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Abstract

Sound velocities of bridgmanite measured in the laboratory are a key to deciphering the composition of
the lower mantle. Here, we report Debye sound velocities determined using nuclear inelastic scattering
(NIS) for one majorite composition (Mg0.82Fe0.18SiO3) and five bridgmanite compositions (Mg0.82Fe0.18SiO3,
Mg0.86Fe0.14Si0.98Al0.02O3, Mg0.88Fe0.12SiO3, Mg0.6Fe0.4Si0.63Al0.37O3, Mg0.83Fe0.15Si0.98Al0.04O3) measured in a
diamond anvil cell at pressures up to 89 GPa at room temperature. Debye sound velocities for majorite
determined from NIS are consistent with literature data from Brillouin scattering and ultrasonics, while
Debye sound velocities for bridgmanite are significantly lower than literature values from the same
methods. We calculated partial and total density of states (DOS) for MgSiO3 and FeSiO3 bridgmanite using
density functional theory and demonstrate that Debye sound velocities calculated from the reduced DOS
using the same approach as for the experimental data (i.e., the limit of D(E)/E2 as energy goes to zero) give
the same sound velocities for each phase irrespective of which partial DOS is used. In addition, we show
that Debye sound velocities calculated using this approach are consistent with values obtained from the
calculation of the full elastic tensor. Comparison of the calculated DOS with the one obtained from NIS
indicates that the experimental DOS has enhanced intensity at low energies that leads to a different slope
of the DOS and hence a lower sound velocity. This effect is present in all of the bridgmanite samples
examined in this study.
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Background
Insight into the accretion of the Earth and its subse-
quent differentiation can be gained through know-
ledge of the present-day Earth composition. The
lower mantle in particular has been the focus of
much attention as well as controversy, and questions
such as how closely it approximates a chondritic
composition have occupied geochemists for decades.
Comparison of laboratory measurements of elastic
wave velocities of lower mantle minerals with seis-
mic data has played a crucial role in the discussion

starting with Birch (1952), and experimental tech-
niques such as inelastic X-ray scattering (e.g., Fiquet
et al. 2004), Brillouin scattering (e.g., Sinogeikin and
Bass 2002; Jackson et al. 2005; Murakami et al. 2007;
Murakami et al. 2008), ultrasonics (e.g., Irifune et al.
2008; Gwanmesia et al. 2009; Liu et al. 2015), and
impulsive stimulated scattering (e.g., Crowhurst et al.
2008) have provided important results on transition
zone and lower mantle minerals. In situ measure-
ments are important, because some transitions (for
example, spin transitions) are not quenchable, and may in-
fluence the elastic properties of iron-containing minerals.
Nuclear inelastic scattering (NIS) offers the attractive

possibility to determine elastic wave velocities of iron-
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containing minerals in the laser-heated diamond anvil
cell through direct measurement of the partial density of
states (e.g., Sturhahn and Jackson 2007), and results for
mantle minerals have already been reported for ferroper-
iclase (Lin et al. 2006; Wicks et al. 2010; Chen et al.
2012; Sinmyo et al. 2014), orthoenstatite (Jackson et al.
2009) and post-perovskite (Mao et al. 2006). So far, how-
ever, no investigations using NIS have been carried out
on the Earth’s most abundant mineral that constitutes
the bulk of the lower mantle, namely bridgmanite.
Computational studies provide an important comple-

ment to experimental measurements and allow a more
extensive probe of parameter space. Methods have ad-
vanced substantially in recent years to enable densities
and elastic wave velocities of candidate lower mantle as-
semblages to be calculated for the appropriate composi-
tions at relevant pressure and temperature compositions
(e.g., Wang et al. 2015 and references therein). Elec-
tronic transitions in iron present a challenge, however,
and the apparent inconsistency between experimental
and computational results on the stability of the inter-
mediate spin state of Fe2+ in bridgmanite remains con-
troversial (e.g., Stackhouse 2008; McCammon et al.
2013; Shukla et al. 2015). Nevertheless, a strong advan-
tage of computations is the capability to calculate a wide
range of properties including experimental observables
based on vibrational density of states (DOS), for example
infrared spectra of hydrous post-perovskite (Townsend
et al. 2015). The combination of theoretical DOS calcu-
lations with experimental determinations using NIS pro-
vides a powerful new tool to understand the vibrational
properties of iron-containing phases.
In this work, we present an experimental study using

NIS to determine sound velocities of five different com-
positions of (Mg,Fe)(Si,Al)O3 bridgmanite at pressures
between 0 and 89 GPa at room temperature, including a
comparison with results for (Mg,Fe)(Si,Al)O3 majorite
with the same composition. We present a parallel theor-
etical study to calculate the DOS of two bridgmanite
end-members (MgSiO3 and FeSiO3) at comparable pres-
sures that provides insight into the anomalous experi-
mental results.

Table 1 Starting materials used for DAC experiments

Sample Phase xFe xAl xMg xSi Fe3+/ΣFe precursor Fe3+/ΣFe bridgmanite 57Fe enrichment Ref

U1219 Majorite 0.18(1) 0 0.82(1) 1.00(1) 0.09(2) 0.15–0.20 0.9 a, b

SL16 Bridgmanite 0.14(2) 0.02(1) 0.86(3) 0.98(4) – 0.30(5) 0.6 c

SL18 Pyroxene 0.12(1) 0 0.88(2) 1.00(1) n.a. 0.15(4) 0.6 d, e

S4850 Bridgmanite 0.40(3) 0.37(2) 0.60(3) 0.63(3) – 0.80(5) 0.9 f

S4883 Bridgmanite 0.15(2) 0.04(1) 0.83(2) 0.98(1) – 0.27(7) 0.6 g

a McCammon and Ross (2003); b McCammon et al. (2010); c Lauterbach et al. (2000); d Lauterbach (2000); e McCammon et al. (2008); f Potapkin et al. (2013);
g this study
n.a. not analyzed

Fig. 1 Comparison of U1219 sample data for the majorite and
bridgmanite phases at 33 GPa. a NIS spectra. b pDOS (upper) and
reduced pDOS (lower). Majorite was measured first and then
transformed to bridgmanite by laser heating, after which the NIS
data for bridgmanite were collected
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Fig. 2 Influence of pressure on U1219 bridgmanite. a NIS spectra. b pDOS (upper) and reduced pDOS (lower). Data were collected on
compression during the same beamtime experiment and follow on from the spectra shown in Fig. 1

Fig. 3 Influence of pressure on SL18 bridgmanite. a Selected NIS spectra. b Selected pDOS (upper) and reduced pDOS (lower). The SL18 pyroxene
starting material was transformed to bridgmanite by laser heating in the DAC, and data were collected during three different beamtime
experiments: #1—17, 36, 62, and 75 GPa; #2—50 GPa (not shown); and #3—65 GPa
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Methods
The starting materials for the DAC experiments are
listed in Table 1. Sample S4883 was synthesized from
orthopyroxene loaded into a Re capsule in a Kawai-type
multianvil press with a LaCrO3 heater assembly and
W75Re25/W97Re03 thermocouple at 26 GPa and 2000 °C
for 40 min (Keppler and Frost 2005). The compositions
of the starting materials were determined using the elec-
tron microprobe and conventional (radioactive point
source) Mössbauer spectroscopy.
NIS measurements were made using panoramic DACs

that were designed and constructed at Bayerisches
Geoinstitut. For each experiment, a starting material in
the form of powder was loaded into a Be gasket together
with small ruby chips for pressure determination using
the ruby scale of Mao et al. (1986). Generally, LiF or
NaCl was used as a pressure medium. The diameters of
the diamond culets and opening holes in the gaskets var-
ied depending on the pressure range of the experiment.
The samples were laser-heated in the DAC using a port-
able system mounted on the beamline incorporating ei-
ther single-sided (Dubrovinsky et al. 2009) or double-
sided (Kupenko et al. 2012) laser heating.
The NIS data were collected at ambient conditions on

the nuclear resonance beamline ID18 at the European
Synchrotron Radiation Facility (Rüffer and Chumakov
1996) between 2008 and 2010. Further details of the NIS
setup and data analysis are given in Glazyrin et al. (2013)
and references therein. Nuclear forward scattering (NFS)
data were collected at the same time as the NIS data to
monitor the electronic state of iron, and X-ray diffraction
was used to confirm the identity of bridgmanite off-line
after laser heating. The NIS data were collected typically
over a range of −80 to 80 meV around the 57Fe nuclear
resonance energy of 14.4 keV in steps of 0.2 meV. The en-
ergy resolution of the X-ray beam was 1 meV. Debye
sound velocities (VD) were determined from the reduced
partial density of states (pDOS) using the “homogeneous
model” described in Sinmyo et al. (2014). The densities re-
quired for the calculation of VD of bridgmanite were de-
termined using a third-order Birch-Murnaghan equation
of state based on volumes and elastic parameters reported
in Boffa Ballaran et al. (2012) (sample S4850) and Glazyrin
et al. (2014) (samples U1219, SL16, SL18, S4883), where
the generalized model in the latter work was used to cal-
culate values relevant to the different compositions. Equa-
tions of state parameters for majorite were taken from
McCammon and Ross (2003) (cell volume) and Kavner et
al. (2000) (elastic parameters). The adiabatic bulk modulus
can be used to calculate longitudinal wave (VP) and trans-
verse wave (VS) velocities from VD and vice versa (e.g.,
Sturhahn and Jackson 2007).
First-principles calculations were performed based on

the local density approximation of DFT to determine the

DOS for MgSiO3 bridgmanite at 60 GPa and antiferro-
magnetic FeSiO3 bridgmanite at 20, 40, and 60 GPa. We
computed the dynamical matrices on a regular grid of
4 × 4 × 4 special q points (Monkhorst and Pack 1976).
We used Fourier interpolation techniques to obtain the
interatomic force constants on a dense grid in the recip-
rocal space, from which we obtained the phonon DOS
(Gonze et al. 2005). We determined both the total and

Fig. 4 Influence of pressure on S4883 bridgmanite. a NIS spectra.
b pDOS (upper) and reduced pDOS (lower). The sample was loaded
as bridgmanite into the DAC, and data were collected on
compression during the same beamtime experiment
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Fig. 5 Influence of pressure on S4850 bridgmanite. a NIS spectra. b pDOS (upper) and reduced pDOS (lower). The sample was loaded as
bridgmanite into the DAC, and data were collected during two different beamtime experiments: #1—50 GPa and #2—53 and 72 GPa. The
sample was laser-heated at 50 GPa, and data were collected both before and after laser heating

Fig. 6 Comparison of majorite and bridgmanite sample data at 0 GPa. a NIS spectra. b pDOS (upper) and reduced pDOS (lower). Majorite was
measured as the starting material in air while bridgmanite samples were measured after decompression
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partial DOS for all the elements and calculated VD using
the same approach as for the experimental data. The
equation of state parameters were taken from Caracas
and Cohen (2005). We also determined seismic wave
velocities from the full elastic tensor where elastic con-
stants were obtained from the linear relation between
stresses and strains. Uniaxial and/or pure shear strains
on the order of ±1 % and ±2 % were applied, and then
the positions of the atoms were relaxed. The elastic con-
stants were determined from the residual stresses divided
by the strains. Voigt-Reuss-Hill schemes were employed
to average the elastic tensor, and seismic wave velocities
were determined based on homogeneous aggregates.

Results and discussion
We measured room temperature NIS spectra of one
majorite composition and five bridgmanite compositions

Table 2 Debye sound velocities at high pressure determined from NIS at room temperature and DFT at 0 K

Sample Phase P VD σVD ρ Method Remarks

GPa km/s km/s g/cm3

U1219 Majorite 0 5.19 0.27 3.70 NIS Starting material

U1219 Majorite 33 5.45 0.62 4.29 NIS

U1219 Bridgmanite 0 3.56 0.46 4.31 NIS After decompression

U1219 Bridgmanite 33 5.51 0.59 4.78 NIS

U1219 Bridgmanite 41 5.80 0.66 4.87 NIS

U1219 Bridgmanite 49 6.27 0.88 4.97 NIS

U1219 Bridgmanite 62 5.62 0.55 5.11 NIS

U1219 Bridgmanite 74 6.79 1.15 5.23 NIS

U1219 Bridgmanite 89 7.23 1.17 5.37 NIS

SL16 Bridgmanite 0 3.53 0.05 4.25 NIS Multianvil sample in air

SL18 Bridgmanite 0 3.21 0.12 4.24 NIS After decompression

SL18 Bridgmanite 0 3.97 0.15 4.24 NIS After decompression

SL18 Bridgmanite 17 4.45 0.31 4.50 NIS

SL18 Bridgmanite 36 5.72 0.38 4.74 NIS

SL18 Bridgmanite 50 6.84 1.62 4.90 NIS

SL18 Bridgmanite 62 5.95 0.31 5.03 NIS

SL18 Bridgmanite 65 6.65 1.16 5.06 NIS

SL18 Bridgmanite 75 6.47 1.15 5.16 NIS

S4850 Bridgmanite 0 3.81 0.12 4.43 NIS After decompression

S4850 Bridgmanite 50 6.95 1.26 5.15 NIS Before laser heating

S4850 Bridgmanite 50 6.35 1.39 5.15 NIS After laser heating

S4850 Bridgmanite 53 5.54 0.47 5.19 NIS

S4850 Bridgmanite 72 6.14 0.69 5.40 NIS

S4883 Bridgmanite 17 5.03 0.72 4.52 NIS

S4883 Bridgmanite 55 5.11 0.53 4.99 NIS

S4883 Bridgmanite 63 5.39 0.88 5.07 NIS

MgSiO3 Bridgmanite 60 8.21 0.32 5.03 DFT From Mg partial DOS

FeSiO3 Bridgmanite 60 6.73 0.22 6.22 DFT From Fe partial DOS

Fig. 7 Influence of pressure on VD for majorite. Values from the
present study are indicated by large green circles, while literature
data are indicated by black symbols according to the legend
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as a function of pressure. In the case of majorite, sample
U1219 was first measured at 33 GPa and then laser-
heated to produce bridgmanite and measured again
without changing pressure. The NIS spectra show a clear
change between majorite and bridgmanite (Fig. 1a) that

leads to different pDOS (Fig. 1b). Subsequent compression
of the U1219 bridgmanite sample produced systematic
changes in the NIS spectra (Fig. 2a) that are reflected in the
pDOS (Fig. 2b). A similar behavior on compression was ob-
served in bridgmanite with lower iron content (SL18, Fig. 3)
and Al-containing bridgmanite with lower (S4883) and
higher (S4850) amounts of Fe3+ (Figs. 4 and 5, respectively).
Finally, we collected data for the five different samples at
ambient conditions for comparison (Fig. 6).
Debye sound velocities (VD) were calculated from

the reduced DOS in the limit as energy goes to zero
by averaging D(E)/E2 in the low-energy range as de-
scribed in Sinmyo et al. (2014). VD values for major-
ite (Table 2) are slightly lower than the results
obtained for end-member MgSiO3 majorite and solid
solutions containing Fe and/or Al that were obtained
using ultrasonics (Mg0.59Fe0.04Ca0.18Na0.03Al0.23Cr0.01-
Si0.90O3: Irifune et al. 2008; Mg0.875Al0.25Si0.875O3

and Mg0.85Al0.3Si0.85O3: Gwanmesia et al. 2009;
Mg0.95Al0.1Si0.95O3: Liu et al. 2015) and Brillouin
scattering (MgSiO3 and Mg0.875Al0.25Si0.875O3: Sino-
geikin and Bass 2002, Mg0.79Fe0.08Al0.30Si0.84O3: Mur-
akami et al. 2008) (Fig. 7). These lower values are
consistent with the higher iron content of our
majorite (Mg0.82Fe0.18SiO3). In contrast, the VD

values for bridgmanite (Table 2) are unrealistically
low compared to the results from Brillouin scattering
(Fig. 8). We can rule out the influence of local clus-
tering as a significant factor that lowers velocities

Fig. 8 Influence of pressure on VD for bridgmanite. Experimental
values from the present study are indicated by large colored circles,
while Brillouin scattering data from the literature are indicated by
small black triangles (Jackson et al. 2005) and small black circles
(Murakami et al. 2007). Values from a previous computational
determination of the elastic tensor from finite differences (Caracas
and Cohen 2005) are indicated as red triangles for MgSiO3

bridgmanite and red squares for antiferromagnetic
FeSiO3 bridgmanite

Fig. 9 DOS for MgSiO3 bridgmanite at 60 GPa calculated using DFT. The total DOS is shown in the upper left panel, while the pDOS are shown in
the other panels for the indicated element
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since the effect is too small to account for the large
discrepancy (e.g., Sinmyo et al. 2014).
For a better understanding of the DOS for end-member

bridgmanite, we calculated the total DOS for MgSiO3

bridgmanite and antiferromagnetic FeSiO3 bridgmanite as
well as the pDOS for each element at 60 GPa (Figs. 9 and
10). For consistency with previous finite difference com-
putations (Caracas and Cohen 2005), we calculated the
full elastic tensor to confirm that we obtained the same
elastic velocities within error. We then applied the same
approach used to obtain VD from the experimental DOS
obtained from NIS data to the theoretical DOS shown in
Figs. 9 and 10. We found that the VD values calculated
from each pDOS as well as the total DOS for each phase
were identical within error, i.e., the same result is obtained
irrespective of which element pDOS is used. In addition,
we found that the VD values calculated using this ap-
proach (Table 2) are consistent with values that we ob-
tained from the full elastic tensor (8.23 and 6.78 km/s for
MgSiO3 and FeSiO3, respectively).
A Birch plot for bridgmanite data from both calcu-

lations and experiments highlights the anomalous
behavior of sound velocities determined using NIS
(Fig. 11). To obtain further insight into the origin of
the low velocities of bridgmanite, we compare the
pDOS for experiments and calculations. The breadth
of vibrational states is smaller for bridgmanite calcu-
lated at 0 K compared to the experimental data at
room temperature, but it is similar for the experimental

data for both bridgmanite and majorite at room
temperature (Fig. 12, upper). In the reduced pDOS,
the enhanced intensity at low energies in the experi-
mental bridgmanite data leads to a significantly higher
intercept and hence lower velocity compared to both
calculated bridgmanite and experimental majorite (Fig. 12,
lower). While particle size (e.g., Marquardt et al. 2011) or
anisotropy (Chumakov et al. 2009) could be a factor, we
note that this effect is present in all the bridgmanite com-
positions that we measured using NIS, irrespective of sam-
ple synthesis method or history (i.e., whether they were

Fig. 10 DOS for antiferromagnetic FeSiO3 bridgmanite at 60 GPa calculated using DFT. The total DOS is shown in the upper left panel, while the
pDOS are shown in the other panels for the indicated element

Fig. 11 Birch plot of VD versus density for bridgmanite. Symbols are
the same as for Fig. 8
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synthesized in the multianvil press or by laser heating in
the DAC). While it is clear from our results that sound vel-
ocities for bridgmanite determined using NIS cannot be
used for comparison with seismic data, there is clearly
scope for further work to identify the contributions
to the vibrational DOS derived from NIS data in
order to more fully understand the lattice vibrational
properties of bridgmanite.

Conclusions
Our work has presented an extensive dataset for bridgma-
nite with different compositions based on NIS measure-
ments in a DAC as well as first-principles calculations:

(1) NIS measurements of majorite give sound
velocities that are consistent with literature data
from other methods, while NIS measurements of
bridgmanite give sound velocities that are
significantly lower than literature data.

(2) Sound velocities of bridgmanite determined
from NIS data are consistently low, irrespective
of composition or sample history.

(3) Treatment of the DOS calculated using DFT for
MgSiO3 and FeSiO3 bridgmanite using the same
approach as for the NIS data gives sound
velocities that are consistent with each other for
each phase irrespective of which partial DOS is
used.

(4) Treatment of the DOS calculated using DFT
for MgSiO3 and FeSiO3 bridgmanite using
the same approach as for the NIS data gives
sound velocities that are consistent with the
values obtained from the calculation of the full
elastic tensor.

(5)Comparison of the calculated and experimental DOS
shows enhanced intensity at low energies in the
latter that leads to the lower sound velocities.
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