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Abstract

Uplift of the Himalaya and Tibetan Plateau (HTP) and its linkage with the evolution of the Asian monsoon has been
regarded as a typical example of a tectonic—climate linkage. Although this linkage remains unproven because of
insufficient data, our understanding has greatly advanced in the past decade. It is thus timely to summarize our
knowledge of the uplift history of the HTP, the results of relevant climate simulations, and spatiotemporal changes
in the Indian and East Asian monsoons since the late Eocene. Three major pulses of the HTP uplift have become
evident: (1) uplift of the southern and central Tibetan Plateau (TP) at ca. 40-35 Ma, (2) uplift of the northern TP at
ca. 25-20 Ma, and (3) uplift of the northeastern to eastern TP at ca. 15-10 Ma. Modeling predictions suggest that (i)
uplift of the southern and central TP should have intensified the Indian summer monsoon (ISM) and the Somali Jet
at 40-35 Ma; (i) uplift of the northern TP should have intensified the East Asian summer monsoon (EASM) and East
Asian winter monsoon (EAWM), as well as the desertification of inland Asia at 25-20 Ma; and (iii) uplift of the
northeastern and eastern TP should have further intensified the EASM and EAWM at 15-10 Ma. We tested these
predictions by comparing them with paleoclimate data for the time intervals of interest. There are insufficient
paleoclimate data to test whether the ISM and Somali Jet intensified with the uplift of the southern and central TP
at 40-35 Ma, but it is possible that such uplift enhanced erosion and weathering that drew down atmospheric CO,
and resulted in global cooling. There is good evidence that the EASM and EAWM intensified, and desertification
started in inland Asia at 25-20 Ma in association with the uplift of the northern TP. The impact of the uplift of the
northeastern and eastern TP on the Asian monsoon at 15-10 Ma is difficult to evaluate because that interval was
also a time of global cooling and Antarctic glaciation that might also have influenced the intensity of the Asian
monsoon.

Keywords: East Asian summer monsoon, East Asian winter monsoon, Indian summer monsoon, Himalaya, Tibetan
Plateau, Chinese Loess Plateau, Climate model, Tectonic—climate linkage, Westerly jet, Desertification

Review

The East Asian monsoon and its importance

The Asian monsoon is the largest and strongest mon-
soon system in the world. Although monsoon is a re-
gional phenomenon driven by the heat contrast between
the continent and the ocean, it is so large that its behav-
ior exerts a significant influence on the global climate.
The Asian monsoon is divided into three
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subcomponents, the South Asian (or Indian) monsoon,
the Southeast Asian monsoon, and the East Asian mon-
soon (EAM), although the Southeast Asian monsoon
may not be as closely linked to the Himalaya and
Tibetan Plateau (HTP) as the other two.

The EAM is one of the major components of the
Asian monsoon system and is thus an integral part of
the global climate system. It is subdivided into the East
Asian summer monsoon (EASM) and East Asian winter
monsoon (EAWM). The EASM controls the hydro-
logical cycle in East Asia, where over one third of the
global population resides. Thus, its economic and social
impact is profound. It also exerts a significant impact on
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the global carbon cycle through its role in controlling
chemical weathering, as well as the burial of organic car-
bon (Raymo and Ruddiman 1992; France-Lannord and
Derry 1997; Hren et al. 2007). EASM precipitation and
EAWM winds affect the oceanography of East Asian
marginal seas through controlling nutrient input and the
salinity balance (e.g., Tada et al. 1999; Tada 2004; Kubota
et al. 2010, 2015), together with upwelling and deep-
water ventilation (e.g., Tada et al. 1999; Itaki et al. 2004;
Ikehara and Itaki 2007). As a result, it is important to
understand how the EAM evolved through time and
identify the major controls on its evolution.

Some researchers claim that the EAM is not a typ-
ical monsoon because it is not simply driven by the
thermal contrast between the continent and ocean,
but is affected by the topography of Tibet (e.g., Mol-
nar et al. 2010). However, since this review focuses
on the potential linkage between the HTP uplift and
evolution of the Asian monsoon, we particularly focus
on the EAM because its evolution is expected to have
been closely linked to the topographic development of
the HTP.

The EAM system

The EASM is driven by the sea level pressure con-
trast between the Asian Low and the Pacific High
(Zhao and Zhou 2009) and is characterized by a sea-
sonally migrating precipitation front (the Meiyu—Baiu
Front) that appears in Southeast Asia in May, grad-
ually migrates northwest during early summer, and
disappears in August (Sampe and Xie 2010) (Fig. 1).
Its seasonal northeast migration is considered to be
influenced by the westerly jet (WJ]) that passes to the
south of the Himalaya during winter and to the north
of Tibet from early May to October (Schiemann et al.
2009). Sampe and Xie (2010) demonstrated that the
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W] axis over China bounds the northern limit of
Meiyu—Baiu Front, and its northward migration is the
cause of the northwest migration of the front over East
Asia during the early summer. Yanai and Wu (2006) pro-
vide a thorough review of the thermal and dynamical in-
fluences of the HTP on the Asian monsoon and W7J.

In contrast, the EAWM is driven by the thermal
contrast between the Asian continent and the North
Pacific Ocean during winter when the Siberian High
develops over the Asian continent and the Aleutian
Low develops in the North Pacific. However, recent
studies suggest that the contrast between the Asian
continent and the Maritime Continent is also import-
ant (e.g., Wang and Chen 2014). The EAWM is char-
acterized by dry and cold northwesterly, northerly,
and northeasterly winds that blow from the Siberian
High toward the Aleutian Low and a low pressure
system that develops over the Maritime Continent
(MC)—northern Australia region north of the equator
during winter (MC Low) (Chang et al. 2006). A
strong EAWM is characterized by stronger Siberian
High—Aleutian Low and/or MC Low pressure con-
trasts, stronger low-level northwesterly winds along
the Russian coast, a deeper mid-tropospheric trough,
and an enhanced upper level W] (Jhun and Lee
2004). The intensity of the EASM is defined as
Igavom = (2 x SLPy* — SLPy* — SLP3*) /2 where SLP.*,
SLP,* and SLP3* indicate the normalized average sea
level pressure over Siberia (40-60° N, 70-120° E), the
North Pacific (30-50° N, 140-170° W), and the Mari-
time Continent (20S-10° N, 110-160° E), respectively
(Wang and Chen 2014). It is important to note that
the EAWM in the Maritime Continent—northern
Australia region and Southeast Asia (e.g., Vietnam
and Malaysia) is characterized by northeasterly winds
and a wet climate.
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Conceptual basis for the HTP uplift—-Asian Monsoon
intensification hypothesis

As will be discussed in more detail in the next section,
the effects of large-scale mountains, such as the HTP, on
global and regional climates were explored during early
stages of climate model development (e.g., Manabe and
Terpstra 1974; Hahn and Manabe 1975). Results from
climate model simulations suggest that the strong inten-
sity of the current Asian monsoon and dryness in inland
Asia are due mainly to the presence of the Tibetan
Plateau (TP) (e.g., Kutzbach et al. 1989; Ruddiman and
Kutzbach 1989; Manabe and Broccoli 1990; Broccoli and
Manabe 1992). As a result, the HTP uplift—Asian mon-
soon intensification hypothesis has been attracting long-
lived interest of geoscientists from all over the world
since this was first proposed. The presence of the HTP
is thought to strengthen the Asian monsoon in three
ways (e.g., Ruddiman and Prell 1997).

The first mechanism is enhancement of the heat con-
trast caused by the altitude of the TP. The high altitude
of the TP and the thinner atmosphere above it allow the
surface temperature of the plateau to increase during
summer. As a result, the surface temperature of the TP
becomes higher than the temperature of the surrounding
air at the same altitude. This temperature contrast
causes advection of air above the plateau, which is re-
sponsible for the formation of a low-pressure cell over
the TP during summer and thus intensifies the Asian
summer monsoon (Manabe and Terpstra 1974; Webster
et al. 1998). In contrast, extensive snow cover on the
plateau during winter causes excess cooling of the
plateau.

The second influence of the HTP on the Asian mon-
soon is the rain shadow effect of the Himalaya. Because
vigorous advection occurs above the TP, strong seasonal
airflow occurs from the Indian Ocean toward the TP.
This flow crosses the 7000 m high Himalayan mountain
chain, which acts as a geomorphological barrier to air
advection. Warm and moist air flowing from the Indian
Ocean toward the advection center on the TP has to
ascend the frontal slopes of the Himalaya and is
cooled adiabatically, expelling moisture as precipita-
tion. This process causes high precipitation along the
frontal slopes of the Himalaya, releases heat, and en-
hances the uplift of dry air masses, thereby further
strengthening advection.

The third process associated with the effect of the
HTP on the Asian monsoon is the topographic bar-
rier effect of the TP that forces the W] to take two
discrete routes over Asia (Fig. 2a, b). The core alti-
tude of the WJ is ca. 10 km, but it can reach 5 km
at its lowest limit. Consequently, the HTP acts as a
topographic barrier for the WJ and forces it to take
two discrete routes: one along the southern margin of
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the Himalaya and the other to the north of the TP
(Ono et al. 1998; Tada 2004; Nagashima et al. 2007;
2011). Meteorological observations reveal that the W7J
flows along the southern margin of the Himalaya dur-
ing winter months and then suddenly jumps to the
north of the TP in May and stays there until late
September when it switches back to the south of the
Himalaya (Schiemann et al. 2009; Fig. 2b). Meteoro-
logical observations also show that the Meiyu—Baiu
Front suddenly appears in association with a jump of
the WJ axis to the north of the TP in May and mi-
grates northward in association with the northward
shift of the WJ axis (Schiemann et al. 2009; Sampe
and Xie 2010). The W] axis bounds the northern
limit of the Meiyu—Baiu Front in East Asia (Sampe
and Xie 2010). Thus, the topographic barrier effect of
the HTP causes a significant northward migration of
the WJ during the summer that allows northwestward
penetration of the summer monsoon front into East
Asia.

In addition to these “direct” effects of the HTP uplift
on the Asian monsoon, Raymo et al. proposed that late
Cenozoic global cooling was caused by enhanced phys-
ical and chemical weathering and consequent draw
down of atmospheric CO, triggered by the uplift of the
HTP (Raymo et al. 1988; Raymo and Ruddiman 1992).
This global cooling might, in turn, have influenced the
long-term evolution of the Asian monsoon.

Remaining problems

Although there is a sound theoretical basis to expect
that the HTP uplift is one of the major causes driving
the establishment of the modern state of Asian mon-
soon, the HTP uplift—-Asian monsoon intensification
hypothesis is still not proven after ~40 years of on-
going research. One of the major reasons hampering
the testing of this hypothesis is that the timing and
mode of surface uplift in different parts of the HTP
is poorly constrained and still controversial. Contro-
versy has arisen, especially between those approaching
this problem from the southern side of the HTP
(dominantly European and American scientists) and
those approaching from the northern side of the HTP
(dominantly Chinese scientists). The former group
tends to consider the major phase of the HTP uplift
to be older than the Miocene (e.g., Tapponnier et al.
2001; Harris 2006; Rowley and Currie 2006; Royden
et al. 2008), whereas the latter group tends to suggest that
the major uplift phase occurred in the Plio-Pleistocene (e.g.,
An et al. 2001; Qiang et al. 2001). However, this controversy
has been gradually settled thanks to the introduction
of low-temperature thermochronometers and the ac-
cumulation of chronostratigraphic and thermochrono-
logical data from across the HTP region, as well as
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progress in paleoaltimetry studies during the last
decade (e.g., Whipp et al. 2007; Quade et al. 2011).
Another factor that hampered testing the hypothesis is
problems with incorporating HTP topography into cli-
mate models at sufficient resolution because of limited
computing speeds. The ability of climate models to

incorporate high-resolution topography has been im-
proved significantly with continuous advance in the
performance of supercomputers, which has enabled
modelers to test the sensitivities of South Asian and East
Asian monsoons to the uplift in the different parts of
the HTP (Zhang et al. 2012a; Liu and Dong 2013).
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Compared with the impressive progresses in our
understanding of the uplift history of the HTP and in
climate model simulations of the evolution of the
Asian monsoon in response to the uplift of the HTP,
advancement in our understanding of the evolution of
South Asian (i.e., Indian) and East Asian monsoons
has been rather limited. This lack of progress is pri-
marily because relatively few new marine cores have
been available for paleoclimate studies on the Asian
monsoons; there were no Ocean Drilling Program
(ODP)/Integrated Ocean Drilling Program (IODP) cruises
between the winter of 1999, when Leg 184 drilled the
South China Sea (Wang et al. 2000), and the summer
of 2013, when the IODP Expedition 346 drilled the
Japan Sea and the northern tip of the East China Sea
(Tada et al. 2015). Following Expedition 346, a series
of expeditions were conducted to focus on the Asian
Monsoon, including Expeditions 353 (Indian Monsoon
Rainfall), 354 (Bengal Fan), 355 (Arabian Sea Monsoon),
and 359 (Maldives Monsoon and Sea Level). These new
expeditions will greatly advance our understanding of the
evolution of the Asian monsoon.

Objectives and strategy of this review

Starting with Expedition 346 in the summer of
2013, the IODP has continued to conduct a series
of expeditions in the northwest Pacific and Indian
Oceans to study the Asian monsoon. As a result,
significant numbers of new cores are becoming
available to the paleoclimatic/paleoceanographic commu-
nity. It is thus timely to refresh and update our know-
ledge concerning the evolution and variability of the
Asian monsoon and its potential linkage with the
HTP uplift.

The objectives of this review are threefold. In the
next section, we summarize the history and recent
advances in climatic model simulations that explore
the relationship between the uplift of the HTP and
the evolution of the Asian monsoon. In the third sec-
tion, we summarize the timing and mode of the uplift
of various parts of the HTP during the Cenozoic
based on a number of different types of geological
evidence. In the fourth section, we summarize the
evolution of the EAM during the Cenozoic. By com-
bining climate model results described in the second
section with the uplift history of the HTP recon-
structed from geological evidence described in the
third section, we predict how the uplift of different
parts of the HTP has impacted the nature and inten-
sity of the Asian monsoon. In the fifth section, the
predicted results are compared with paleoclimatic re-
constructions of the evolution of the Asian monsoon
described in the fourth section and the validity of the
predictions is discussed.
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Evaluating the effects of the HTP uplift on the
evolution of the Asian monsoon based on

climate models

Early climate model studies (whole TP uplift)

Many climate model simulations have tried to evaluate
the effect of the HTP uplift on the intensity of the Asian
monsoon. The history of model studies is summarized
by Liu and Dong (2013). Manabe et al. initiated climate
model studies of the effects of the HTP uplift on the
Asian monsoon in the early 1970s (Manabe and Terpstra
1974; Hahn and Manabe 1975), about a decade after the
development of general circulation models (GCMs).
They used an atmospheric GCM (AGCM) with pre-
scribed insolation and sea surface temperature (SST)
and compared simulation results with and without
mountains to explore the effects of topography on global
atmospheric circulation and climate. They found that
HTP topography is essential to the development of both
the Siberian High during the boreal winter and Indian
summer monsoon (ISM) circulation to the south of the
TP during the boreal summer. However, the earliest
GCMs had low spatial resolution, did not incorporate
sophisticated physical, chemical, and biological processes,
and were not well tuned with observational data (Liu and
Dong 2013).

GCMs have drastically improved with the rapid increase
in computational power since the 1970s and have become
capable of conducting higher-resolution simulations and
incorporating more processes and many different bound-
ary conditions. From the late 1980s, efforts to compare
simulation results with paleoclimate records were initiated
by Kutzbach et al. who conducted sensitivity experiments
prescribed with full-mountains, half-mountains, and no-
mountains and compared simulated results with geo-
logical data to constrain tectonically driven surface uplift
and climate change. They used an AGCM with orbital pa-
rameters, atmospheric pCO,, SST, sea ice and snow cover,
land albedo, and soil moisture to conduct more detailed
estimates of climate sensitivity to progressive mountain
uplift (Kutzbach et al. 1989; Ruddiman and Kutzbach
1989). They concluded that the presence of the TP inten-
sifies Asian summer and winter monsoons through en-
hanced summer heating and winter cooling over the
plateau, which leads to amplification of the seasonal con-
trast, as well as from the topographic effect of the TP on
the WJ and surface winds (Kutzbach et al. 1989). They
proposed that the uplift of the TP may have played an im-
portant role in the initiation of northern hemisphere glaci-
ations, although its effect alone falls far short of explaining
the full amplitude of Cenozoic cooling (Ruddiman and
Kutzbach 1989; Ruddiman et al. 1989). Manabe and
Broccoli (1990) also explored the role of mountains in
maintaining extensive arid climates in the middle latitudes
of the northern hemisphere (see also Broccoli and
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Manabe 1992) and stressed the importance of orogra-
phically induced stationary wave troughs.

Stepwise uplift of global topography was further pursued
by Kitoh et al. (Kitoh 2002, 2004; Abe et al. 2003, 2004),
who used an atmosphere—ocean coupled GCM (CGCM)
with T42 (ca. 2.8° longitude) resolution, which can repro-
duce the monsoon and El Nifo Southern Oscillation
(ENSO) without flux adjustments, to study the sensitivity
of the Asian summer monsoon, formation of the
Meiyu—Baiu rainband, and changes in the tropical and
subtropical atmosphere—ocean system in response to pro-
gressive mountain uplift. They found that the Indian,
Southeast Asian, and East Asian summer monsoons be-
haved differently with progressive uplift. Whereas con-
tinuous and accelerated intensification is observed for the
ISM, the intensity becomes strongest at 40 % uplift for the
Southeast Asian monsoon and 80 % for EASM (Abe et al.
2003). They also predicted the formation of the
Meiyu—Baiu rainband at 60 % uplift and a switch in the
moisture source from the Indian Ocean to the Pacific
Ocean (Kitoh 2004). With progressive mountain uplift,
the following occurs in the tropical to subtropical Pacific:
the Western Pacific warm pool appears, the east—west
equatorial SST gradient increases, and the Pacific subtrop-
ical anticyclone, associated trade winds, and the Kuroshio
Current become stronger (Kitoh 2002, 2004; Abe et al.
2004). They also compared CGCM and AGCM results,
finding that the CGCM showed a greater sensitivity to
mountain uplift than the AGCM, and stressed the import-
ance of using CGCMs for robust climate modeling.

Around the same time, Liu and Yin (2002) conducted
stepwise uplift experiments for the TP using an AGCM
with ca. 7.5° longitude resolution coupled with a vegeta-
tion model. They found that evolution of the EAM is
more sensitive than the Indian monsoon to the uplift of
the TP. They stressed that intensification of the EAWM
is more significant than that of the EASM and that there
seems to be a threshold at ca. 50 % uplift after which the
Siberian High becomes distinct and the EAWM is estab-
lished (Fig. 3). Desertification in inland Asia also occurs
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during later phases of the TP uplift. On the other hand,
summer monsoon-like circulation exists in India and
Southeast Asia even without the TP. The uplift of the
TP slightly increases the intensity of Indian and
Southeast Asia monsoons in early phases, but their
intensities gradually decrease in later phases. Different
evolutionary processes are thus predicted in response
to the uplift of the TP for the Indian, Southeast Asian, and
Northeast Asian summer monsoons. This conclusion is
similar to that of Abe et al. (2003), but the timing of in-
tensification with respect to the uplift of the TP is different
between the two studies. This difference is partly a result
of different summer monsoon intensity indices used by
the two studies and perhaps also because the model used
by Abe et al. (2003) includes air—sea coupling.

Results of these simulations reveal that the uplift of
the TP intensifies Asian monsoons. However, the evolu-
tion of monsoons in response to the uplift of the TP is
different for India, Southeast Asia, and Northeast Asia,
and also between summer and winter. It is also sug-
gested that there could be thresholds in the TP uplift for
the development of Asian monsoons. However, it is not
necessarily clear what kinds of mechanisms are respon-
sible for intensification of each regional and seasonal as-
pects of the Asian monsoon and which parts of the
orography are critical for such mechanisms.

Subsequent climate model studies (partial HTP uplift)

Since the late 2000s, simulation studies began to focus
more on mechanisms for monsoon intensification and
the effects of the uplift on different parts of the HTP at
different times. This research direction reflected the
realization that the plateau was not uplifted as a single
block at a single time. For example, Chakraborty and
Srinivasan (2006) examined the effect of different parts
of global orography on the onset timing of the ISM
using seasonal simulations with different orographic ini-
tial conditions from an AGCM with T-80 (ca. 1.4°) reso-
lution. They found that initiation of the ISM is greatly
affected by the orography of the western Himalaya that
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acts as a barrier to cold winds from upper latitudes.
Because the intensity of rainfall is not affected by orog-
raphy after onset of the ISM, the timing of the ISM is
the main control on ISM rainfall intensity.

Following this result, Boos and Kuang (2010) chal-
lenged the conventional view that the TP acts as a ther-
mal source that induces convection and enhances the
ISM. They noticed that upper-tropospheric temperatures
peak not in the center but south of the TP during the
boreal summer and that the Tibetan High is also cen-
tered south of the TP. Based on this observation, they
proposed that thermal forcing from continental India
(south of the Himalaya) may be more important than
that from the TP in controlling the ISM. In this scenario,
the Himalaya plays a role in insulating high-entropy,
warm, and moist tropical air over India from low-
entropy, cold, and dry air from the extra-tropics. To test
this idea, they conducted climate simulations with an
AGCM with prescribed modern-day SST and orography;
the TP was removed but the Himalaya and adjacent
mountain ranges were kept intact, and all surface eleva-
tions were set to zero. They found that, except for a re-
duction in rainfall over the southern Himalaya and East
Asia, large-scale ISM circulation is unaffected by re-
moval of the TP provided that the high but narrow orog-
raphy of the Himalaya and adjacent mountains is
preserved. They claimed that it is not the thermal for-
cing of the TP but the insulating effect of Himalayas that
produces ISM circulation. Although their simulation re-
sults demonstrate that the presence of the wide TP is
not essential for ISM circulation, it is debated whether
the insulation effect of the Himalaya is really the main
driver of the ISM (Wu et al. 2012a; Boos and Kuang
2013, Chen et al. 2014).

Wu et al. (2012b) criticized the experimental design of
Boos and Kuang (2010) because it did not separate the
insulating effect of the Himalaya and adjacent mountains
from surface sensible heating. Using an AGCM with pre-
scribed seasonally varying SST and sea ice, changing or-
ography, and with and without surface sensible heating
on the Iranian Plateau, TP, and Himalaya, they demon-
strated that the ISM disappears over northeastern India
and the EASM weakens when Himalayan topography is
included but surface sensible heating is excluded from
the model. This study claimed that thermal forcing ra-
ther than the insulating effect is responsible for ISM pre-
cipitation, especially over northeastern India.

Boos and Kuang (2013) admitted that their earlier
(Boos and Kuang 2010) experiment did not separate the
insulating effect from sensible heating, but maintained
that the thermal insulating effect is still important to
monsoon development. Chen et al. (2014) further reexa-
mined the insulating effect of the TP (and Himalaya)
using a CGCM with ca. 2.5° longitude resolution and
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changing orography. Models were run with the full TP,
only the southern margin of TP, and no TP. Similar to
Wu et al. (2012a), they concluded that diabatic heating
in the mid-troposphere along the southern edge of the
TP (called candle heating) is more important than the
insulating (i.e., blocking) effect (Fig. 4). They demon-
strated the importance of the TP for increasing precipi-
tation in East Asia and along the southern and eastern
margins of the TP, which is in agreement with other
studies. They also showed that the TP plays an im-
portant role in reducing precipitation over areas af-
fected by the Somali Jet in northern India and
Southeastern Asia. Aside from work by Abe et al
(2003), this effect had not been observed in other ex-
periments. The difference was attributed by Boos and
Kuang (2013) to the usage of a CGCM that allows
atmosphere—ocean interactions, such as the strong
upwelling and reduction in SST that leads to intensi-
fication of the Somali Jet, which in turn reduces pre-
cipitation in areas affected by the Somali Jet in
northern India and Southeastern Asia.

Recent climate model studies (phased HTP uplift)

Although consensus has not yet been reached about the
mode and timing of the uplift of the HTP, recent pro-
gress in thermochronological and paleoaltimetrical stud-
ies on the HTP uplift has allowed climate modelers to
estimate the sequence and ages of the HTP uplift. Zhang
et al. (2012b) used an AGCM with 1.9° longitude reso-
lution with prescribed SST and sea ice cover to examine
the effects of climate on the uplift of the HTP. Based on
the idea that the TP was gradually uplifted from south to
north, they assumed that the central-southern TP was
uplifted first, followed by the Himalaya, the northern TP,
and then the Mongolian Plateau. They designed five nu-
merical experiments with different topographies and
showed an increase in summer precipitation over the TP
and the development of cyclonic circulation anomalies
in response to the uplift of the central-southern TP.
Their results also demonstrated the importance of the
uplift of the Himalaya and northern TP to the evolution
of the ISM and EASM, respectively. In particular, the
uplift of the Himalaya strengthens summer 850 hPa
winds off the Arabian coast (Somali Jet) and enhances
summer precipitation in South Asia (northeastern
Arabian Sea and central-southern India), as well as the
southwestern margin of the Himalaya. On the other
hand, the uplift of the northern TP strengthens the
western North Pacific subtropical high, intensifies EASM
circulation, and enhances summer precipitation in
northern East Asia. They also showed decreasing pre-
cipitation in central Asia in response to the uplift of the
northern TP. These results are in general agreement
with those of Boos and Kuang (2010) and Chen et al.
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(2014), suggesting robust connections between the
Himalayan uplift and ISM intensification, as well as the
northern TP uplift and EASM intensification (Fig. 5).
Tang et al. (2013) conducted sensitivity experiments
assuming sequential growth of different parts of Asian
orography using a regional climate model with 1x1°
resolution covering 0°-60° N and 50°-140° E. Boundary

as present in the model, and the model was driven by
the output from the present control run and a Late
Miocene run performed in the CGCM. They conducted
sensitivity experiments with five sequential uplift steps;
starting from no mountains (orography higher than
250 m was removed), then the southern TP, central TP,
northern TP, Zagros—Hindu Kush-Elburz mountains,

conditions other than orography are set to be the same and Tien Shan—Altai mountains are added sequentially.
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Fig. 5 Differences in surface wind (m s™') and precipitation (mm day™") in JJA between the experiments. a is the narrow southern TP minus no
TP and b is full TP minus no TP from Chen et al. (2014) using the Community Earth System Model. Blue indicates positive and red indicates
negative precipitation change. Only significant precipitation values are shown (color shading). Bold vectors indicate significant changes in wind.
Purple contours denote elevations of 1200 and 3000 m. Modified from Chen et al. (2014)
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They found that the presence of the southern TP and
Zagros Mountains greatly enhances ISM wind and pre-
cipitation, but reduces EASM wind and precipitation
and that the presence of the central and northern TP
and the Tien Shan Mountains increases summer precipi-
tation and low-level southerly winds in East Asia, but re-
sults in an anticyclonic wind anomaly that suppresses
summer precipitation in northern India.

Although these results are in general agreement
with previous studies mentioned above (e.g., Boos and
Kuang 2010; Zhang et al. 2012a; Chen et al. 2014),
they demonstrated the importance of the Zagros
Hindu Kush-Elburz mountains for intensification of
the Somali Jet and their insulating effect that leads to
an increase in summer rainfall in northwestern India.
They further argued that the subtropical rain front
over East Asia is primarily formed by the confluence
of mid-tropospheric westerly flow from the north and
south over the TP. They also showed that middle-
and low-level westerly flow from the south of the TP
is strengthened by the presence of the central and
northern TP but suppressed by the Zagros Mountains.

Potential effects of the Paratethys and atmospheric

pCO, level

Although it is evident that the uplift of the HTP ex-
erts significant influence on the evolution of the
Asian monsoon, it does not necessarily mean that
other factors such as land—sea distribution, land sur-
face condition, and/or atmospheric pCO, are not
important (e.g., Charney 1975; Ramstein et al. 1997;
Kripalani et al. 2007). For example, Yasunari et al.
(2006) evaluated the effect of land surface processes
on monsoon systems and the Tropics and concluded
that the albedo effect of vegetation substantially in-
creases both evaporation and atmospheric moisture
convergence, and thus significantly enhances precipi-
tation in monsoon regions and the Tropics. However,
most simulations that evaluate the effect of the HTP
uplift on the evolution of the Asian monsoon use
near-modern conditions with respect to geographical
distribution of lands and seas and greenhouse gas
concentrations (Huber and Goldner 2012).

Among the possible geographical influences on the evo-
lution of the Asian monsoon, the presence of the
Paratethys sea seems most significant. The Paratethys was
a shallow sea covering much of central Asia during the
early Paleogene. Ramstein et al. (1997) used an AGCM
with a paleogeography of 10 Ma both with and without
the TP (although their TP at 10 Ma is smaller and lower
than the modern TP) and 30 Ma with and without the
Paratethys. The model used present-day insolation, SST,
and pCO, values to evaluate the effects of the TP and
Paratethys on monsoon evolution. The results revealed
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that the Paratethys acted as a thermal regulator and
allowed an oceanic climate to develop over northern
Eurasia. Shrinkage of the Paratethys resulted in a contin-
ental climate with larger-amplitude annual temperature
variations. The enhancement of continental warming dur-
ing summer as a result of disappearance of the Paratethys
increased the thermal gradient between central Asia and
the Indian Ocean, leading to an increase in ISM precipita-
tion over the southern flank of the Himalaya (Ramstein et
al. 1997). The decrease in the area of the Paratethys also
allowed for the development of the Siberian High and thus
intensification of the EAWM. Ramstein et al. (1997) con-
cluded that the retreat of the Paratethys played an import-
ant role in the evolution of Asian monsoon intensity as
did the uplift of the TP.

Because global warming and its impact on human lives
are of major concern to the public, and more than two
thirds of the world’s population lives in areas influenced
by the Asian monsoon, there are many studies concern-
ing the impact of increased atmospheric pCO, on the
Asian monsoon. For example, Christensen et al. (2013)
used 20 Coupled Model Intercomparison project Phase
5 (CMIP5) models to show that mean precipitation, the
number of extreme rainfall events, and the inter-annual
standard deviation of seasonal mean precipitation of the
EASM and South Asian monsoon increase with global
warming. These results are similar to previous studies
(e.g., Kripalani et al. 2007; Kim and Byun 2009). In con-
trast, global warming-induced weakening of the EAWM
has been predicted by CGCMs (Kimoto 2005; Hori and
Ueda 2006).

Summary
Although simulations of the effects of the HTP uplift on
the Asian monsoon have produced wide-ranging results,
common aspects are shared by many model simulations.
These include (1) intensification of summer precipitation
in East Asia and northern India, (2) desertification of in-
land Asia, (3) intensification of the Somali Jet offshore
from Somalia and the Arabian Peninsula, and (4) in-
tensification of the EAWM. These are considered robust
features of the impact of the HTP uplift on Asian mon-
soon strength. However, the causes of these features
were not well understood until recently when modelers
started conducting simulations to evaluate the effect of
the uplift of different parts of the HTP on intensification
of the Asian monsoon and the desertification of inland
Asia. In the following, we summarize recent progress in
our understanding of the possible effect of the HTP up-
lift on the above four climate effects associated with the
Asian monsoon.

Many climate model simulations suggest that intensifi-
cation of the ISM is closely linked to the uplift of the
Himalaya (or southern Tibet), whereas the EASM is
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rather insensitive to the uplift of the Himalaya (Boos and
Kuang 2010; Zhang et al. 2012a; Chen et al. 2014) or
may even be negatively influenced by this uplift (Tang et
al. 2013). Himalayan uplift is also expected to cause an
increase in summer precipitation in northern India and
intensification of the Somali Jet. The uplift of the Zagros
Hindu Kush—Elburz mountains might also have contrib-
uted to the intensification of the Somali Jet and the in-
crease in summer rainfall in northwest India (Tang et al.
2013).

Intensification of the EASM is closely linked to the up-
lift of the northern TP, which enhances summer precipi-
tation in northern East Asia, as well as the southeastern
and eastern TP (Zhang et al. 2012a; Tang et al. 2013;
Chen et al. 2014), whereas the uplift of the northern TP
reduces ISM precipitation in northern India (Boos and
Kuang 2010; Zhang et al. 2012a; Chen et al. 2014). The
western North Pacific subtropical high may also be
strengthened by this uplift (Zhang et al. 2012a). De-
creased precipitation in central Asia is expected in re-
sponse to the uplift of the northern TP (Zhang et al.
2012a). The uplift of the TP may reduce precipitation
over the Somali Jet area, northern India, and Southeast-
ern Asia through ocean—atmosphere interactions (Abe
et al. 2003; Chen et al. 2014).

Although models that consider the uplift of the whole
TP show an increase in the intensity and gradual north-
ward movement of the center of the Siberian—-Mongo-
lian High during winter (Liu and Yin 2002), there are no
studies to date that deal with the effects that the uplift
of different parts of the HTP have on the position and/
or intensity of the Siberian High and Aleutian Low, of
which pressure difference drives EAWM winds.

The effects of the presence and then shrinkage of
the Paratethys on the evolution of the Asian monsoon
should also be considered in addition to the effect of
the uplift of the HTPD, especially during the Paleogene
(Ramstein et al. 1997). In addition to these tectonic
effects, the impact of changing pCO, on Asian monsoon
evolution may be significant during the Cenozoic. An in-
crease (decrease) in atmospheric pCO, would increase
(decrease) EASM precipitation and reduce (enhance)
EAWM intensity, at least with modern boundary condi-
tions but also using Eocene boundary conditions (Huber
and Goldner 2012). It is worth noting that the polarized
effect of pCO, on the EASM and EAWM is different from
the effect of the HTP uplift on the EASM and EAWM
and could be used to differentiate the impacts of the HTP
uplift and changing pCO,.

History of the HTP uplift

Before the Oligocene

It is generally believed that there was an Andean-type
volcanic mountain chain of ~4 km high and a few
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hundreds of kilometers wide along the southern margin
of the Eurasian continent before its collision with India
(England and Searle 1986; Kapp et al. 2007; Molnar et al.
2010). Recent geological studies show the presence of a
>2000 km long Gangdese Magmatic arc (65 to 44 Ma in
age) located in the southern part of the Lhasa Block (see
Fig. 6a), below which the Tethyan—Indian Oceanic Plate
was subducted northward (e.g., Wu et al. 2013; Xu et al.
2013). However, Hetzel et al. (2011) demonstrated that
rapid exhumation of up to 6 km in the northern Lhasa
block between 65 and 48 Ma formed low-relief surfaces,
probably at an altitude close to sea level. Sporopollen as-
semblages, characterized by a lack of dark needle-leaved
trees, from the southern margin of Qiangtang Block
(Fig. 6a) also suggest a low-elevation plain with no high
mountains present (Wu et al. 2013). Thus, controversy
arose as to whether there was a high volcanic mountain
chain along the southern margin of the Eurasian contin-
ent before the collision.

Recently, Ding et al. (2014) used oxygen isotope
paleoaltimetry to show that the Gangdese Magmatic arc
attained an elevation of 4500 m by 60 Ma and argued
that the low-relief surfaces reported by Hetzel et al.
(2011) may represent a low-elevation corridor between
the Gangdese Magmatic arc and the Qiangtang
Mountains. Furthermore, Caves et al. (2015) showed
that the spatio-temporal distribution of paleoprecipita-
tion 880 in central to East Asia during the Cenozoic
has stayed remarkably constant since 50 Ma, suggesting
that the long-standing topography of southern Tibet has
continuously blocked southerly moisture incursion and
that the subsequent uplift of the TP has had little impact
on the climate of central Asia. Thus, it seems very likely
that an Andean-type volcanic mountain chain of ~4 km
high was present at the southern margin of the Eurasian
continent by 60 Ma.

The collision between India and Eurasia started at ca.
55-45 Ma, and the rate of convergence of the two conti-
nents decreased significantly after ca. 45 Ma (Molnar et
al. 2010). Based on paleoaltimetric studies using oxygen
isotope ratios as well as sedimentological evidence, it is
thought that the India—Eurasia collision might have
caused the uplift of the southern—central TP to an alti-
tude close to that of present at ca. 40 Ma (Rowley and
Currie 2006; Wang et al. 2008; Polissar et al. 2009). Re-
cently, Hoke et al. (2014) examined oxygen isotopes
from pedogenic carbonates from the southeastern mar-
gin of the TP and concluded that the present elevation
of ~3.3 km was attained as early as the late Eocene
(>40 Ma) in that part of the TP, suggesting extensive
early uplift of the southern TP.

Dai et al. (2012) studied the provenance and sedimen-
tological environment of Paleogene fluvial sediments of
the Hoh Xil Basin (Fig. 6a) in the north—central TP,
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which is more than 500 km wide. They demonstrated
that the eastern and western Hoh Xil basins formed a
single large foreland basin, and its conglomerate-bearing
sediments were derived from the Qiangtang and Lhasa
blocks of the central-south TP. These results suggest
rapid uplift and erosion of the Qiangtang and Lhasa
blocks at ca. 40 Ma.

It is widely believed that the TP gradually grew se-
quentially north—northeastward as collision continued
(e.g., Tapponnier et al. 2001; Wang et al. 2008). This
traditional view of northward growth of the TP has re-
cently been challenged by the idea that the northern and
southern edges of the TP were already defined and being
deformed via the main part of the TP soon after the start
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of the collision (Clark 2012; Yuan et al. 2013). Exhum-
ation started at 49-46 Ma, (Yin et al. 2002; Zhu et al.
2006), then accelerated at ca. 45-35 Ma (Clark et al.
2010), and north—south shortening continued until ca.
22 Ma (Yuan et al. 2013) especially in the northeastern
TP. Similarly, accelerated exhumation during the middle
Eocene (ca. 50-40 Ma) is reported from north—central
Pamir (Fig. 6a) and from the Transhimalaya in Ladakh,
probably associated with the India—Eurasia collision
(Clift et al. 2002; Amidon and Hynek 2010). Further-
more, Dupont-Nivet et al. (2008) examined palynological
assemblages of precisely dated lacustrine sediments from
Xining Basin (Fig. 6¢) in the northeastern TP and found
the appearance of high-altitude vegetation at an optimal
altitude of 2500-4000 m. This vegetation was possibly
derived from West Qinling Shan (Fig. 6¢) at 36.1 Ma
(magnetic polarity chron C16n2n) (see also Hoorn et al.
2012).

The onset of exhumation ca. 50 Ma at the northern
edge of the TP suggests that forces associated with the
India—Eurasia collision were transmitted to the northern
end of the TP rather rapidly (Clark 2012). However, it is
important to note that the onset of deformation at
the northern edge of the TP immediately after the
India—Eurasia collision and subsequent continuation
of deformation does not necessarily mean that the
northern part of the TP was uplifted to close to
present-day altitudes at that time.

The Oligocene-early Miocene

Thermochronometry shows the temporal acceleration of
exhumation between 25 and 20 Ma in the Laji Shan area
(Fig. 6¢) in the northeastern TP (Lease et al. 2011; Xiao
et al. 2012). A similar acceleration in erosion is also re-
ported in the nearby Qilian Shan (Fig. 6a, c¢) (George et
al. 2001) and the Hoh Xil Basin in the north—central TP
(Wang et al. 2008). During this period, the orientation of
crustal shortening changed from N-S to NE-SW in the
northeastern TP (Lease et al. 2011; Yuan et al. 2013).
This change in the tectonic deformation mode could be
related to the partial removal of the mantle lithosphere
under the northern TP and subsequent weakening and
outward flowing of the middle to lower crust (Clark and
Royden 2000; Royden et al. 2008; Yuan et al. 2013), a
process that could have led the TP to reach present-day
elevations.

In the northwestern TP and the Pamir Plateay,
tectonic deformation and rapid exhumation occurred dur-
ing the late Oligocene to early Miocene (ca. 25-15 Ma;
Sobel and Dumitru 1997; Amidon and Hynek 2010; Zhang
et al. 2011). This tectonic event is considered to be the re-
sult of the initiation of south-dipping intercontinental sub-
duction between North Pamir and the Tien Shan, which
could have been triggered by breaking off of the western
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end of the north-dipping Indian slab (Sobel et al. 2013).
Associated crustal thickening and subsequent partial melt-
ing of the lower crust caused extrusion of gneiss domes
and rapid exhumation in the central and western Pamir
during the late Oligocene to early Miocene (Amidon and
Hynek 2010; Thiede et al. 2013). Initiation of the
NNW-trending Karakoram Fault (Fig. 6b; right-lateral
fault) is also considered to have been associated with
the onset of subduction (Thiede et al. 2013).

The 25-15 Ma period is regarded as a transitional
period for establishment of a new subduction system
(Sobel et al. 2013). Pamir frontal thrusts, such as the
Main Pamir Thrust (Fig. 6a), became active during this
time (Bershaw et al. 2012). It is thought that the North
Pamir was influenced by subduction erosion during the
early stages of subduction, but became influenced by
subduction accretion by the middle Miocene due to the
increasing thickness of sediments involved in the sub-
duction (Sobel et al. 2013). This timing is also similar to
(i) slowing of India—Asia convergence rates between 20
and 11 Ma (Molnar and Stock 2009) and (ii) deceler-
ation of strike—slip motion and acceleration of distrib-
uted shortening in the northern TP between 18 and
15 Ma (e.g,, Ritts et al. 2008).

In the Tibetan and Greater Himalayan regions (Fig. 6b),
north—south compression and consequent crustal thick-
ening was active during the early Miocene, as manifested
by activation of the Main Central Thrust (MCT) from
22 to 21 Ma, and the Great Counter Thrust (GCT) from
19 to 13 Ma (Fig. 6b) (Murphy et al. 2009), suggesting
that this part of the Himalaya reached present-day
elevations during this period (Gebelin et al. 2013). The
Greater Himalayan sequence, sandwiched between the
MCT and Southern Tibetan Detachment System (STDS)
(Fig. 6b) and represented by middle- to lower-crustal
rocks, is considered to have been extruded from beneath
the TP (the channel flow model) (Nelson et al. 1996)
during the early to middle Miocene (24—12 Ma) (Catlos
et al. 2004). This process is linked to partial melting of
the middle—lower crust (Harris 2007). P-T-t paths ob-
tained from the Greater Himalayan Crystalline Series
support a 25-23 Ma age for the onset of exhumation
(fig. 5 of Harris 2007). Exhumation was particularly vig-
orous during the Early Miocene (Hodges 2006), most
likely due to enhanced erosion caused by focused pre-
cipitation (Clift et al. 2008). The Greater Himalayan Se-
quence was thrusted far to the south over the top of the
Lesser Himalaya (Fig. 6b) during this interval (Deeken et
al. 2011). Clift et al. (2008) examined the mass accumu-
lation rate of marine sediments from the Indus and Ben-
gal Fan and demonstrated that rates were the highest
during middle Miocene when extrusion of Greater
Himalayan Sequence was most intense. Clift et al. (2008)
further examined chemical weathering indices of marine
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sediments from the Indus and Bengal fans to demon-
strate that summer monsoon precipitation intensity was

higher during this period.

The middle Miocene onward

Thermochronometry data indicate that exhumation of
the northeastern TP started at ca. 13 Ma in the Jishi
Shan (Fig. 6¢) (Lease et al. 2011), at ca. 10 Ma in the
Qilian Shan (Zheng et al. 2010), and at ca. 8 Ma in the
Liupan Shan (Fig. 6¢) (Zheng et al. 2006). Increases in
erosion rates and/or grain size and changes in proven-
ance occurred in most of the surrounding basins since
ca. 15-10 Ma (Yuan et al. 2013). Recently, Duvall et al.
(2013) used low-temperature thermochronometry to
examine the timing of the Kunlun and Haiyuan left-
lateral faults onset (Fig. 6b) and concluded that exhum-
ation along the western, central, and eastern segments of
the Kunlun Fault increased at 12—8, 20-15, and 8-5 Ma,
respectively, whereas motion along the Haiyuan Fault
started as early as 15 Ma along the western/central
segment and 10-8 Ma along the eastern fault tip. Hough
et al. (2011) examined the oxygen isotope gradient be-
tween Xunhua and Linxia basins across the Jishi Shan
and concluded that a rain shadow developed between 16
and 11 Ma, driven by the uplift of the NNW-SSE
trending Jishi Shan.

Ritts et al. (2008) studied Oligocene-Miocene clastic
sedimentary rocks in the southeastern Tarim Basin in
the north—central TP (Fig. 6a). They found planktonic
and benthic foraminifer assemblages at the base of
orogenic-sourced conglomerate, suggesting temporal in-
trusion of a shallow sea along the southern margin of
the Tarim Basin at that time. They showed that the uplift
of the Altun Shan, caused by the oblique reverse faulting
of the Northern Altyn Tagh Fault (Fig. 6a), began at
16—15 Ma based on foraminiferal biostratigraphy, cor-
relation of the foraminifera-bearing interval to a global
high stand at 15.6 Ma, and reconstruction of the thermal
history of the area using two low-temperature thermo-
chronometers. In eastern Pamir, a shallow emplacement
of gneiss and subsequent exhumation occurred between
14-and 8 Ma in the north (Muztagh Ata) (Fig. 6a), whereas
exhumation occurred from 8 Ma and continues to
the present in the south (Kongur Shan) (Fig. 6a)
(Thiede et al. 2013).

Along the eastern margin of the TP, southeastward
expansion of the plateau started at 13—-11 Ma, which
probably reflected lower crustal flow toward the
southwest (e.g., Clark et al. 2005). Stable isotope
paleoaltimetry also suggests that approximately 1 km
of post-late-Miocene surface uplift occurred at the
southeast margin of the TP to the south of Dali (Hoke et
al. 2014), which is consistent with the observations of
Clark et al. (2005). It is possible that this late Miocene
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uplift at the southeastern margin of the TP was also
caused by southeastward lower crustal flow. In the
southern TP (Lhasa Block), formation of NNE-SSW
trending grabens suggesting E—W extension in the
plateau interior started as early as 14 Ma and lasted until
4 Ma, based on the dates of fault zone mineralization (e.g.,
Blisniuk et al. 2001).

In the Tethyan and Greater Himalaya, arc-parallel ex-
tension from ca. 14 to 8 Ma resulted in the formation of
the huge Zada Basin (Fig. 6b) (Murphy et al. 2009).
Paleoaltimetry based on §'®0 in fossil gastropods sug-
gests a 1.0 to 1.5 km decrease in altitude at Zada Basin
in the southern TP during the late Miocene (Murphy et
al. 2009). It is noteworthy that formation of such basins
was coeval with initiation of the Karakorum Fault and
its extensions that cut the GCT into the Tethyan Hima-
layan area (Fig. 6b).

In the frontal Himalaya, extrusion of the Higher
Himalayan Crystalline (HHC) thrust sheet onto the
Lesser Himalaya (LH) sequence slowed down in the
middle Miocene and ceased by ca. 12 Ma (Godin et al.
2006). Based on U-Pb ages of monazite and zircon from
the central Himalaya, MCT and STDS activity ceased by
12—-13 Ma (Edwards and Harrison 1997; Wu et al. 1998;
Catlos et al. 2004). Clift et al. (2008) used the mass accu-
mulation rate of terrigenous sediments in the Indus Fan
and probability density analysis of “°Ar/>*’Ar dates of de-
trital muscovite grains to show that extrusion and ero-
sion of the HHC series seemed to slow down during the
late Miocene. The slowing of erosion was interpreted to
have been driven by a decrease in ISM precipitation in
the frontal Himalaya, possibly due to southward retreat
of the ISM front (Huang et al. 2007). Armstrong and
Allen (2011) further speculated that this retreat could
have been related to the southward shift of the Inter-
tropical Convergence Zone. Approximately synchronous
with this event during the middle Miocene, the LH se-
quence was detached from the under-thrusting Indian
plate, thrust under the HHC series, and stacked in the
northwestern Himalayan region, thereby forming the
Lesser Himalayan Crystalline Complex (Deeken et al
2011). In the LH, duplexes and thrust sheet stacks were
occasionally formed above the mid-crustal ramp, causing
growth of the LH from the Middle Miocene to the Early
Pliocene (Deeken et al. 2011; Webb et al. 2011). These
Lesser Himalayan Crystalline sheets were exhumed after
peak metamorphism at ca. 11 Ma (Caddick et al. 2007).
Subsequently, deformation propagated southward to the
Main Boundary Thrust (MBT) (Fig. 6b), which was acti-
vated by 5 Ma (DeCelles et al. 2001; Webb 2013), and
then to the Main Frontal Thrust (MFT). Thus, the area
of the strongest uplift migrated southward by ca. 100 km
within the LH region since ca. 11 Ma. It is noteworthy
that a modern precipitation maximum occurs at the
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frontal part of the Lesser Himalayan Crystalline sheet,
approximately 100 km to the south of the Greater
Himalaya in the northwest Himalaya (Deeken et al. 2011).

Although there was a widely held belief that a pulse of
tectonic uplift occurred in the northern TP during the
Plio-Pleistocene (e.g., An et al. 2001; Tapponnier et al.
2001), recent studies tend to suggest otherwise. For ex-
ample, many papers that argue for Plio-Pleistocene uplift
of the northeastern TP use the onset of fluvial incision
of the high-relief plateau margin as a proxy for the tim-
ing of the uplift (e.g., Li et al. 1997). However, Craddock
et al. (2010) demonstrated that the onset of fluvial inci-
sion of the northeastern TP at ca. 1.8 Ma significantly
lagged the uplift that occurred in the Middle Miocene.
Also, extensive deposition of thick conglomerate beds
along the northern margin of the northern TP was used
as evidence of Pliocene tectonic uplift of northwestern
Tibet (e.g., Zheng et al. 2000). However, our recent re-
evaluation of the age of the conglomerate beds (the Xiyu
Formation) at Aertashi section in southwestern Tarim
revealed a deposition onset age of ca. 15 Ma (Zheng et
al. 2015). Earlier estimates of the age of the Xiyu Forma-
tion and its equivalent conglomerate beds are based
solely on magneto-stratigraphy, and so it is necessary to
reevaluate their age. There is some evidence of acceler-
ated erosion in the Himalayan region during the Plio-
Pleistocene (Huntington et al. 2006). For example,
McDermott et al. (2013) suggest an increase in the ero-
sion rate in the area south of STDS at ~3.5 Ma in the
Nyalam region in the central Himalaya.

Summary

It is controversial whether an Andean-type high moun-
tain chain already existed before the collision of India
with the Eurasian continent (England and Searle 1986;
Kapp et al. 2007; Molnar et al. 2010; Hetzel et al. 2011)
although recent studies tend to support its existence be-
fore collision (Ding et al. 2014; Caves et al. 2015). The
first pulse of the HTP uplift in the southern and central
TP during the late Eocene (ca. 40 Ma), soon after the
“hard” collision of India and Eurasia at ca. 45 Ma, prob-
ably resulted in the HTP reaching a height close to that
of present (Rowley and Currie 2006; Wang et al. 2008;
Polissar et al. 2009; Dai et al. 2012; Hoke et al. 2014).
Deformation and exhumation also started at the north-
ern edge of the TP and Pamir soon after the collision
and accelerated at ca. 36-35 Ma (Dupont-Nivet et al.
2008; Clark et al. 2010; Hoorn et al. 2012).

A second pulse of surface uplift occurred between 25
and 20 Ma in the northeastern, northwestern, central
TP, and Pamir (Sobel and Dumitru 1997; George et al.
2001; Wang et al. 2008; Amidon and Hynek 2010; Lease
et al. 2011; Zhang et al. 2011; Xiao et al. 2012). This
uplift pulse was extensive and associated with a change
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in deformation mode, which is interpreted to have been
related to the partial removal of mantle lithosphere
under the northern TP, and subsequent weakening and
thickening of middle to lower crust (Clark and Royden
2000; Royden et al. 2008; Yuan et al. 2013). The Greater
Himalayan Sequence was extruded from under the TP
and thrust over the LH, a process accompanied by par-
tial melting of the middle to lower crust. Initiation of
south-dipping intercontinental subduction occurred be-
tween North Pamir and the Tien Shan, which could have
been initiated by break-off of the western end of the
north-dipping Indian slab (Sobel et al. 2013).

A third pulse of the HTP uplift occurred at around 15
to 10 Ma when the TP expanded toward the north and
east to attain a width and altitude close to the present
(Hough et al. 2011; Yuan et al. 2013). This event is prob-
ably related to the flow of the lower crust due to crustal
thickening and northward and eastward expansion of
the zone of partial melting under the TP (Clark and
Royden 2000; Yuan et al. 2013). It is also suggested that
the southernmost part of the HTP became close to the
present altitude since 9 to 11 Ma (Rowley and Currie
2006, Saylor et al. 2009) although this may have hap-
pened earlier during thrusting of the Greater Himalaya
to the south onto the Lesser Himalaya sequence, be-
cause modern altitudes are recorded around Mount
Everest in the late early Miocene (Gebelin et al.
2013).

After ca. 10 Ma, the uplift continued in the northeast-
ern part of the TP, but this was not as significant as pre-
viously thought, whereas progressive southward
migration of the zone of greatest rock uplift occurred in
the frontal Himalaya (Deeken et al. 2011).

Initiation and evolution of the East Asian
monsoon during the Cenozoic

Before the Oligocene

EASM

Latitudinal zonal distribution of climate is considered to
have dominated the Paleocene and Eocene in East Asia
before the collision of India and Eurasia (Song et al
1983; Sun and Wang 2005). This climate was thought to
be characterized by a subtropical humid zone in the north,
a subtropical-tropical and arid—semiarid zone in the mid-
dle, and tropical humid zone in the south, with the loca-
tion of the subtropical high being the main control on this
zonal climate distribution (Wang et al. 1999). However,
this traditional view was recently challenged by several
studies. For example, Quan et al. (2012) examined 66
plant assemblages at 37 localities in China and found
that the arid zone proposed in earlier studies experi-
enced relatively high mean annual precipitation of
>735 mm. Both western and eastern parts of China had
higher mean annual temperatures and precipitation than
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central part of China, and the entire area was character-
ized by rather strong seasonality, suggesting the occur-
rence of a monsoon climate, especially in the eastern parts
of East Asia. This interpretation is supported by the result
of sediment facies analysis by Wang et al. (2012), who
demonstrated a landward decrease in humidity along an
east—west transect in eastern China. Climate model simu-
lations also support the view that the EASM was already
active during the Eocene, probably because of higher at-
mospheric pCO, at that time (Huber and Goldner 2012;
Zhang et al. 2012a; Licht et al. 2014). However, the
monsoon-like climate in East Asia during the Eocene was
probably not strong enough to replace the latitudinal arid
zone formed by the subtropical high, but only to periodic-
ally obscure it by introducing humid air into inland central
Asia during the summer (Zhang et al. 2012b).

The Eocene—Oligocene Transition (EOT) at ca. 34 Ma
is characterized by a two-step increase in global benthic
foraminiferal 8'®0 values that reflect the significant
growth of Antarctic ice sheets and a temperature de-
crease in the deep ocean (Lear 2007). Atmospheric CO,
concentrations are also thought to have decreased over
this time (Pearson et al. 2009; Pagani et al. 2011). How-
ever, the temporal and casual relationship between the
decrease in pCO,, global cooling, and the build-up of
Antarctic ice sheets is not clear because climatic
conditions immediately before the EOT are not well
documented.

Based on a palynological study of the late Eocene
sedimentary succession in the Xining Basin in the
northeastern TP, Hoorn et al. (2012) demonstrated
that a distinct cooling step occurred at 36.4 Ma
(C16r). This step roughly coincides with a distinct de-
crease in gypsum content at 36.6 Ma (at the top of
chron Cl17n.1n), suggesting that the cooling was ac-
companied by drying and a decrease in the seasonal-
ity of precipitation. It is important to note that a
major cooling step preceded the EOT by ca. 2 m.y.
and the monsoon-like climate weakened in response
to this cooling (Licht et al. 2014).

Desertification

It is critical to identify the timing of onset of desertifica-
tion in central Asia if we are to assess its possible linkage
with the uplift of the HTP. Existing paleoenvironmental
records suggest that initial desertification of inland Asia
started around the EOT, although the exact age is not
well constrained (e.g., Graham Stephan and Yongjun
2005). Dupont-Nivet et al. (2007) used magneto-
stratigraphy and cyclo-stratigraphy to examine distal
alluvial fan deposits from Playa Lake in the north-
eastern TP. They showed that these deposits are
characterized by rhythmical alternations of gypsum
and red mudstone layers in the Xining Basin (Fig. 6c)
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and demonstrated that aridification was accompanied
by the disappearance of Playa Lake deposits (gyp-
sum) at the Eocene/Oligocene boundary (EOB) at ca.
33.8 Ma (in the upper part of chron C13r). Because
the EOB is marked by an abrupt increase in marine
oxygen isotopes that most likely reflects the forma-
tion of permanent Antarctic ice sheets, this result
suggests a close linkage between global cooling and
the aridification of inland Asia.

Subsequent studies of the same sedimentary sequence
in Xining Basin revealed three additional phases of aridi-
fication before the EOB. Abels et al. (2011) showed that
the first phase was characterized by a distinct decrease
in gypsum content relative to red mudstone at 36.6 Ma
(at the top of chron C17n.1n) and that the second phase
was characterized by a substantial increase in the clastic
sedimentation rate at 34.7 Ma (at the base of chron
C13r). Furthermore, Xiao et al. (2010) demonstrated that
the third phase of aridification was characterized by a
major reduction in the thickness of the gypsum bed at
34.2 Ma (in the middle of chron C13r). This reduction
in gypsum bed thickness coincides with the start of the
first shift in marine oxygen isotopes and global cooling
(i.e., start of the EOT). Thus, aridification started almost
3 m.y. earlier than the formation of permanent Antarctic
ice sheets at the EOB. The occurrence of possible sand
dune deposits of approximately EOB age has been re-
ported at the Aertashi section in the southwestern
margin of the Tarim Basin (Zheng et al. 2015), indicating
an earlier onset of aridification and a possible link with
Antarctic glaciation.

The Oligocene-early Miocene

EASM

Paleobotanical and lithological data suggest that the geo-
graphic distribution of Oligocene paleoclimatic zones
was basically the same in the Oligocene—early Miocene
as in the Eocene. However, the data are limited because
the distribution of Oligocene sediments are restricted,
especially in southeastern China due to the erosion
caused by the uplift of the TP (Sun and Wang 2005
2008a; Guo et al. 2008). Nevertheless, a latitudinal zonal
pattern, with a less distinct arid zone in the middle lati-
tudes, seems to have lasted throughout the Oligocene
(Sun and Wang 2005; Guo et al. 2008).

A drastic change in paleoclimatic patterns occurred
around the Oligocene/Miocene boundary (e.g., Sun and
Wang 2005; Guo et al. 2008). Based on compilation of
paleobotanical and lithological data, Sun and Wang
(2005) demonstrated two completely different patterns
of climate zonation between the Paleogene and the
Neogene. Namely, the latitudinal zonal pattern during
the Paleogene changed to a Neogene pattern with arid
zones restricted to northwest China. This suggests the
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emergence of the EASM at around the beginning of the
early Miocene (ca. 23 Ma), when the zonal distribution of
arid climate in East Asia was disrupted as a result of the
development of a warm and wet climate in eastern China
(Sun and Wang 2005; Guo et al. 2008).

This change is also marked by the deposition of
“Miocene loess” in the western Chinese Loess Plateau
(CLP) started at ca. 22 Ma (Guo et al. 2002). Subsequent
studies confirm this finding, showing that loess depos-
ition began in the western CLP as early as 25 Ma, and
that stable dry conditions were established by 23 Ma
(e.g., Qiang et al. 2011). In the Jungger Basin, approxi-
mately 2000 km northwest of the CLP, loess deposition
started at ca. 24 Ma and lasted until 8 Ma (Sun et al.
2010a). Recently, Zheng et al. (2015) described the stra-
tigraphy of the Cenozoic sedimentary sequence in the
southwestern Tarim Basin using new Ar—Ar and U-Pb
ages of pyroclastic beds in the upper part of the se-
quence. They revised the ages of the underlying Xiyu
and Atux Formations, previously thought to have de-
posited in the Pliocene (Zheng et al. 2000), to be late
Oligocene to early Miocene. Based on this new age
model, the onset of loess deposition in the Tarim
Basin is estimated as ca. 25 Ma (see also Tada et al.
2010). Thus, there is good evidence that the Asian in-
terior (western deserts of China) became drier slightly
before the Oligocene/Miocene boundary.

Jiang and Ding (2008) examined the pollen record
from fluvio-lacustrine sediments at Guyuan, east of the
Liupan Shan (Fig. 6¢) in the CLP covering the last
20 Ma and found that the EASM was relatively strong
during the early Miocene (20.13-14.25 Ma), although
the magnetic susceptibility of loess deposits, commonly
used as a summer monsoon proxy in the western CLP
(west of Liupan Mountains), is generally low in lower
Miocene sediments except between 16 and 14 Ma (Guo
et al. 2002; Qiang et al. 2011). A stronger EASM during
the early Miocene is also inferred from clay mineral
assemblages as well as other geochemical proxies in
sediments from the northern South China Sea (Clift et
al. 2002; 2014).

Martin et al. (2011) examined the oxygen and carbon
isotopes of mammal teeth from a terrestrial sequence in
central Pakistan and found relatively high stable §'%0
values between 30 and 22 Ma, suggesting dry conditions.
8'3C values, on the other hand, suggest a Cs-based diet
typical of a dense forest and subtropical climate. Palyno-
logical data from the surrounding area support this in-
terpretation, but suggest drier habitats occurred later in
the Oligocene (De Franceschi et al. 2008). Martin et al.
(2011) further reported a gradual (7 %o) decrease in 80
of mammal teeth from central Pakistan from 22 to
15 Ma, which could be partly explained by a global
temperature decrease, but more likely reflects the
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development of a wetter climate. The latter interpret-
ation is consistent with paleobotanical evidence (Antonie
et al. 2010), whereas 8'3C values are similar to those
during the Oligocene, suggesting the continued domin-
ance of Cj vegetation. These results suggest intensifica-
tion of the ISM from 22 to 15 Ma.

EAWM

Eolian dust, accumulated in the CLP (and neighboring
marginal seas), is thought to have originated from the
Mongolian Gobi desert and been delivered by EAWM
winds (e.g., Chen and Li 2013). Thus, the 10-70 pm
fraction of detrital material or detrital quartz in loess—
paleosol and Red Clay sequences are commonly used as
a proxy for wind intensity. Various studies have recon-
structed changes in the EAWM during the last 20 Ma
(Chen et al. 2006; Sun et al. 2008a; Jiang et al. 2008; Sun
et al. 2010b, 2006). For example, Jiang and Ding (2010)
examined the 10-70 pum fraction content and grain
size of lacustrine sediments in Sikouzi (Fig. 6c¢) in
southwestern CLP, a sequence that spans the last
20.1 Ma. They found low content and smaller grain
size of the 10-70 pm fraction, suggesting weak
EAWM intensity from 20.1 to 12.0 Ma.

Desertification

As described above, the deposition of loess started as
early as 24 Ma in the Junggar Basin and 25 Ma in the
western CLP. At Aertashi, in the southwestern part of
the Tarim Basin, pale yellowish loess-like siltstone ap-
pears at approximately the Oligocene/Miocene boundary
(OMB) (Zheng et al. 2015). Thus, desertification over a
wide area of the middle latitudes of the Asian interior
seems to have commenced at or slightly before the
OMB. The “Miocene” loess in the western CLP was
probably derived from the Gobi-Altai area (Chen and Li
2013), but its deposition was restricted to the western
CLP until ca. 12 Ma. In the Tarim Basin, pale yellowish
loess-like siltstone continued to accumulate until at least
ca. 10 Ma after when record of the Xiyu Conglomerate
cannot be found.

Post-middle Miocene

EASM

Qiang et al. (2011) described the temporal development
of wet conditions in the western CLP between 16 and
14 Ma, based on an increase in the magnetic susceptibil-
ity of loess. A similar development of wet conditions
was documented in the Jungger Basin between 17.5 and
13.5 Ma (Sun et al. 2010a). It is noteworthy that these
wet periods coincide with the Miocene climatic
optimum (17 to 15 Ma), which was most likely induced by
higher atmospheric pCO, (Foster et al. 2012). After ca.
14 Ma, dry conditions prevailed in the western CLP until
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ca. 10 Ma (Guo et al. 2002). Based on the pollen assem-
blage from fluvio-lacustrine sediments in Guyuan (Fig. 6¢),
Jiang and Ding (2008) argued for a drastic decrease in
EASM precipitation from 14.25 to 11.35 Ma.

Further intensification of the warm and wet climate
in East Asia occurred during the late Miocene to
early Pliocene, suggesting intensification of the EASM
(e.g, An et al. 2001). In the central and eastern parts
of the CLP, deposition of the Red Clay Formation
started at ~11-7 Ma (Sun et al. 2010b; Xu et al.
2009). Based on geochemical and sedimentological
evidence, the Red Clay Formation is considered to be
of eolian loess origin, but has suffered from signifi-
cant pedogenesis and/or diagenesis (Guo and Peng
2001). This implies that expansion of the dry area to
the west or northwest of the CLP and/or intensifica-
tion of the Siberian High during winter, which sup-
plied dust to the CLP, occurred simultaneously with
intensified precipitation in the CLP during summer.
However, this dry—wet shift is diachronous with the
earlier shift that occurred in northeast China (Qiang
et al. 2011). The magnetic susceptibility of the Red
Clay Formation, considered to be a reflection of summer
precipitation, increased after ca. 4.2 Ma and reached the
maximum between ca. 3.2 and 2.8 Ma. This maximum
occurred at approximately the same time as the mid-
Pliocene warm period (e.g., An et al. 2001; Sun et al.
2010b).

Pedogenesis weakened in the CLP after ca. 2.8 Ma,
suggesting weakening of the EASM (An et al. 2001). Sun
et al. (2010b) demonstrated a decrease in magnetic sus-
ceptibility, and thus EASM precipitation, with increasing
orbital-scale variability that started at 2.75 Ma and con-
tinued until ca. 1.25 Ma. At this time, the amplitude of
orbital-scale variability further increased alongside a
trend toward slightly increased magnetic susceptibility.
A further increase in magnetic susceptibility and the
amplitude of orbital-scale variability occurred at ca.
0.5 Ma (see also Kukla and An 1989), implying stronger
summer monsoons during interglacial maxima. Based
on analytical results from a drill core retrieved from the
central Tengger Desert, Li et al. (2014) reported a sig-
nificant deposition of eolian dust that started at 2.6 Ma
with the initial formation of the Tengger Desert at
0.9 Ma and a prevalence of eolian sand deposition simi-
lar to the present started at 0.68 Ma. Pollen and organic
carbon isotope records from the CLP (An et al. 2005;
Wu et al. 2007) also suggest a shift to a drier climate at
ca. 0.9 Ma and deposition of “mountain loess” on the
southern margin of the Tarim Basin started at ca. 0.9 Ma
(Fang et al. 2002).

It should be noted that the onset of the northern
hemisphere glaciation (NHG) began ca. 2.8 Ma (Raymo
1994; Ruddiman 2010). The effect of the NHG on the
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EASM should be removed when evaluating the impact
of the HTP uplift on monsoon intensity (Lu et al. 2010).
It also should be noted that the Mid-Pleistocene Transi-
tion (MPT) occurred from 1.2 to 0.7 Ma and is defined
as the transition interval between a change in the dom-
inant periodicity of climate from 41 to 100 k.y. in the ab-
sence of a substantial change in orbital forcing (Clark et
al. 2006; Elderfield et al. 2012). Furthermore, an age of
ca. 0.5 Ma corresponds to the Mid Brunhes event that
was characterized by an increase in the interglacial at-
mospheric pCO, level (e.g., EPICA Community Mem-
bers 2004).

In an oxygen and carbon isotopic study of mammal
teeth from central Pakistan, Martin et al. (2011) reported
significantly low 8'®0 values during 15 to 12 Ma, which
they interpreted as reflecting higher precipitation and
lower temperatures. An increase in 8'*0 of mammal
tooth samples from central Pakistan occurred between
12 and 9.3 Ma, and its variability increased after that
time (Martin et al. 2011). Similar 8'30 shifts in Siwalik
paleosols are reported at 9.15 Ma (e.g, Quade et al.
1989, Quade and Cerling 1995), which is interpreted to
reflect a decrease in precipitation and/or an increase in
the seasonality of precipitation, consistent with the re-
duced weathering seen in the Arabian and South China
seas (Clift et al. 2008). 8'3C values during 15 to 12 Ma
are similar to those during the Oligocene to early
Miocene, suggesting the dominance of C; vegetation
(Martin et al. 2011). The plant record from the Nepal
Siwaliks during the middle Miocene indicates tropical
evergreen forests with rare moist deciduous species
flourished in these regions (Prasad 1993).

EAWM
The contribution of the 10-70 pm fraction to lacustrine
sediments from Sikouzi increased drastically from 13 to
12 Ma. This was followed by a decrease from 12.0 to
10.3 Ma, an increase from 10.3 to 7.8 Ma, a decrease
from 7.8 to 4.3 Ma, and finally a gradual increase from
4.3 to 0.07 Ma (Jiang and Ding 2010). Intensification of
the EAWM at 13 to 12 Ma agrees relatively well with
the onset of deposition of the Red Clay Formation in the
eastern CLP at 11 Ma (Xu et al. 2009). Even though de-
position of the Red Clay Formation in the main part of
the CLP only started between 8 and 7 Ma, this could
have been a result of the slow uplift and erosion of the
Ordos Platform before 8 Ma that caused erosion or non-
deposition of eolian dust on the plateau (Xu et al. 2009).
Sun et al. (2010b) analyzed the quartz grain size of
loess—paleosol and Red Clay sequences at Lingtai in the
central CLP over the last 7 m.y. (Fig. 6c). They
concluded that the EAWM was relatively strong and
had high orbital-scale variation at 7 Ma. However, the
strength and amplitude of the EAWM gradually
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decreased toward 4.2 Ma, reaching minima between
4.2 and 2.75 Ma. The intensity gradually increased
again toward the present with a relatively abrupt in-
crease in amplitude at 1.25 Ma. Similar results were
obtained from analysis of grain size in bulk samples
and accumulation of loess from multiple sites in the
CLP covering the last 7.6 Ma (Sun et al. 2008a).

Ding et al. (2000) examined spatiotemporal changes in
the grain size of eolian dust in loess—paleosol and Red
Clay sequences in the CLP. They found a southward de-
crease in the grain size for loess—paleosol sequences, im-
plying a strong influence from northerly EAWM winds
after 2.6 Ma. In contrast, there is no clear trend toward
decreasing grain size for the Red Clay Formation. They
suggested a significant reorganization of atmospheric
circulation at 2.6 Ma, with a smaller EAWM wind influ-
ence before 2.6 Ma. In this respect, it is interesting to
note that orbital-scale EASM and EAWM intensities
were in phase before 3.75 Ma but out-of-phase after
2.75 Ma, with a transitional period between these times
(Sun et al. 2010b). After 2.6 Ma, eolian grain size shows
an increasing trend, with an abrupt increase in ampli-
tude at ca. 1.2 Ma (Sun et al. 2008a, Sun et al. 2010b).

Desertification

The occurrence of aeolian deposits provides direct evi-
dence for the presence of deserts, and their provenance
provides information on the location and extent of de-
serts. Deposition of the Red Clay Formation expanded
into the eastern CLP at 11 Ma (Xu et al. 2009), with the
Qilian Mountains as the dominant source region (Chen
and Li 2013), suggesting that a desert distribution com-
parable to that of the present was established by ca.
11 Ma. Chen and Li (2013) also reported that the rela-
tive contribution from the Gobi Altay Mountains re-
covers rapidly toward early Miocene levels at ca. 1.2 Ma.
The reason for this is not certain, but considering that
the loess—paleosol sequence in the CLP was derived pri-
marily from the Tennger Desert during interglacials and
from the Monglian Gobi Desert during glacials (Sun et
al. 2008a), intensification of EAWM wind system during
glacials after 1.2 Ma is one possible cause for this
change. According to a new chronology from Zheng et
al. (2015), there is no sedimentary record preserved be-
tween 10 and 1 Ma in the southwestern Tarim Basin,
and deposition of “Mountain Loess” started from ca.
1 Ma on the southern margin of the Tarim Basin (Fang
et al. 2002).

Summary

In summary, there is evidence for a summer monsoon
during the Eocene, especially in East Asia. This was prob-
ably driven by higher atmospheric pCO,, although the
latitudinal zonal distribution of climate was maintained
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(Huber and Goldner 2012; Zhang et al. 2012b; Licht et al.
2014). Disruption of this pattern and development of a
warm and wet climate in eastern China occurred around
the Oligocene/Miocene boundary at ca. 23 Ma (Sun and
Wang 2005; Guo et al. 2008). After that time, a temporal
increase in EASM intensity occurred during 16-14 Ma
and 4.2-2.8 Ma in the CLP (e.g., Guo et al. 2002; Sun et
al. 2010a) that approximately coincide with periods of
temporal global warming (Raymo et al. 1996; Foster et al.
2012). Since ca. 2.8 Ma, the EASM appeared to have
weakened alongside an increase in orbital-scale variability
(An et al. 2001) that coincided with the onset of northern
hemisphere glaciation.

It seems that the EAWM was active since as long ago
as 20 Ma, but was likely very weak until 13—12 Ma when
it began to intensify. The second phase of EAWM
intensification occurred at ca. 2.6 Ma alongside the
reorganization of atmospheric circulation. The third
phase of intensification occurred at 1.2 Ma, when
EAWM intensity further increased during glacial periods
(Sun et al. 2010a). Superimposed on these stepwise in-
tensifications of the EAWM are short-lived decreases in
its intensity during ca. 12 to 10 and 5 to 3 Ma; the latter
roughly corresponds to the time of mid-Pliocene warmth
(Raymo et al. 1996).

There is increasing evidence for extensive desertification
in inland Asia that began near the Oligocene/Miocene
boundary at ca. 23 Ma (e.g., Guo et al. 2002; Sun et al.
2010b; Zheng et al. 2015). The second phase of desertifica-
tion probably occurred at ca. 11 Ma when the Red Clay
Formation began to be deposited in the eastern CLP (Xu
et al. 2009). Further expansion of the dry area might have
occurred at ca. 2.6 Ma and ca. 1.2 Ma (Sun et al. 2010a;
Chen and Li 2013), which occurred at about the same
time as the NHG and MPT, respectively.

Testing the linkage between the HTP uplift and
Asian monsoon evolution
Three major phases of the HTP uplift are described in
this review (see the third section and Fig. 7). The first
pulse of the uplift in the south and central TP raised the
area to close to its present height during the late Eocene
(ca. 40 Ma). According to climate model simulations,
the uplift of the southern TP would have enhanced the
ISM and intensified the Somali Jet (Boos and Kuang
2010; Zhang et al. 2012b; Chen et al. 2014). Unfortu-
nately, no sedimentary sequences are available that rec-
ord the late Eocene history of ISM. Deformation and
exhumation started at the northern edge of the TP and
Pamir soon after the collision and accelerated at ca.
36-35 Ma, although we have no evidence that the
northern TP was raised to the present level at this time.

In the Xining Basin in the northeastern TP, aridifica-
tion started at ca. 36.6 Ma and was immediately followed
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black bars represent strong phases. In d, JuB and TaB indicate Jungger Basin and Tarim Basin, respectively

by cooling at 36.4 Ma (Hoorn et al. 2012). This cooling
preceded the EOB and Antarctic ice sheet formation by
more than 2 m.y. (Coxall et al. 2005). Considering that
strontium isotope ratios of seawater recorded in foram-
inifera started to increase at ca. 40 Ma (Richter et al.
1992), it is possible that the uplift of the northern TP
and the subsequent increase in erosion started enhan-
cing chemical weathering at ca. 40 Ma. This weathering
could, in turn, have caused the drawdown of atmos-
pheric pCO, (Pagani et al. 2005, 2011) and consequent
cooling and aridification at ca. 36.5 Ma. This cooling
and aridification would have occurred at least in Central
East Asia, but was more likely hemispheric in its extent.
The increase in oceanic lithium isotope ratios is also
consistent with increasing silicate chemical weathering
at ca. 35 Ma (Misra and Froelich 2012). Furthermore, it
is likely that global cooling, together with the opening of
the Drake Passage, led to the formation of Antarctic ice
sheets at the EOB (DeConto and Pollard 2003) that fur-
ther enhanced global cooling and aridification.

The second pulse of the HTP uplift occurred between
25 and 20 Ma in the northeastern, northwestern, and
central TP and also in the Pamir (Sobel and Dumitru
1997; George et al. 2001; Wang et al. 2008; Lease et al.
2011; Amidon and Hynek 2010; Zhang et al. 2011; Xiao
et al. 2012). This uplift pulse was extensive and associ-
ated with a change in deformation mode, which is

interpreted to have been related to the partial re-
moval of lithospheric mantle under northern Tibet
and subsequent weakening of the middle to lower
crust (Clark and Royden 2000; Royden et al. 2008;
Yuan et al. 2013). Initiation of south-dipping intra-
continental subduction occurred between North Pamir
and the Tien Shan. This process may have been
triggered by a break-off of the western end of the
north-dipping Indian slab (Sobel et al. 2013) and sub-
sequent weakening and outward flowing of the middle
to lower crust (Clark and Royden 2000; Royden et al.
2008; Yuan et al. 2013), allowing the TP to reach the
limiting (present-day) elevation.

According to climatic simulations of partial or phased
uplift of the HTP, the uplift of the northern TP en-
hanced summer precipitation in northern East Asia and
the southern and eastern TP (Zhang et al. 2012b; Tang
et al. 2012; Chen et al. 2014), reduced precipitation in
central Asia (Zhang et al. 2012a), and strengthened ISM
precipitation in northern India (Boos and Kuang 2010;
Zhang et al. 2012a; Chen et al. 2014). Whole uplift of
the TP may also have reduced precipitation over the
Somali Jet area, northern India, and southeastern Asia
(Abe et al. 2003; Chen et al. 2014), while intensifying the
Siberian—-Mongolian high and resulting in the gradual
northward movement of its center during the winter
(Liu and Yin 2002).
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These predictions are generally consistent with re-
cently published paleoclimatic data described in the
fourth section. In particular, a latitudinally zonal climate
pattern during the Paleogene changed to a Neogene pat-
tern. This pattern was characterized by arid zones re-
stricted to the northwest of China and the development
of a warm and wet climate in eastern China at the OMB
(ca. 23 Ma), suggesting intensification of the EASM (Sun
et al. 2006; Guo et al. 2008). There is also evidence of
desertification in central Asia around the OMB or
slightly earlier (Guo et al. 2002; Sun et al. 2010a; Qiang
et al. 2011) and emergence of the EAWM by ca. 20 Ma
at the latest (Jiang and Ding 2010). Although the partial
HTP uplift models predict a reduction in ISM precipita-
tion in northern India in response to the uplift of the
northern TP, 8'0 of mammal teeth from central
Pakistan and erosion rates in the Himalaya (Clift et al.
2008) suggest a shift to wetter conditions from 22 to
15 Ma (Martin et al. 2011). This contradiction can be
explained by the effect of the concurrent uplift of the
main part of Tibet that overwhelmed the effect of the
northern TP uplift on rainfall in South Asia. However, a
complete understanding of this contradiction requires
additional tectonic and paleoclimatic evidence. There is
some evidence of decreasing atmospheric pCO, around
26 Ma (Pagani et al. 2005, 2011) that may explain desert-
ification in inland Asia. However, simultaneous develop-
ment of a warm and wet climate in East Asia and
central Pakistan cannot be explained by the decrease in
pCOQ.

The third pulse of the HTP uplift occurred at ca. 15 to
10 Ma when the TP expanded toward the northeast and
the southeast (Clark et al. 2005). This event is possibly
related to the cessation of rapid Greater Himalayan ex-
humation. It is also suggested that the LH sequence was
uplifted beginning at ca. 11 Ma (Caddick et al. 2007). As
described in the second section, climate simulations pre-
dict that the uplift of the northern TP would enhance
the northwest penetration of the EASM front, the
desertification of inland Asia, and strengthening of the
EAWM. Models also predict a decrease in ISM precipi-
tation in northern India (Tang et al. 2012). There is
some evidence that the EAWM strengthened at ca. 13 to
12 Ma (Jiang and Ding 2010) and that the deposition of
loess (Red Clay formation) expanded into the eastern
CLP by 11 Ma (Xu et al. 2009). The §'*0 of mammal
teeth also provide evidence for a decrease in precipita-
tion in central Pakistan between 12 and 9.3 Ma (Martin
et al. 2011). These observations are consistent with cli-
matic simulation predications. However, there is no clear
evidence that the EASM intensified during this period.
Rather, there is evidence of a drastic decrease in EASM
precipitation from 14.25 to 11.35 Ma (Jiang and Ding
2008), which contradicts modeling predictions.
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It should be noted that the time between 14.25 and
11.35 Ma coincides exactly with an interval of global
cooling, most likely caused by the decrease in pCO,
(Tripati et al. 2009) and consequent expansion of the
Antarctic ice sheet (Holbourn et al. 2013). It is pos-
sible that intensification of the EASM caused by the
uplift of northern TP was canceled out by global
cooling. Alternatively, it is possible that desertification
of inland Asia, intensification of the EAWM, and the
reduction of ISM precipitation in northern India were
caused by the decrease in pCO, and subsequent glo-
bal cooling rather than by the uplift of the northern
TP. More detailed examination of the timing and
temporal sequence of the uplift of the northern TP,
along with climatic changes such as intensification of
the EASM and EAWM, desertification of inland Asia,
reduction of ISM precipitation in northern India, and
the pCO, decrease/global cooling is necessary in the
future.

There is evidence that tectonic activity in the northern
TP has not been as intensive since ca. 10 Ma as previ-
ously believed. For example, the period from ca. 3.6 to
2.6 Ma is thought to have been characterized by intensi-
fication of both the EASM and EAWM on the CLP in
response to the uplift of the northern TP (e.g., An et al.
2001). However, detailed examination of the magnetic
susceptibility of the Red Clay Formation suggests the op-
posite result. Namely, the intensity of the EASM in-
creased from 4.2 Ma and reached a maximum at ca.
3 Ma, whereas EAWM intensity was weakest and its
amplitude was at a minimum between 4.2 and 2.75 Ma
(Sun et al. 2010a). This inverse trend between the inten-
sities of the EASM and EAWM between 4.2 and 2.8 Ma
is opposite to model predictions that show simultaneous
intensification of the EASM and EAWM in response to
the uplift of the northern TP. The data are instead con-
sistent with a scenario where an increase in atmospheric
pCO, affects the intensities of the EASM and EAWM.
In fact, the interval between 4.2 and 2.8 Ma is approxi-
mately coincident with the Mid-Pliocene warm period
from ca. 4.5 to 3.0 Ma (Wara et al. 2005) or 3.0 to
3.3 Ma (Dowsett and Robinson 2009; Haywood et al
2005) and relatively high pCO, at ca. 3.3 Ma (Tripati et
al. 2009). Thus, the impact of the HTP uplift on the
strength of the EASM and EAWM seems minor com-
pared with that of pCO, changes. However, it is still an
open question whether the HTP uplift controlled the at-
mospheric pCO, level that in turn affected the evolution
of both the EASM and EAWM.

Conclusions

The hypothesis that the uplift of the HTP intensified the
Asian Monsoon has attracted attention from the geo-
science community for more than 40 years. Yet it is still
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not proven that plateau uplift intensified the monsoon
because we have insufficient knowledge of both the tec-
tonic evolution of the HTP and the paleoclimatic evolu-
tion of the Asian monsoon during the Cenozoic. In
addition, climate models are not sophisticated enough to
incorporate detailed topography and other boundary
conditions at each stage of the uplift. However, this situ-
ation is changing rapidly with drastic increase in new
data with new and sophisticated analytical techniques, as
well new simulation results with more advanced high-
resolution models become available. In this review, we
summarized recent progress in climate model simula-
tions that examine the impact of the HTP uplift on the
evolution of the Asian monsoon, the tectonic history of
the HTP uplift, and paleoclimatic evolution of the Asian
monsoon during the Cenozoic.

Results of recent climate model simulations demon-
strate that only the Himalaya or the southern TP are
necessary to intensify the ISM, whereas the uplift of
the northern TP is critical for intensification of the
EASM and EAWM. The uplift of the northern TP
also reduces ISM precipitation in northern India,
strengthens the western North Pacific subtropical
high, and reduces precipitation in central Asia. The
uplift of the TP intensifies the EAWM through
strengthening of the Siberian High, but the effect of
stepwise uplift of the TP on the EAWM is not well
explored. The effect of the Paratethys on the Asian
monsoon could also be significant, but the timing of
this effect is restricted to the Eocene, since this water
body largely disappeared during the Oligocene. The
effect of pCO, on the intensity of the Asian monsoon
is potentially significant and should be taken into ac-
count. PCO, has opposing impacts on summer and
winter monsoons, and its effects also contrast with
the tectonically driven impact.

Three major phases of the HTP uplift are recognized.
The first pulse involves the uplift of the southern and
central TP at ca. 40-35 Ma, which was probably caused
by the collision of the Indian subcontinent with Eurasia
at ca. 50-40 Ma. The second pulse is the uplift of the
northern TP at ca. 25-20 Ma, which was characterized
by a change in deformation mode, probably linked to
the partial removal of lithospheric mantle under the
northern TP and subsequent thickening of the middle
to lower crust. The Greater Himalayan sequence was
exhumed and thrusted over the Lesser Himalaya se-
quence at that time. The third pulse is the uplift of
the northeastern and eastern TP starting at ca.15-
10 Ma, which may have been triggered by the expan-
sion of the partial melting zone under the TP and
propagation of the compressive front into Eurasia.
Since ca. 10 Ma, the uplift has continued in the
northeastern part of the TP and in the frontal Himalaya,
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where the progressive southward shift of the uplift
continues.

The effect of the uplift of different parts of the HTP
on climate was explored based on a comparison of cli-
mate model simulation results with paleoclimate re-
cords. The following changes in the Asian monsoon in
various parts of Asia are predicted to be caused by dif-
ferential uplift:( i) the uplift of the southern and central
TP at 40-35 Ma should have intensified the ISM and
the Somali Jet; (ii) the uplift of the northern TP at
25-20 Ma is predicted to have caused intensification
of the EASM and EAWM, as well as the desertification of
Central Asia; and (iii) the uplift of the northeastern and
eastern TP at 15-10 Ma should have further intensified
both the EASM and EAWM.

These predictions are tested by comparing the re-
sults with paleoclimatic data spanning critical time
intervals. There are not enough paleoclimatic data to
specify whether the ISM and Somali Jet intensified
in association with the uplift of the southern and
central TP at 40-35 Ma. However, it is possible that
the uplift of the southern and central TP enhanced
erosion and weathering of the HTP. This weathering
may have in turn resulted in a draw down of atmos-
pheric CO, and global cooling, along with expansion
the Antarctic ice sheets and a reduction in EASM
intensity. There is strong evidence that, beginning at
25-20 Ma, the EASM and EAWM intensified and
desertification in inland Asia was enhanced in asso-
ciation with the uplift of the northern TP. The im-
pact of the uplift of the northeastern and eastern TP
on Asian monsoon strength at 15-10 Ma is difficult
to evaluate because this interval is also a time of
global cooling and Antarctic glaciation that might
also have confounded Asian monsoon intensity.

In conclusion, the uplift of the northern TP at ca.
25 to 20 Ma probably triggered the establishment of
the EASM and desertification of inland Asia. How-
ever, as with the other two uplift phases that
affected the HTP at ca. 40-35 Ma and 15-10 Ma,
paleoclimatic data are still insufficient to clearly
demonstrate this linkage. It is clear that other
boundary conditions, especially the atmospheric
pCO, level, also exert an influence on Asian mon-
soons. Thus, we must differentiate such effects from
the effect of the HTP uplift to properly evaluate its
impact. However, it is important to note that the up-
lift and subsequent erosion of the HTP may also
affect the atmospheric pCO, level through chemical
weathering. The intensity of chemical weathering is
also influenced by summer monsoon precipitation.
Tectonics and climate linkages are not a one-way
process, and many feedback loops are still waiting to
be discovered.
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