nifo/
La Nina-like SST change over the Pacific (Fig. S8b). The
atmospheric response to the El Nifno/Southern Oscilla-
tion (ENSO) expands over Australia and brings about a
relatively large uncertainty in the precipitation changes
with HFSST’

With reference to Mizuta et al. (2014), we divided
CMIP5 models into three clusters to obtain future
change patterns of SST and sea ice (C1-C3) for future
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(HFcony) and b the four members with different patterns of SST change (HFss7). The value at the top right of each panel denotes the percentage
of grid cells with FR over 0.6 in the global land
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climate simulations with MRI-AGCM3.2. The ASLP
were then averaged over the models in each cluster and
over all models to derive four spatial patterns of ASLP
corresponding to the pattern from each member of
HFsst. The spatial pattern of the deviation in ASLP
from the clusters of the CMIP5 models (Fig. S9) re-
sembles the pattern from the HFsst projections over
the latitudinal band of 0°-30°S (Fig. 11d). That is,
there is a similarity in the atmospheric response to
the SST change between the ensembles of MRI-
AGCM3.2 and the CMIP5 models, implying that the
difference in the precipitation change around
Australia between the ensembles arises from a quanti-
tative difference in the response to a similar change
of atmospheric circulation. The uncertainty could also
be associated with differences in the convection
schemes, especially in the northern regions of
Australia at latitudes north of 30° S (Fig. 11c). These
might lead to large uncertainty in NAU (25 in Fig. 9).

A large FRgst around Siberia is partially affected by
teleconnections such as the Pacific—North America pat-
terns in response to the same ENSO-like change (Horel
and Wallace 1981), as is also the case around North
America and Asia (Fig. 11d). Urabe and Maeda (2014)
and Imada et al. (2017) pointed out the seasonal varia-
tions in the appearance of the teleconnection pattern
around Asia. Future study is required focusing on the ef-
fects of the seasonal change of the teleconnection
pattern.

4.2 Enhanced model resolution

In order to examine the impact of the horizontal reso-
lution of models on the simulations of Py, we sum-
marized the relationship between the following four
indices and the complexity in topography in the 26 re-
gions: the extent of the change in skill score and model
bias in the regional mean from HPYS to SPYS (Fig. 12a,
b), the difference in the ensemble mean of APy (Fig.
12¢), and the ratio of the maximum-minimum uncer-
tainty range from AP Ny projected by SFYS to the range
from HFsst (Fig. 12d). The indices were estimated on
the native grid of each model. The future change is the
projected change in the regional mean. The ensemble of
SFYS and HFsgt consists of the four members with the
same YS scheme and different four patterns of SST
change. The complexity in topography is defined as the
standard deviation of the altitude represented by MRI-
AGCM3.2S.

The impact of the enhanced horizontal resolution is
a significant decrease in model bias. The relationship
between the complexity and the decrease in the bias
is statistically significant at the 99% confidence level.
The difference in the ensemble means of future
changes is positively correlated with the complexity,
although the relationship is insignificant. This is also
the case for the uncertainty range. Consequently, sim-
ulations by the high-resolution model may project a
greater future precipitation increase around complex
terrain regions, with a reduction of the model bias in
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the present-day precipitation. Furthermore, there is a
possibility that the uncertainty in the future projec-
tions is greater in regions with more complex
topography.

As seen in Fig. 4, the skill score is smaller across
all regions in SPYS than in HPYS except for NEU
(11) and NAU (25), regardless of the complexity. It
seems that the high-resolution model cannot simulate
the precipitation pattern better than the low-
resolution one. However, Fig. 4 shows a large discrep-
ancy in the score for the observations, with a value of
0.4 in TIB (21) and WSA (9), regions with high com-
plexity in the topography. Thus, we cannot conclude that
the high-resolution model performs poorly in representing
the spatial pattern. Further validation is needed using ob-
servations with a resolution of a few tens of kilometers
that is high enough to evaluate the simulations with MRI-
AGCM3.2S.

Note that the difference in the simulations between
various model resolutions derives from not only the
represented topography but also the precipitation sys-
tems themselves that the model is able to resolve. Ac-
cording to Ito et al. (2020b), focusing on the areas
around Japan that are included in EAS (22), the projec-
tion of the regional precipitation changes when consider-
ing the effect of typhoons that low-resolution models
cannot represent.

The impact of the model resolution is more effective
in the simulations of extreme indices; e.g., a seasonal
maximum of 1-day precipitation total. Similar to the
need for projections of average climate change, this is
important for the impact assessment of climate change.

5 Summary

We shown that the simulations by MRI-
AGCM3.2 reproduce well the present-day precipita-
tion climatology in regions around the globe and that
the signs of future changes at the 50th percentile are
identical to the CMIP5 multi-AOGCM ensemble in
almost all regions. The projections of future precipita-
tion change spread over roughly 0.4 of the uncer-
tainty range from the full ensemble of the CMIP5
AOGCMs and, furthermore, 0.8 of the range from the
high-performing CMIP5 AOGCMs.

The precipitation climatology simulated by MRI-
AGCM3.2 is closer to observations at both global and
regional scales in terms of the spatial pattern and
amount. Compared with the means of the CMIP5 en-
semble and the high-performing CMIP5 ensembles,
the model bias is reduced by approximately 20% for
regional averages from the Tibetan Plateau through
East Asia and Australia. Overall, MRI-AGCM3.2 has a
skill score of more than 0.8 in almost all the 26 glo-
bal land regions and the model bias for at least one
of the cumulus convection schemes is within the dis-
crepancy between observations in about half of the
regions.

When ranking the score and absolute error for the
simulated land precipitation in individual regions,
MRI-AGCM3.2 ranks in the top 15 of all 55 model
runs including all 50 of the CMIP5 ensemble mem-
bers and their mean (except for HPKF for the error
in the annual precipitation). MRI-AGCM3.2 is ranked
almost equal to or higher than the CMIP5 ensemble
mean for the skill scores in the annual and the

have
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seasonal mean and the biases in the seasonal mean.
Therefore, MRI-AGCM3.2 can represent the spatial
pattern and the regional mean of precipitation realis-
tically in more regions than the CMIP5 ensemble
members.

The spatial distribution of projected change in global
precipitation of the ensemble means of MRI-AGCM3.2
and the CMIP5 models is similar. MRI-AGCM3.2 pro-
jects a greater increase of regional-mean precipitation
than the CMIP5 ensemble mean, from 0.5 to 2% greater
around the Tibetan Plateau and East Asia and even more
in Australia where the model bias is small in MRI-
AGCM3.2. This is also the case for the comparison with
the high-performing CMIP5 ensemble.

The sign of future change for annual precipitation
is the same at the 50th percentile in 20 out of 26 re-
gions and the opposite in the other six regions
around the tropical South Pacific; e.g., Australia and
South America. In these six regions, the skill score
for the present-day precipitation exceeds 0.8 in three
regions and the bias is comparable to the difference
between the observations in four regions. Thus, we
expect that the use of the prescribed SST in the
MRI-AGCM3.2 simulations results in a small bias in
the present-day regional precipitation, while the dif-
ference between models with or without atmosphere—
ocean coupling has an influence on the future projec-
tions. Although the relationship between the ability to
reproduce the present-day climate and the ability to
provide reliable future predictions is still unclear (e.g.,
Smith and Chandler 2010; He and Soden 2016), high
performance in simulations of the present-day pre-
cipitation by MRI-AGCM3.2 is an important metric
for assessing the accuracy of the model itself.

The uncertainty in the MRI-AGCM3.2 projections
partly overlaps the maximum-minimum range of the
uncertainty in the projections with the CMIP5 model
ensemble in all regions. By considering the uncer-
tainty range from MRI-AGCM3.2 as a fraction of the
range from the CMIP5 models, the percentage of grid
cells with the fraction between 0.7 and 1.3 (between
0.5 and 1.5) is approximately 10% (35%). The percent-
age increases to 45% (75%) when the comparison is
made with respect to the CMIP5 models that perform
well for precipitation simulations in the present-day,
suggesting that the uncertainty is closer to that from
the high-performing CMIP5 ensemble than that from
the full ensemble. Also, regarding the uncertainty in
future changes in the regional mean precipitation, the
range from the MRI-AGCM3.2 projections increases
from 0.4 of the range from all the CMIP5 models to
around 0.8 of that from the high-performing CMIP5
models on average over individual regions. That is to
say, the MRI-AGCM3.2 dataset provides the regional
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information on the projections with an uncertainty
comparable to the uncertainty from the high-
performing CMIP5 models around the globe, together
with well-represented precipitation in the present-day
climate.

The difference of projections by MRI-AGCM3.2 rela-
tive to the CMIP5 model ensemble may be caused partly
by the difference between an atmospheric model and the
atmosphere—ocean coupled models of the CMIP5
AOGCMs, as seen in regions around the tropical Pacific.
MRI has developed a new model system that assimilates
observed SST in such coupled models, which enables
the evaluation of atmosphere—ocean coupled effects; e.g.,
SST and cloud-radiation feedback (Kitoh and Arakawa
1999). Comparisons of projections from such a model
will facilitate investigation of the causes of the differ-
ences identified here.

The characteristics of the precipitation climatology
summarized in this study are highly useful not only
for studies of global and regional climatology using
the MRI-AGCM3.2 dataset but also for decisions on
adaptation strategies. As already discussed on the
CORDEX phase 1 in Ito et al. (2020a), the use of a
GCM dataset to discuss regional climate changes re-
quires a fundamental evaluation of the projections by
the GCM as the regional scale, as we have done here.
This will be applied, for example, with HighResMIP
and CORDEX phase 2.

6 Supplementary Information
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Additional file 1: Table S1. CMIP5 models used in this study.
(Retrieved from https://cmip.lInl.gov/cmip5/availability.html on May 23,
2019). Figure S1. As in Fig. 4 but for (a) JJA mean precipitation and (b)
DJF mean precipitation. Figure S2. As in Fig. 5 but for (a) JJA mean
precipitation and (b) DJF mean precipitation (%). Figure S3. As in Fig. 6
but for the AMIP-type simulations instead of the CMIP5 simulations. Black
number corresponds to the number in the list of models at the bottom.
Gray number denotes the rank in Fig. 6 only for the model of which the
name coincides with that in Table S1. Figure S4. As in Fig. 7 but for JJA
mean precipitation (% K™"). White in (a-d) and hatching in (e-j) indicate
the grid cells where the models simulate no precipitation in the present-
day climate. Figure S5. As in Fig. 7 but for DJF mean precipitation (% K
"). White in (a-d) and hatching in (ej) indicate the grid cells where the
models simulate no precipitation in the present-day climate. Figure S6.
As in Fig. 8 but for (a) JJA mean precipitation and (b) DJF mean precipita-
tion. Hatching indicates the grid cells where the models simulate no pre-
cipitation in the present-day climate. Figure S7. As in Fig. 9 but for (a)
JJA mean precipitation and (b) DJF mean precipitation (% K. Figure
S8. Future change anomaly for each of 12 HF ensemble members from
their mean. (a) Future change of geopotential height at 500 hPa and (b)
that of sea level pressure. Members on each row are the member with
the same SST-change pattern for the future climate simulation. Members
on each column are the member with the same cumulus convection
scheme. The anomaly is normalized by the annual variation of individual
variables in the present-day climate. Crosshatching (Hatching) indicates
the 99% (90%) confidence level. Figure S9. Standard deviation in future
changes of sea level pressure using three clusters of the CMIP5 AOGCMs
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and all of them, which were created to obtain future change patterns of
sea surface temperature and sea ice for the MRI-AGCM3.2 simulations by
Mizuta et al. (2014). The deviation is normalized by the annual variation
in the present-day climate averaged over the CMIP5 models in each clus-
ter. (see text for details).
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