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Transitional changes in microfossil
assemblages in the Japan Sea from the
Late Pliocene to Early Pleistocene related
to global climatic and local tectonic events
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Abstract

Many micropaleontological studies based on data from on-land sections, oil wells, and deep-sea drilling cores have
provided important information about environmental changes in the Japan Sea that are related to the global
climate and the local tectonics of the Japanese Islands. Here, major changes in the microfossil assemblages during
the Late Pliocene to Early Pleistocene are reviewed. Late Pliocene (3.5–2.7 Ma) surface-water assemblages were
characterized mainly by cold–temperate planktonic flora and fauna (nannofossils, diatoms, radiolarians, and
planktonic foraminifera), suggesting that nutrient-rich North Pacific surface waters entered the Japan Sea via
northern straits. The common occurrence of Pacific-type deep-water radiolarians during this period also suggests that
deep water from the North Pacific entered the Japan Sea via the northern straits, indicating a sill depth >500 m. A
weak warm-water influence is recognized along the Japanese coast, suggesting a small inflow of warm water via a
southern strait. Nannofossil and sublittoral ostracod assemblages record an abrupt cooling event at 2.75 Ma that
correlates with the onset of the Northern Hemisphere glaciation. Subsequently, cold intermediate- and deep-water
assemblages of ostracods and radiolarians increased in abundance, suggesting active ventilation and the formation of
the Japan Sea Proper Water, associated with a strengthened winter monsoon. Pacific-type deep-water radiolarians
also disappeared around 2.75 Ma, which is attributed to the intermittent occurrence of deep anoxic environments
and limited migration from the North Pacific, resulting from the near-closure or shallowing of the northern strait
by a eustatic fall in sea level and tectonic uplift of northeastern Japan. A notable reduction in primary productivity from
2.3 to 1.3 Ma also suggests that the nutrient supply from the North Pacific was restricted by the near-closure of the
northern strait. An increase in the abundance of subtropical surface fauna suggests that the inflow of the Tsushima
Warm Current into the Japan Sea via a southern strait began at 1.7 Ma. The opening of the southern strait may have
occurred after the subsidence of southwestern Japan.
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Review
The Japan Sea is a marginal sea in the northwestern
Pacific Ocean bounded by the Eurasian continent, the
Japanese Islands, and Sakhalin Island (Fig. 1). Although
this sea has deep basins with depths to 3700 m, it is con-
nected to adjacent marginal seas and the Pacific Ocean
by only four shallow straits, with sill depths of 130 m or
less. The Tsushima Strait (sill depth, 130 m) connects it
to the East China Sea, the Tsugaru Strait (130 m)

connects it to the Pacific, and the Soya (55 m) and
Mamiya (12 m) Straits connect it to the Sea of Okhotsk.
The circulation of oceanic water in this marginal sea is

driven by the inflow of the Tsushima Warm Current
(TWC), which enters from the south via the Tsushima
Strait (Fig. 1). The TWC, which branches from the
Kuroshio Current and the Taiwan Current in the East
China Sea, carries heat and nutrients into the Japan Sea
(e.g., Morimoto and Yanagi 2001; Kodama et al. 2015)
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Fig. 1 Map showing the bathymetry of the Japan Sea and the flow of surface currents. A schematic figure of the vertical water circulation in the
Japan Sea is shown on the lower right
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and thus importantly affects the climate and ecosystems
of the sea (e.g., Naganuma 2000). Seasonal variations in
the sea surface temperature (SST) of the TWC range be-
tween 13 and 27 °C in the southern part of the sea and
between 3 and 18 °C in the northern part. Part of the
TWC flows northwestward and then sinks as its density
increases in response to the cooling and sea-ice forma-
tion caused by the strong winter monsoon (Talley et al.
2003). As a result, a uniform deep-water mass character-
ized by a low temperature (0–0.5 °C) and a high dis-
solved oxygen content (5 ml/l) forms at depths below
300 m, the so-called “Japan Sea Proper Water” (JSPW)
(Fig. 1; e.g., Gamo et al. 1986; Senjyu and Sudo 1994;
Talley et al. 2003). Therefore, the deep-water biofacies in
the JSPW are isolated from the open Pacific Ocean (e.g.,
Naganuma 2000).
In contrast to the well-ventilated deep water of the

present day, the bottom conditions are known to have
been anoxic during the last glacial period, associated
with a covering of low-salinity surface water (e.g., Oba et
al. 1991). Tada (1994) demonstrated that such large fluc-
tuations between oxic and anoxic bottom conditions oc-
curred since the Late Pliocene (2.6 Ma) and were
probably related to the onset of the Northern Hemi-
sphere glaciation (NHG) with the global cooling trend
and to the uplift of the northeastern Japanese Islands.
Microfossils, used as index and facies fossils, are a

powerful tool for reconstructing the paleogeographic
and paleoenvironmental histories of the Japan Sea. A
huge amount of micropaleontological data is available
from on-land sections, oil wells, and deep-sea drilling
cores obtained during cruises such as Deep Sea Drilling
Project (DSDP) Leg 31 (sites 299–302) and Ocean
Drilling Program (ODP) Leg 127/128 (sites 794–799). In
particular, Expedition 346 of the Integrated Ocean Dril-
ling Program (IODP) recently collected deep-sea drilling
cores from seven sites in the Japan Sea and two sites in
the northern East China Sea (Tada et al. 2015).
The aim of this article is to review the literature on

the microfossil assemblages in the Japan Sea, focusing
on calcareous nannofossils, diatoms, radiolarians,
foraminifera, and ostracods during the Late Pliocene
to Early Pleistocene transition (3.5–0.8 Ma), and to
discuss the relationships between the changes in these
assemblages and both global climatic changes and local
or regional tectonics. Different microfossil groups
provide different environmental information according
to their ecological preferences, such as habitat depth,
and the water masses with which they are associated
(Table 1). A comprehensive interpretation of the
microfossil assemblages in the Japan Sea during the
Pliocene–Pleistocene transition is expected to improve
our understanding of the oceanographic changes in
the sea and their relationships to both variations in

the global climate and the topographic changes caused
by regional and local tectonic activities.
Many important publications written in Japanese, in

addition to those written in English, are included in this
review, so that the information they contain might be-
come accessible to a larger group of readers. However,
because space is restricted, it is unrealistic to show all
the publications dealing with microfossils in the Japan
Sea because they are too many. Therefore, papers
describing quantitative or semiquantitative data, such
as fossil abundances and/or percentages of specific
species, have been included, whereas others are only
noted in an overview. Most abstracts and reports
addressed to closed communities are not included.
The geological ages of each section of on-land and

deep-sea cores are basically referred to the biozones
listed in Table 2. All ages in this review have been
converted from those of the original publications to the
GTS2012 time scale (Gradstein et al. 2012), usually to
within 0.1 million years. However, the ages of nannofos-
sil bioevents are given to within 0.01 million years, be-
cause they are well documented and their age estimates
have been correlated with the magnetostratigraphy of
the North Atlantic Ocean and the Japan Sea (e.g.,
Takayama and Sato 1987, Takayama et al. 1988; Sato et
al. 1988a, 2009; Watanabe et al. 2003).

Geological and geographic settings
The Japan Sea is a back-arc basin opened during the
Early to Middle Miocene (ca. 25–13 Ma) as a result of
continental rifting throughout the back-arc margin with
the extension of regional tectonic stress (e.g., Sato 1994).
The Japan Basin is underlain by an oceanic-type crust,
dated at around 24–17 Ma at the basaltic basement at
ODP site 795, whereas the Yamato Basin, which is youn-
ger (21–18 Ma), is unlikely to be an oceanic-type crust
(Tamaki et al. 1992; Kaneoka et al. 1992). The tectonic
stress changed to compression after 3.5 Ma, causing the
uplift of northeast Japan (e.g., Nakajima et al. 2006). In
the southwestern Japan Sea, a tectonic event, such as
intra-arc folding under N–S compressive stress, resulted
in the closure of the Tsushima Strait during the Late
Miocene, and the attenuation of the N–S compression
in southwest Japan seems to have been related to the
reopening of the Tsushima Strait in the Late Pliocene
(Itoh et al. 1997).
On-land sections that include Pliocene and Early Pleis-

tocene marine deposits are widely distributed from
Hokkaido Island southward to central Honshu Island
in southwestern Japan (Figs. 1 and 2; Table 2). The
Pliocene geography of the Japan Sea has been recon-
structed using data from these on-land sections and
wells, together with data from ocean drilling cores
(Iijima and Tada 1990; Chinzei 1991; Ogasawara 1994;
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Table 1 Ecological locations of each microfossil group

Calcareous nannofossil Phytoplankton Calcareous Surface water Subtropical water

Discoaster spp. (extincted)

Warm and high-nutrient water

Reticulofenestra spp. (small type)

Cold water

Coccolithus pelagicus

Diatom Phytoplankton Opal Surface water Warm water

Actinocyclus ellipticus, A. elongatus, Alveus marinus,
Asterolampra marylandica, Asteromphalus arachne,
A. flabellatus, A. imbricatus, A. pettersonii, A. sarcophagus,
Azpeitia africanus, A. nodulifera, A. tabularis, Fragilariopsis
doliolus, Hemidiscus cuneiformis, Nitzschia interruptestriata,
N. kolaczekii, Planktoniella sol, Pseudosolenia calcar-avis,
Rhizosolenia acuminata, R. bergonii, R. hebetata f. semispina,
R. imbricata, Roperia tessellata, Thalassiosira leptopus,
T. oestrupii

Cold water

Actinocyclus curvatulus, A. ochotensis, Asteromphalus
hyalinus, A. robustus, Bacterosira fragilis, Chaetoceros
furcellatus, Coscinodiscus marginatus, C. oculus-iridis,
Fragilariopsis cylindrus, F. oceanica, Neodenticula seminae,
Porosira glacilis, Rhizosolenia hebetata, Thalassiosira gravida,
T. hyalina, T. kryophila, T. nordenskioldii, T. trifulta
Td' = warm/(warm + cold)

Brackish water

Paralia sulcata

Radiolaria Protista Opal Surface to deep water Warm water

Tetrapyle octacantha group, Dictocoryne profunda,
Dictocoryne truncatum, Didymocyrtis tetrathalamus,
Euchitonia flucata

Temperate water

Actinomma medianum group, Lithelius minor

Deep water

Cornutella profunda, Bathropyramis woodringi (Pacific);
Cycladophora davisiana, Actinomma boreale group (JSPW)

Planktonic foraminifera Protista Calcareous Surface to
intermediate water

Subtropical water

Globigerinoides ruber, Pulleniatina spp. group

Temperate intermediate water

Globorotalia inflata

Cold water

Neogloboquadrina pachyderma

Benthic foraminifera Protista Calcareous
agglutinated

Sublittoral to
abyssal seafloor

Littoral-sublittoral

Cassidulina yabei, Hanzawaia nipponica, Elphidium spp.,
Buccella spp.

Bathyal

Uvigerina subperegrina, Epistominella pacifica,
Angulogerina ikebei, Uvigerina yabei

Abyssal

Miliammina echigoensis, Martinottiella communis,
Cribrostomoides subglobosus, Guppyella miocenica,
Cyclammina japonica
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Kitamuta 2008). Figure 2 is a reconstructed geo-
graphic map of the Late Pliocene, compiled from
these previous works. During the Late Pliocene, a wide
strait between southwestern Hokkaido and northern
Honshu, corresponding to the modern Tsugaru Strait,
connected the Japan Sea with the North Pacific Ocean
(Fig. 2). In contrast, the area around the present Tsushima
Strait, at the southern end of the sea, was probably
occupied by a land bridge or at most, a narrow strait,
indicated by the lack of Pliocene marine deposits on
southwestern Honshu and the northern Kyushu
islands.
In on-land stratigraphic sections, the Pliocene sequence

is mainly composed of diatom-bearing mudstone,
which is covered by sandy, shallow-water Pleistocene
deposits, sometimes unconformably (Fig. 3; Table 2).
Based on the benthic foraminiferal assemblages in
these sequences, the lithological change from mud to
sand has been interpreted as reflecting a change from
a bathyal (ca. 1000 m) to a sublittoral (<100 m) depo-
sitional environment during the Early Pleistocene
(Matoba 1984). This large-scale shallowing of the de-
positional depth cannot be explained simply by the
eustatic fall in sea level (about 100 m) but probably
also reflects the uplift of northeastern Honshu Island
with intensified compression (Sato 1994; Nakajima et
al. 2006), which occurred between 3.5 and 1.7 Ma
(Sato et al. 2012).
Figure 3 shows schematically the lithofacies in a

deep-sea core obtained during ODP Leg 127 (Tada
1994) and their correlations with typical on-land sec-
tions obtained in various districts of Japan. Unit 2 of
the deep-sea core, which consists of Pliocene diatom-
aceous mudstone, can also be identified in the various
on-land sections. Unit 1 in the deep-sea core, which
is characterized by alternating dark and light layers of
hemipelagic mud, tends to correlate with sandy se-
quences in the on-land sections. The dark–light alter-
nations in the deep-sea core imply that the bottom
water became anoxic periodically (Tada 1994).

Changes in the microfossil groups
Figure 4 is a compilation of the Pliocene and Pleisto-
cene biostratigraphic zones of the microfossil groups
usually used in the Japan Sea. Although most bioe-
vents originally proposed based on data from the
North Pacific can also be identified in the Japan Sea,
the results from the DSDP and ODP cores indicate
that some Pleistocene radiolarian events are missing
from the Japan Sea or occur with a large time lag
(Ling 1992; Alexandrovich 1992). For this reason, the
boundaries of the Pleistocene radiolarian zones in
Fig. 4 are indicated with dashed lines, reflecting their
uncertainty (Tada et al. 2015). In contrast, the plank-
tonic and benthic foraminiferal zones are unique to
the Japan Sea, probably because the Japan Sea was
isolated from the adjacent seas.
In this section, the floral and faunal changes in the

diatoms, calcareous nannofossils, radiolarians, plank-
tonic foraminifera, benthic foraminifera, and ostracods
in the Japan Sea are described. The temporal changes
in the absolute abundance of each microfossil group
and in the relative abundances of several important
species are shown in Figs. 5 and 6, respectively.
Biogeographic distribution patterns are closely related

to climatic zonation, such as the tropical, subtropical,
transition, subarctic, and arctic zones. Warm- and cold-
water species, terms often used in the paper previously
published, include the tropical–subtropical groups and
the subarctic–arctic groups, respectively. Around Japan,
warm-water species are usually distributed in the
subtropical waters influenced by the Tsushima and
Kuroshio Currents, whereas the cold-water species
mainly occur in the subarctic waters of the Oyashio
Current.

Diatoms
Pioneer work on the biostratigraphy of Neogene dia-
toms has been carried out on on-land sections from
the Tsugaru district (Koizumi 1966), Akita district
(Oga Peninsula) (Koizumi 1968), and DSDP–ODP

Table 1 Ecological locations of each microfossil group (Continued)

Ostracoda Copepoda Calcareous Sublittoral to bathyal seafloor Warm sublittoral

Cornucoquimba moniwensis, Cytheropteron
miurense

Cold sublittoral

Baffinicythere subkotoraforma, Schizocythere okhotskensis,
Johnnealella nopporensis, Semicytherura mainensis

Warm upper bathyal

Krithe spp.

Cold upper bathyal

Acanthocythereis dunelmensis
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Table 2 Typical on-land sections along the Japanese coast and records of microfossils from these areas

District Formation Lithology Microfossils Biozone Bathymetry

1. Hokkaido
(north)

Yuchi/
Mochikubetsu

Fine sandstone Diatom (Akiba, 2001; Sagayama, 2003) NPD9 (younger than 2.4 Ma) (Akiba, 2001)

NPD8 (Sagayama, 2003)

Koetoi/Enbetsu Diatomaceous
mudstone

Diatom (Akiba, 2001) NPD7B–NPD8 (Akiba, 2001)

2. Hokkaido
(southwest)

Setana/Urura Medium–coarse
sandstone

Foraminifera (Nojo et al., 1999; Nemoto
and Oikawa, 2006), nannofossil
(Nojo et al., 1999)

CN13b–CN14a, PF8 (Nojo et al., 1999) Sublittoral to upper bathyal
(Nemoto and Oikawa, 2006)

Kuromatsunai
(type locality)

Medium sand–siltstone Foraminifera (Masatani and Ohkura, 1980;
Tsubakihara et al., 1989), diatom (Masatani
and Ohkura, 1980; Tsubakihara et al., 1989)

NPD9 (Tsubakihara et al., 1989) Lower sublittoral to middle bathyal
(Masatani and Ohkura, 1980)

Tate Diatomaceous siltstone Foraminifera (Masatani and Ohkura, 1980),
diatom (Masatani and Ohkura, 1980)

NPD7B–NPD8 (Masatani and Ohkura, 1980) Sublittoral to bathyal (Masatani and
Ohkura, 1980)

3. Shimokita
Peninsula

Hamada Sandstone–siltstone Foraminifera (Sugawara et al., 1997; Nemoto
and Yoshimoto, 2001), Ostracoda (Ozawa
and Domitsu, 2010)

CN13 (ca. 1.2–1.5 Ma, Sugawara et al., 1997) Upper shelf to inner bay (Ozawa
and Domitsu, 2010), inner sublittoral
to upper bathyal (Nemoto and
Yoshimoto, 2001)

PF7 (Sugawara et al., 1997)

4. Tsugaru Daishaka Fine–medium sandstone Foraminifera (Hata and Nemoto, 2005),
Ostracoda (Ozawa, 2007)

PF8/PF9 (Hata and Nemoto, 2005) Sublittoral to upper bathyal (Hata and
Nemoto, 2005)

Tsukushimoriyama Fine sandstone–siltstone Foraminifera (Hata and Nemoto, 2005) PF7 (Hata and Nemoto, 2005) Upper bathyal (Hata and
Nemoto, 2005)

Narusawa Fine sandstone Nannofossil (Okada, 1988), Foraminifera
(Matoba, 1988), diatom (Maruyama, 1988;
Akiba and Hiramatsu, 1988)

CN12 (Okada, 1988) Upper bathyal (Matoba, 1988)

NPD8 (Akiba and Hiramatsu, 1988)

NPD9 (according to present of N. seminae in
occurrence list of Maruyama, 1988)

Maido Diatomaceous, siltstone Foraminifera (Nemoto 1990), Radiolaria
(Hanagata and Miwa, 2002), diatom
(Maruyama, 1988; Akiba and Hiramatsu, 1988)

PF6–PF7 (Nemoto 1990) Middle/lower bathyal (lower part:
Matoba, 1988) to upper bathyal
(upper part: Nemoto 1990)NPD7B–NPD8 (Maruyama, 1988; Akiba and

Hiramatsu, 1988)

L. pylomaticus–C. sakaii zone (Hanagata
and Miwa, 2002)

5. Akita (Oga
Peninsula)

Kitaura Alternations of fine
sandstone and siltstone

Foraminifera (Sato et al., 1988a), nannofossil
(Sato et al., 1988a)

PF7 (Sato et al., 1988a) Upper bathyal (according to the
U. subperegrina assemblage)

U. subperegrina zone (Sato et al., 1988a)

CN13 including datum 12 to 6 of Sato
et al. (2009), (Sato et al., 1988a)

Funakawa Diatomaceous
mudstone–siltstone

Foraminifera (Sato et al., 1988a), nannofossil
(Sato et al., 1988a), Radiolaria
(Hanagata et al. 2001b)

M. echigoensis zone (Sato et al., 1988a;
Hanagata et al. 2001b)

Middle bathyal (according to the
M. echigoensis assemblage)

L. pylomaticus–C. sakaii zone (Hanagata
et al. 2001b)
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Table 2 Typical on-land sections along the Japanese coast and records of microfossils from these areas (Continued)

5. Akita
(Sasaoka area)

Sasaoka Fine sandstone–siltstone Foraminifera (Sato et al., 1988a),
nannofossil (Sato et al., 1988a),
Ostracoda (Yamada et al., 2002;
Irizuki and Ishida, 2007)

C. yabei zone (Sato et al., 1988a) Sublittoral (according to the
C. yabei assemblage)

Tentokuji Siltstone–mudstone Foraminifera (Sato et al., 1988a; Hanagata
and Watanabe, 2001), nannofossil
(Sato et al., 1988a; Hanagata and
Watanabe, 2001)

PF6–PF7 (Hanagata and Watanabe, 2001) Upper bathyal (Hanagata and
Watanabe, 2001)

CN12 including Datum A (Sato et al., 1988a;
Hanagata and Watanabe, 2001)

M. echigoensis to U. subperegrina zone
(Sato et al., 1988a; Hanagata and Watanabe, 2001)

6. Niigata Haizume Sandy siltstone–
sandstone

Foraminifera (Sato et al., 1987), nannofossil
(Sato et al., 1987)

PF8 (Sato et al., 1987) Sublittoral (according to the
C. yabei assemblage)

C. yabei zone (Sato
et al., 1987)

Nishiyama Siltstone–mudstone Foraminifera (Sato et al., 1987), nannofossil
(Sato et al., 1987)

PF7 (Sato et al., 1987) Upper bathyal (according to the
U. subperegrina assemblage)

U. subperegrina zone (Sato et al., 1987)

CN13 including datum 10 to 8 of Sato et al.
(2009, 1987)

Tanihama Siltstone Foraminifera (Watanabe, 1976), diatom
(Yanagisawa and Amano 2003)

NPD9 (Yanagisawa and Amano 2003) Upper bathyal (according to the
U. subperegrina assemblage)

U. subperegrina zone (Watanabe, 1976)

Nadachi Mudstone Foraminifera (Watanabe, 1976), diatom
(Yanagisawa and Amano 2003)

NPD8 (Yanagisawa and Amano 2003) Upper bathyal (according to the
U. subperegrina assemblage)

U. subperegrina zone (Watanabe, 1976)

Kuwae Siltstone–sandy siltstone Foraminifera (Miwa et al., 2004a), diatom
(Watanabe et al., 2003), nannofossil
(Watanabe et al., 2003), Ostracoda
(Yamada et al., 2005; Irizuki and Ishida,
2007; Irizuki et al., 2007)

PF7 (Miwa et al., 2004a) Lower sublittoral to upper bathyal
(Yamada et al. 2005)

NPD8–NPD9 (Watanabe et al., 2003)

Shiiya Alternation of sandstone
and mudstone

Foraminifera (Hanagata et al., 2001a),
Radiolaria (Hanagata et al., 2001a)

L. pylomaticus–C. sakaii zone before 2.7 Ma
(Hanagata et al. 2001a)

Middle bathyal (according to the
M. echigoensis assemblage)

M. echigoensis zone (Hanagata et al. 2001a)

7. Hokuriku Omma Fine sand–very fine
sand

Foraminifera (Hasegawa, 1979; Takayama
et al., 1988; Kitamura et al., 2001; Takata,
2000), nannofossil (Takayama et al., 1988),
Ostracoda (Ozawa and Kamiya, 2001; 2005)

CN13–CN14 (Takayama et al., 1988; Takata, 2000) Outer–inner sublittoral (Takata, 2000)

Junicho Silty sandstone–sandy
siltstone

Foraminifera (Hasegawa, 1979; Takayama
et al., 1988), nannofossil (Hasegawa, 1979;
Takayama et al., 1988)

CN13 including datum 12 to
11 of Sato et al. (2009) (Takayama et al., 1988)

Sublittoral (Takayama et al., 1988)

Yabuta Fine sandstone–siltstone Foraminifera (Hasegawa, 1979; Takayama
et al., 1988; Miwa et al., 2004b), diatom
(Watanabe, 2002), nannofossil (Takayama
et al., 1988), Ostracoda (Cronin et al., 1994)

NPD7B–NPD9 (Watanabe, 2002) Sublittoral to upper bathyal
(Takayama et al., 1988;
Cronin et al., 1994)PF6–PF 7 (Miwa et al., 2004b)
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Table 2 Typical on-land sections along the Japanese coast and records of microfossils from these areas (Continued)

8. Jeju Island Sogwipo Fine–coarse sandstone Foraminifera (Kang et al., 2010), nannofossil
(Yi et al. 1998), Ostracoda (Lee, 2014)

CN13a–CN14a (Yi et al. 1998) Foreshore–inner shelf (Kang, 1995)

9. Okinawa Ryukyu Group Bioclastic limestone/
siltstone

Foraminifera (Yamamoto et al., 2003),
nannofossil (Yamamoto et al., 2005)

CN13b–CN14a (Yamamoto et al., 2005) Reef–shelf (Yamamoto et al., 2003)

Shimajiri Group Siltstone Foraminifera (Ujiié and Kaneko, 2006),
nannofossil (Tanaka and Ujiié 1984)

N16–N22 (Ujiié and Kaneko, 2006) Upper bathyal (Ujiié and
Kaneko, 2006)

CN9a–CN13a (Tanaka and Ujiié 1984)
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sites in the Japan Sea (Koizumi 1975, 1992a). These
studies have reported that the widely distributed Plio-
cene diatomaceous deposits are mainly composed of
marine diatoms, suggesting the presence of nutrient-
rich seawater. However, the preservation of siliceous
microfossils deteriorated from 2.9 to 2.3 Ma (White
and Alexandrovich 1992), and diatom abundances de-
creased thereafter, most notably from ca. 2.3 Ma until
ca. 1.3 Ma at ODP Leg 127 sites 794–797 (Koizumi
1992a; Koizumi and Yamamoto in press; Fig. 5). This
reduction can be interpreted as reflecting a reduced nu-
trient supply from the Pacific, resulting from the shal-
lowing of the Tsugaru Strait (White and Alexandrovich
1992). After ca. 1.3 Ma, the diatom abundance

fluctuated greatly with the glacial and interglacial cycles
(Koizumi 1992a, 1992b). Although the diatom abun-
dance data for the Pliocene to Pleistocene have not
been reported at Leg 128 ODP site 798 (980 m water
depth in the southern Japan Sea), the biogenic opal
content, consisting mainly of diatom skeletons, was
higher during 2.6–1.3 Ma at this site (Dunbar et al.
1992), a pattern opposite that of the diatom abundance
at the ODP Leg 127 sites in more northerly and deeper
waters (Fig. 5).
Koizumi (1992b) noted that the Miocene to Pliocene

diatom assemblages collected during ODP Leg 127
were dominated by cold-water species, such as Coscino-
discus marginatus and Neodenticula kamtscatica, and
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(3.5–2.6 Ma)
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Fig. 2 Reconstructed paleogeography of the late Pliocene, modified from Iijima and Tada (1990) and Ogasawara (1994). The locations of the
on-land geological sections and drill sites of the DSDP, ODP, and IODP expeditions are shown
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were not significantly influenced by warm water enter-
ing from the southern strait. He also reported that
Paralia sulcata was more abundant after 3.5 Ma at
southern sites (797 and 794) and after 2 Ma at northern
sites (795 and 796), which he attributed to the inflow of

brackish water from the Yellow Sea via the southern
strait. Yanagisawa and Amano (2003) noted that in the
diatom assemblages from the Nadachi and Tanihama
formations in the Niigata district (Fig. 3; Table 2),
which correspond to the period from 3.9/3.6 to 2.0/
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2.1 Ma, warm-water species existed alongside the
cold-water assemblage at 3.2–2.7 Ma and 2.4–2.0 Ma,
suggesting the presence of mixed cold and warm
water during those intervals (Fig. 6 (i)).
Koizumi and Yamamoto (in press) recently recon-

structed the SST changes during the Pliocene to Pleis-
tocene based on Td’ values, a temperature index of
diatom fossil assemblages, from ODP site 797 (central
Japan Sea, from 3 Ma), site 798 (southern Japan Sea,
from 1.3 Ma), and DSDP site 436 (Northwest Pacific off
northern Honshu, from 3.6 Ma) (Fig. 6 (h)). In the
Japan Sea (site 797), the SST dropped at 2.6 Ma and in-
creased toward 2 Ma. In contrast, on the Pacific side
(site 436), the SST was nearly 20 °C during the Late
Pliocene but decreased thereafter from 21.7 °C at
2.1 Ma to 10 °C at 1.4 Ma. As shown in Fig. 6 (h), the
difference in SST between sites 797 and 436 was larger
during the Late Pliocene but declined after 1.7 Ma.

Calcareous nannofossils
Calcareous nannofossils were reported from the deep-sea
cores of ODP Leg 127 (Rahman 1992) and Leg 128 (Muza
1992). At site 798, nannofossils occur at well-defined in-
tervals, separated by equally well-defined barren intervals,
from 1.7 Ma onward, but they occur only sporadically and
very sparsely before 2.0 Ma (Muza 1992). Their occur-
rence patterns are closely related to the patterns of CaCO3

content (Fig. 5). However, the nannofossil abundances are
much lower at deeper sites (794, 2825 m; 795, 3374 m;
796, 2223 m; 797, 2945 m; and 799, 2073 m) (Muza 1992;
Rahman 1992) than at site 798 (980 m). Well-preserved
nannofossil records during the late Pliocene to Pleistocene
(after 3.85 Ma) are also available in on-land sections (e.g.,
Takayama et al. 1988; Sato et al. 1988a, Sato et al. 2012),
which were deposited at shallower water depths than
at the ODP sites. These results suggest that the cal-
cite compensation depth (CCD) was less than 1000 m
before 1.7 Ma and increased to 2000 m thereafter, as
it is in the present day (Ujiié and Ichikura 1973).
High-resolution biostratigraphic data collected in the

North Atlantic Ocean (Takayama and Sato 1987) have been
applied to the Late Pliocene–Pleistocene on-land sections
and oil-well data from the Japan Sea side of the Japanese
Islands (Fig. 4) (e.g., Takayama et al. 1988; Sato et al. 1988a,
2004). The bioevent known as “Datum A” in the subarctic
area of the North Pacific Ocean, defined as a dramatic floral
change from a Reticulofenestra-dominant assemblage to a
Coccolithus pelagicus-dominant assemblage at 2.75 Ma, has
also been identified in the Japan Sea (Fig. 6 (d)) (Sato et al.
2002, 2012). This dramatic floral change probably indicates a
change in paleoceanographic conditions. The high abun-
dance of Reticulofenestra spp. (small type) before 2.75 Ma in
the Japan Sea (Sato et al. 2002, 2012) can be explained
by the presence of high-nutrient water (Tanaka and

Takahashi 2001), whereas the rapid increase in the
abundance of the cold-water species C. pelagicus after
2.75 Ma is interpreted as a result of global cooling, known
as the onset of the NHG (Sato et al. 2002, 2012).
In the middle- to low-latitude areas on the Pacific

side of the central Japanese Islands, the nannofossil
assemblages were dominated by the subtropical group
Discoaster spp. in ca. 4–2 Ma, without the “Datum
A” event at 2.75 Ma, but no such subtropical group
is found on the Japan Sea side (Sato et al. 2002). This
finding suggests that the biotic province in the Japan
Sea was derived from the boreal Pacific province,
rather than from the subtropical Pacific province.

Radiolarians
The assemblages of radiolarian fossils preserved in mar-
ine deposits in on-land sections along the Japan Sea have
been divided into zones and used since the 1950s for
the stratigraphic correlation of the geological succes-
sion (e.g., Nakaseko 1959, 1960; Nakaseko et al. 1972;
Nakaseko and Sugano 1973). More recently, the
standard radiolarian biostratigraphy for the mid- to
high-latitude North Pacific has been applied to the
marine deposits of the Japan Sea (e.g., Motoyama
1996; Motoyama and Maruyama 1996). However,
some Pleistocene data could not be applied to the
Japan Sea because of the large time lag between their
occurrence at the DSDP and ODP sites and their oc-
currence in the Pacific (Ling 1992; Alexandrovich
1992; Motoyama 1996). For example, the last occur-
rence of Stylacontalium aquilonaris, which is widely
recognized in the Pacific at 0.33 Ma (Matsuzaki et al.
2015b), is substantially earlier in the Japan Sea. More-
over, the occurrence of Eucyrtidium matsuyamai be-
tween 1.05 and 1.80 Ma in the Pacific (Matsuzaki et
al. 2015a) is difficult to identify at all in the Japan
Sea. Therefore, it may be necessary to establish a
separate radiolarian biostratigraphy for the Japan Sea.
At ODP site 794, radiolarians occurred abundantly

during the Miocene to Pliocene and decreased signifi-
cantly from 2.3 to 1.3 Ma (Fig. 5). Thereafter, their
abundance fluctuated greatly. This fluctuating pattern,
which is similar to that in the diatom abundance, re-
flects productivity changes in the siliceous plankton
in surface waters.
Kamikuri and Motoyama (2007) analyzed the radio-

larian assemblages in the period 8–0.6 Ma from
DSDP site 302 (Fig. 1) and compared them with the
assemblages at ODP site 1151, located at almost the
same latitude in the northwestern Pacific, and at
ODP site 884, in the subarctic Pacific. The species
diversity index was almost the same in the Japan Sea
and the North Pacific until 3.5 Ma but decreased
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significantly in the Japan Sea after 3.5 Ma, probably
reflecting the isolation of the Japan Sea from the
Pacific at that time. Moreover, typical deep-water spe-
cies that are common in the modern world ocean,
such as Cornutella profinda and Bathropyramis woo-
dringi (Casey 1977), disappeared from the Japan Sea
after 2.6 Ma and were replaced by the Cycladophora
davisiana and Actinomma boreale group (Fig. 6 (c)),
which is found in the JSPW today (Itaki 2003).
The distributions of tropical and subtropical species,

such as the Tetrapyle octacantha group, Dictocoryne
profunda, Dictocoryne truncatum, Didymocyrtis tetra-
thalamus, and Euchitonia flucata, are closely related to
the TWC in the Japan Sea (Motoyama et al. in press).
The occurrence of warm-water fauna in all samples
younger than approximately 1.8 Ma containing pre-
served radiolarians from ODP site 797 indicates that the
TWC probably began to flow into the Japan Sea at that
time (Alexandrovich 1992). According to Kamikuri and
Motoyama (2007), who analyzed the radiolarian assem-
blages from DSDP site 302, the Pliocene radiolarian
assemblages contained temperate-water species, such as
the Actinomma medianum group and Lithelius minor,
which are minor species during the Pleistocene,
whereas the subtropical species appeared after 2.2 Ma.
These results suggest that in the Early Pleistocene, the
temperate surface water entering the Japan Sea via
the northern strait was replaced by subtropical water
entering via the southern strait.

Planktonic foraminifera
The biostratigraphic zonation of planktonic foraminifera
established by Maiya (1978) for petroleum exploration is
unique to the Japan Sea and independent of the standard
zonation used in the Pacific Ocean (e.g., Blow 1969). A
unique set of bioevents, called the No. 1, No. 2, and No.
3 Globorotalia inflata beds, defined by the abundant
occurrence of G. inflata, date to 0.8, 1.2–1.4, and 2.7–
3.3 Ma, respectively (Fig. 4). A high abundance of G.
inflata is known to indicate the presence of warm water
(e.g., Maiya et al. 1976; Kitamura et al. 2001). Although
the subtropical planktonic foraminifer Globigerinoides
ruber also occurs in the No. 1 and No. 2 G. inflata beds,
it is not found in the No. 3 G. inflata bed (e.g., Kitamura
and Kimoto 2006). Similarly, the Pulleniatina group,
which is characteristic of Kuroshio water, is also absent
from the No. 3 G. inflata bed (Miwa et al. 2004a,
2004b). In the northwestern Pacific, G. ruber is a sub-
tropical surface-water species, whereas G. inflata is dis-
tributed in temperate to subtropical waters between 20°
and 40° N, at depths shallower than 200 m (Thompson
1981; Tsuchihashi and Oda 2001). In the No. 1 and No.
2 G. inflata beds, G. inflata is accompanied by G. ruber,
so G. inflata probably entered the Japan Sea via the

southern strait. In contrast, the occurrence of abundant
G. inflata without G. ruber or other Kuroshio indicators
in the No. 3 G. inflata bed suggests that the plankton
assemblage entered the Japan Sea with temperate
water via the northern strait (Hanagata and Watanabe
2001; Miwa et al. 2004a, 2004b; Kitamura and Kimoto
2006; Hanagata 2007). During the Late Pliocene interval
corresponding to the No. 3 G. inflata bed (2.7–3.3 Ma),
the alkenone-based SST at ODP site 1208 in the north-
western Pacific was 20–24 °C, which is warmer than the
Late Pleistocene SST range (15–20 °C) (LaRiviere et al.
2012). This warmer Pliocene SST probably allowed a
northward shift in the G. inflata distribution, result-
ing in its higher abundance around the mouth of the
northern strait.
Kitamura and Kimoto (2006) reconstructed the his-

tory of the TWC from the occurrences of the subtrop-
ical species G. ruber and other warm-water fossils from
3.5 to 0.8 Ma in on-land sections along the western
coast of Honshu Island. Because G. ruber occurred only
sporadically during the interglacial periods before
1.7 Ma, they inferred its very limited transport by the
TWC before that date. However, after 1.7 Ma, a signifi-
cant inflow of subtropical water occurred during each
interglacial period, as indicated by corresponding in-
creases in G. ruber (Fig. 6 (e)). The initial increase in
the TWC inflow coincided with an increase in the
CaCO3 content of the Japan Sea sediments (Fig. 6 (g)).
The TWC inflow was probably initiated by the open-
ing of the southern strait and the migration of the
Kuroshio water into the East China Sea, which almost
coincided with the formation of the Okinawa Trough
(Shinjo 1999).
In the subpolar species Neogloboquadrina pachy-

derma, the left-coiling (sinistral) variant is associated
with cold-water masses, and this variant was dominant,
although with large fluctuations, after 1.2 Ma in the
Japan Sea (Fig. 6 (f )) (e.g., Kheradyar 1992), suggesting
that large climatic changes accompanied the amplified
glacial cycles during the Mid-Pleistocene transition.
The proportion of the right-coiling (dextral) variant
increases dramatically at SSTs between 6 and 10 °C
(Darling et al. 2006).

Benthic foraminifera
The benthic foraminiferal zones in the Japan Sea are
mainly based on the characteristic faunal compositions
of on-land sections. Three biozones, the Miliammina
echigoensis, Uvigerina subperegrina, and Cassidulina
yabei zones (in ascending order through the Pliocene to
Pleistocene sequences), were established by Matsunaga
(1963) (Fig. 4). As inferred from the depth distribution
of modern foraminifera, the agglutinated fauna of the
M. echigoensis zone (= M. echigoensis–M. nodulosa

Itaki Progress in Earth and Planetary Science  (2016) 3:11 Page 13 of 21



zone of Matoba 1990) indicates an abyssal assemblage,
usually distributed below the CCD, and the calcareous
fauna of the U. subperegrina and C. yabei zones (= C.
norcrossi–U. akitaensis zone of Matoba 1990) is a
lower–upper bathyal assemblage (Matoba 1990). There-
fore, the faunal change from the M. echigoensis zone to
the U. subperegrina zone probably resulted from a shal-
lowing of the water depth, reflecting the uplift of the
northern Japanese islands (e.g., Sato et al. 1988b;
Matoba 1990). Although the boundary between the
agglutinated and calcareous assemblages is generally
recognized around the Pliocene–Pleistocene transition
(Fig. 4), the exact timing of the transition varies
among sections, according to the water depth at
which each was deposited (e.g., Sato et al. 1988b;
Matoba 1992; Kato 1992; Hanagata 2007).
The shallowing of the water depth of benthic forami-

niferal deposition from the Late Pliocene to the Early
Pleistocene has also been observed in assemblages in
on-land sections from the Tsugaru Peninsula (northern
Honshu Island) and southwestern Hokkaido Island,
where a northern strait was probably located. The upper
bathyal assemblage is recognized in the Pliocene Tsu-
kushimoriyama Formation (2.9–2.4 Ma) on the Tsugaru
Peninsula (Hata and Nemoto 2005), and lower sublit-
toral Pleistocene assemblages (1.5–1.1 Ma) are recog-
nized in the Daisyaka Formation on northern Honshu
Island (Hata and Nemoto 2005) and in the Setana
Formation on southwestern Hokkaido Island (Nojo et
al. 1999). The latter two formations unconformably
contact the underlying strata (Fig. 3). The widespread
distribution of these lower sublittoral assemblages
implies the existence of a shallow, wide northern
strait from 1.5 to 1.1 Ma.

Ostracods
Shallow-water ostracods from the Sasaoka Formation
show a reduction in warm-water species and an increase
in temperate–subarctic species at 2.75 Ma (Irizuki and
Ishida 2007) as a result of cooling at the NHG (e.g., Sato
et al. 2002). This change is consistent with the obser-
vation of ice-rafted debris (IRD) in the northern Japan
Sea beginning in ca. 2.6 Ma (Fig. 6; Tada 1994).
In the Kuwae Formation, the lower sublittoral–upper

bathyal assemblages from 3.5 to 2.6 Ma show cyclic
changes with a 41-kyr periodicity, related to eustatic sea
level changes (Yamada et al. 2005; Irizuki et al. 2007;
Irizuki and Ishida 2007). During the interglacial periods
between 3.1 and 2.8 Ma, the assemblage included tem-
perate intermediate-water species, such as Krithe spp.,
which suggests water temperatures between 6 and 20 °C
and a muddy seafloor at depths of 100–800 m (Irizuki et
al. 2007). The intermediate water was probably warmer
than it is today, especially from 3.0 to 2.9 Ma. Because

these species are presently distributed in the East China
Sea, their occurrence in the Pliocene Japan Sea is inter-
preted as indicating their migration via the southern
strait (Irizuki et al. 2007). From 2.8 to 2.6 Ma, temperate
intermediate-water species were rare, and cold
intermediate-water species increased in abundance
(Yamada et al. 2005). These results suggest that cold
intermediate water, similar to JSPW, formed in associ-
ation with the global cooling episode at that time.
The ostracod analysis indicates that the sea level in the

Japan Sea fell during the NHG. In the Yabuta Formation
(3.4–2.3 Ma), the ostracod assemblages suggest an envir-
onmental change from upper bathyal to sublittoral, an
estimated sea level fall of 50–60 m, at 2.7 Ma (Cronin et
al. 1994). Yamada et al. (2005) also inferred a faunal
change from an upper bathyal assemblage to a lower
sublittoral assemblage at 2.7 Ma in the Kuwae
Formation.
Ozawa and Kamiya (2001) reported cyclic changes in

the ostracod assemblages in the Omma Formation from
1.5 to 1.3 Ma. During this period, warm-water species
increased in abundance during each interglacial period,
probably reflecting an increased volume of TWC inflow.
A warm-water assemblage was also reported in this
period in the Hamada Formation on the Shimokita
Peninsula located on the Pacific side of the Tsugaru
Strait (Ozawa and Domitsu 2010).

Discussion
The results presented here show that remarkable
changes occurred in the faunal and floral assemblages in
the Japan Sea during the Late Pliocene to Early Pleisto-
cene. The occurrences of microfossil assemblages during
three periods are discussed: the Late Pliocene (3.5–
2.7 Ma), early Early Pleistocene (2.7–1.7 Ma) and late
Early Pleistocene (1.7–0.8 Ma). These three intervals
were bounded by remarkable assemblage changes: from
the Reticulofenestra to C. pelagicus assemblages of
nannofossils (Fig. 6 (d)) and from the Pacific type to
Japan Sea type of deep-dwelling radiolarians (Fig. 6
(c)) at 2.7 Ma, and the first increase in subtropical G.
ruber at 1.7 Ma (Fig. 6 (e)). The paleogeographic
changes in the Japan Sea inferred from the micropale-
ontological record are shown schematically in Fig. 7.

Late Pliocene (3.5–2.7 Ma)
The Late Pliocene climate was globally warmer by
2–3 °C than today’s climate (e.g., Dowsett et al.
2009). In the northwestern Pacific, the Late Pliocene
SST has been estimated from the alkenone record at
ODP site 1208 to have been 20–24 °C, which is
about 4 °C warmer than the present SST (LaRiviere
et al. 2012). Koizumi and Yamamoto (in press) also
reported similar results for the diatom-based SST at
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DSDP site 436 in the Pacific off Honshu Island,
central Japan (Fig. 6 (h)). Despite these warm SSTs
in the northwestern Pacific, the Late Pliocene micro-
fossil assemblages in the Japan Sea are characterized
by cold- or temperate-water species, with very few
warm-water species. Two possible sources of water
have been proposed as influencing the Pliocene biota
in the Japan Sea, based on the biogeographic distri-
bution of fossils: North Pacific water entering via the
northern strait and subtropical water entering via
the southern strait. The occurrence of warm-water
species suggests inflow from the southern strait, like
the present Tsushima Current, and inflow via the
northern strait explains the predominance of cold–
temperate species.
The dominance of calcareous nannofossils, diatoms,

planktonic foraminifera, and radiolarians of cold–tem-
perate species in the fossil assemblages, together with
the near absence of warm-water species, suggests that

the source water entered via the northern strait (Fig. 7a).
A northern source is also consistent with the known
Pliocene geography of the Japan Sea (Iijima and Tada
1990; Chinzei 1991). A wide strait was located near the
present Tsugaru Strait in northern Japan, whereas in
the south, where the Tsushima Strait is today, only a
narrow waterway existed at most.
If the North Pacific water flowed into the Japan Sea

through the northern strait near the present Tsugaru
Strait during the Pliocene, it is expected that the dif-
ference in the SST of the North Pacific and Japan Sea
would be small because of the influence of the warm
Pacific water. However, the Td’-based differences in
SST between sites 436 (North Pacific) and 797 (Japan
Sea) were large during the Pliocene and Early Pleisto-
cene and became small after 1.7 Ma (Fig. 6 (h)).
These large differences in SST explain the greater oc-
currence of cold-water species in the Japan Sea. It is
also plausible that the Okhotsk Sea was another

a  3.5–2.7 Ma b  2.7–1.7 Ma

Warm water
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Fig. 7 Schematic maps showing paleogeographic changes in the Japan Sea during three stages (a, b, c). Solid arrows show major inflows of oceanic
water, and dashed arrows indicate restricted inflows
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source of this cold surface water, flowing into the
Japan Sea via another northern strait, which probably
opened around northern Hokkaido Island.
The diatomaceous deposits and the predominance

of the high-nutrient indicator Reticulofenestra spp.
(small type) (Fig. 6 (d)) indicate that the primary
productivity of the water mass derived from the
northern strait during the Pliocene was high. The
Reticulofenestra spp. (small type) distribution (Sato et
al. 2002) also suggests that nutrient-rich water was
widespread in the subarctic North Pacific. Based on
biogenic opal and nitrogen isotope data from ODP
site 882 in the subarctic Pacific, Haug et al. (1999)
demonstrated that nutrient-rich deep water was trans-
ported into the euphotic zone during the Pliocene but
decreased abruptly at 2.73 Ma with the development
of the halocline coincident with the onset of the
NHG.
According to the benthic foraminiferal assemblage of

the Tate and Maido formations, composed of diat-
omaceous mudstone, the depth of the northern strait
around the present Tsugaru Strait was upper–lower
bathyal, which is deeper than it is today (Table 2).
Furthermore, another northern strait around northern
Hokkaido might have been even deeper, because the
hemipelagic diatomaceous mudstone of the Koitoi and
Enbetsu formations is widely distributed on both sides
of the Japan Sea and the Sea of Okhotsk in northern
Hokkaido. The deep-water-dwelling radiolarians C. pro-
finda and B. woodringi, which live today at depths
>500 m in the North Pacific (e.g., Casey 1977), were
present in the Japan Sea during the Miocene and Plio-
cene. They may have migrated from the North Pacific
via the northern strait when migration via the southern
strait was blocked, even to surface dwellers, by the re-
stricted water exchange through an almost-closed chan-
nel. The occurrence of these deep-water dwellers implies
that the sill depth of the northern strait was >500 m,
which is consistent with the results for the benthic for-
aminifera in the Tate and Maido formations. The low
CaCO3 contents during the Pliocene probably resulted
from the reduced carbonate preservation in deep-sea
water, with high nutrients and dissolved CO2 derived
from the North Pacific. It has been suggested that the
CCD in the Japan Sea was shallower than in the present
day, similar to the situation in the North Pacific (e.g.,
Rea et al. 1995).
However, some evidence of warm-water intrusion

from the southern strait has been proposed, based on
the fossil records of diatoms, mollusks, and ostracods in
on-land sections.
Yanagisawa and Amano (2003) reported that in the

Nadachi and Tanihama formations, warm-water diatoms
were present in two intervals, 3.2–2.6 and 2.4–2.0 Ma,

whereas warm-water mollusks were only present during
the latter period (Fig. 6 (i)). Because diatoms and
mollusks reflect the environments of their habitats,
such as the sea surface and seafloor, respectively, this
result suggests that the cold bottom water was cov-
ered with a thin layer of warm surface water during
the warmer interval of the Late Pliocene (3.2–
2.7 Ma), and that the seafloor was influenced by a
thick warm-water mass during the warmer Early
Pleistocene interval (2.4–2.0 Ma). Therefore, the
warm surface-water layer was thinner during the Plio-
cene than during the Pleistocene, as suggested by
Amano et al. (2000).
The occurrence of the temperate intermediate-water

ostracod group Krithe spp. in sublittoral–bathyal assem-
blages from the Kuwae Formation has been interpreted
as the result of the inflow of warm water into the Japan
Sea via the southern strait. This is based on the modern
distribution of this species group and its similarity to the
occurrence pattern of the planktonic foraminer G. in-
flate, which indicates the presence of temperate–sub-
tropical waters shallower than 200 m (Irizuki et al.
2007). The similar occurrence patterns of Krithe spp.
and G. inflata suggest that the abundance changes in
both groups reflect the temperature of the same water
mass. As mentioned above in the planktonic foramin-
ifera section, the No. 3 G. inflata bed (3.3–2.7 Ma) in
the Japan Sea is probably a result of the migration of
this species from the northern strait, with a northward
shift in their distribution on the Pacific side during the
warm Pliocene period (Hanagata and Watanabe 2001;
Miwa et al. 2004a, 2004b; Kitamura and Kimoto 2006;
Hanagata 2007). If this scenario is correct, the occur-
rence of Krithe spp. in the Kuwae Formation is also
probably related to the intrusion of temperate inter-
mediate water into the Japan Sea from the Pacific via
the northern strait.
It can be concluded from this evidence that the major

part of the Japan Sea, from its surface layer to depth,
was influenced by nutrient-rich cold–temperate water
that originated in the North Pacific and entered the
Japan Sea via northern straits, although a small volume
of subtropical water probably flowed into the sea via
the southern strait and then along the Japanese coast.

Earliest Pleistocene (2.7–1.7 Ma)
From 3.5 to 1.7 Ma, a regression resulting from a sig-
nificant local uplift led to a shallowing of the water
around northeastern Japan (Sato et al. 2012). The
growth of high-latitude ice sheets in the Northern
Hemisphere, a consequence of the global cooling after
3.2 Ma and significantly at 2.7 Ma, also caused the sea
level to fall, in the event known as the NHG (Lisiecki
and Raymo 2005) and the first major glaciation at
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2.15 Ma (Rohling et al. 2014). This drop in sea level has
been documented along the central Japanese coast by
the changes in the ostracod assemblages, from upper
bathyal to sublittoral (Cronin et al. 1994; Yamada et al.
2005). Based on the modern analog technique for ostra-
cods, Cronin et al. (1994) estimated that the sea level
dropped 50–60 m. As a result, the northern straits be-
came shallower and the Japan Sea was almost isolated
from the Pacific, as it is at present (Fig. 7b).
Calcareous nannofossils (e.g., Sato et al. 2012) and

sublittoral ostracods (Irizuki and Ishida 2007) indicate
remarkable cooling in the Japan Sea at 2.75 Ma, with an
abrupt change from warm Pliocene to cold Pleistocene as-
semblages. Furthermore, the upper bathyal ostracod
and deep-water radiolarian assemblages related to the
cold JSPW are first observed near the Pliocene–Pleis-
tocene boundary (Yamada et al. 2005; Irizuki et al.
2007; Kamikuri and Motoyama 2007). A reduction in
the planktonic foraminifera G. inflata indicates related
cooling at intermediate depths (Kitamura 2009). After
2.8 Ma, an intensified winter monsoon and sea-ice ex-
pansion, indicated by the Chinese eolian loess (Xiong et
al. 2003) and IRD at ODP site 795 in the northern
Japan Sea (Tada 1994), probably caused increased venti-
lation during the interglacial periods, as in the present
day, as suggested by an increase in the JSPW-related
radiolarian and ostracod fauna at that time.
In contrast, the intermittent development of low-

oxygen conditions in the deep water, probably during
the glacial periods, is indicated by the alternations of
dark and light layers shown as Unit 1 of the Pleistocene
deep-sea deposits (Fig. 6 (b)) (Tada 1994). Such low-
oxygen conditions would have prevented the survival of
the deep-dwelling radiolarian species C. profunda and B.
woodlingi, which were common during the Pliocene.
Moreover, as a result of the uplift of northeastern Japan,
the northern straits probably became too shallow for
these deep-sea dwellers to pass into the Japan Sea, and
any that managed to enter the Japan Sea would not have
survived the low-oxygen conditions in the deep water.
Although the JSPW-related radiolarians, the A. boreale
group and C. davisiana, are associated with low temper-
atures and high dissolved oxygen contents, their habita-
tion depths in the high-latitude oceans are usually
shallow or intermediate (e.g., Itaki et al. 2003). There-
fore, if low-oxygen conditions prevailed in deep water,
these species could have moved to shallower habitats
or could have migrated from the North Pacific during
each high-stand interglacial period.
The shallower northern strait was a barrier to nutrient

input from the North Pacific. The high abundances of
diatoms and radiolarians during the Pliocene were pos-
sibly related to the inflow of high-nutrient surface water
from the North Pacific. However, these abundances

decreased significantly during the Early Pleistocene (ca.
2.3–1.3 Ma) at the ODP 127 sites (Fig. 5). The sedimen-
tological record of the Early Pleistocene (2–1.5 Ma) is
very limited in the coastal areas of northeastern Japan
because of a widespread unconformity (Fig. 3), sug-
gesting that erosion occurred widely after marine
regression. As a result, the northern straits probably
became very narrow or closed, even during intergla-
cial sea level high stands, which probably restricted
the nutrient supply from the North Pacific during this
period.
However, the concentration of opal (composed

mainly of diatoms and radiolarians) increased during
2.7–1.5 Ma at ODP site 798 in the southern Japan
Sea. This pattern is contrary to that seen in the dia-
tom and radiolarian abundances at the other ODP
127 sites (Fig. 5), and its cause is still unknown. It
may be a small dissolution effect at the shallow-water
depth of site 798, or the nutrient supply may have
only been sufficient in the southern Japan Sea be-
cause it was supplied by the southern strait.

Late Early Pleistocene (1.7–0.8 Ma)
The global sea level dropped continuously as the Northern
Hemisphere ice sheets developed. Nevertheless, the
occurrence of subtropical planktonic foraminifera and
radiolarians implies that a significant intrusion of the
TWC via the southern strait began around 1.8–1.7 Ma.
The widening of the southern strait is attributed to ac-
tive subsidence, which exceeded the reduction in sea
level. This active subsidence was probably related to
the genesis of the Okinawa Trough in the East China
Sea, at ca. 2 Ma (Shinjo 1999). It also coincided with
the start of reefal sediment deposition (Ryukyu Group)
in Okinawa, southern Japan (Fig. 3), which implies that
the intrusion of the Kuroshio Current into the East
China Sea also began around this time (Yamamoto et
al. 2006). Therefore, both the active subsidence around
the southern strait and the intrusion of the Kuroshio
Current into the East China Sea could have allowed the
TWC to intrude into the Japan Sea. Interestingly, the
abundance of calcareous microfossils and the CaCO3

content increased after the TWC intrusion around
1.7 Ma (Fig. 6 (g)).
The surface and intermediate depths in the Japan Sea

were warmer during the period 1.46–1.3 Ma, according
to the high occurrence of G. ruber and G. inflate, which
was related to the TWC inflow (Kitamura 2009). Dur-
ing this period, the occurrence of warm-water ostra-
cods in the Hamada Formation (ca. 1.5–1.2 Ma) on the
Shimokita Peninsula (Ozawa and Domitsu 2010)
implies that the assemblage on the Pacific side of the
Tsugaru Strait was influenced by a water mass from the
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Japan Sea, suggesting the outflow of the TWC via the
Tsugaru Strait (Fig. 7c).

Conclusions
Micropaleontological studies of the Late Pliocene to
Early Pleistocene Japan Sea have been comprehen-
sively reviewed, and the relationships between the
major changes in the microfossil assemblages and
both global climate and local tectonics in the Japanese
Islands have been discussed.
Late Pliocene (3.5–2.7 Ma): Although the Late Pliocene

was globally warm, cold–temperate surface and deep
waters with high-nutrient levels delivered from the
North Pacific via the northern straits occupied most
of the Japan Sea. The weak influence of warm water,
identified along the Japanese coast, suggests a small
inflow of warm water via the southern strait.
Early Early Pleistocene (2.8–1.7 Ma): An abrupt cool-

ing event at 2.75 Ma, recorded in both nannofossil and
ostracod assemblages, can be correlated with global
cooling, especially in the Northern Hemisphere. After
this period, intermediate- and deep-water assemblages
of ostracods and radiolarians were intermittently char-
acterized by cold-water dwellers, possibly related to
well-ventilated water formations, such as the JSPW,
associated with the development of a strong winter
monsoon, despite the insignificant inflow of saline
TWC water. As a result of the uplift of northeastern
Japan and a eustatic fall in sea level in response to
the NHG, the northern strait probably became very
narrow and very shallow. Consequently, the nutrient
supply from the North Pacific was restricted and
primary productivity decreased significantly.
Late Early Pleistocene (1.7–0.8 Ma): Subtropical sur-

face faunal assemblages were continuously present
after 1.7 Ma, when the inflow of the TWC via the
southern strait began. This inflow was facilitated by
the subsidence of southwestern Japan. At about the
same time, the Kuroshio Current began to intrude
into the East China Sea.
Although many important papers have described

the microfossils in the Japan Sea, only selected papers
could be included in this review. Nevertheless, it is
clear that the microfossil assemblages in the Japan
Sea changed significantly during the Pliocene to Pleis-
tocene transition. Recently, the analysis of materials
collected by IODP Expedition 346 is still ongoing,
and this work is expected to provide much more
detailed information about the temporal and spatial
changes in the microfossil assemblages here.

Abbreviations
JSPW: Japan Sea Proper Water; NHG: Northern Hemisphere glaciation;
TWC: Tsushima Warm Current.
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